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Abstract

Random walk with restart (RWR) is a widely-used measure of node similarity in graphs, and it
has proved useful for ranking, community detection, link prediction, anomaly detection, etc. Since
RWR is typically required to be computed separately for a larger number of query nodes or even for
all nodes, fast computation of it is indispensable. However, for hypergraphs, the fast computation
of RWR has been unexplored, despite its great potential. In this paper, we propose ARCHER, a
fast computation framework for RWR on hypergraphs. Specifically, we first formally define RWR on
hypergraphs, and then we propose two computation methods that compose ARCHER. Since the two
methods are complementary (i.e., offering relative advantages on different hypergraphs), we also develop
a method for automatic selection between them, which takes a very short time compared to the total
running time. Through our extensive experiments on 18 real-world hypergraphs, we demonstrate (a)
the speed and space efficiency of ARCHER, (b) the complementary nature of the two computation
methods composing ARCHER, (c) the accuracy of its automatic selection method, and (d) its successful
application to anomaly detection on hypergraphs.

Keywords: Hypergraph, Random Walk with Restart, Fast Computation, Anomaly Detection

1 Introduction

Given a pair of nodes on a large-scale hypergraph, how can we rapidly and efficiently calculate their proximity
based on random walk with restart? How useful are such proximities for data-mining applications?

A hypergraph is a data structure consisting of a set of nodes and a set of hyperedges, and each hyperedge
is a set composed of any number of nodes. Note that a hypergraph where each hyperedge joins any number of
nodes is a generalization of a (pairwise) graph where each edge always joins two nodes. Due to this increased
expressiveness, hypergraphs are widely used to model real-world group relations, including (two or more)
researchers who co-author a paper, items purchased together, and tags co-appearing in a post [1, 2, 3, 4].

Random walk, a concept widely used for graphs, naturally applies to hypergraphs. Random walk is
a stochastic process that assumes an imaginary surfer moving randomly between nodes in a graph; and
for instance, PageRank [5] utilizes this concept to model a random surfer navigating a web graph (i.e.,
a network of hyperlinks between web pages) and quantifies the importance of web pages based on the
stationary distribution of the surfer’s visits. A simple hypergraph extension [6] assumes a random surfer
that repeats (a) choosing an incident hyperedge with probability proportional to edge weights and (b)
choosing an incident node uniformly at random. However, its expressiveness is limited in that such random
walk can always be reduced to random walk on an undirected graph, with some choice of weights [7]. [7]
proposed a more expressive one that may not be reduced to random walk on any undirected graph. It
assumes a random surfer who uses edge-dependent node weights (EDNW) when choosing incident nodes,
and due to its expressiveness, it has been employed for clustering [8], product-return prediction [9], object
classification [10], anomaly detection [11], etc.

*Co-corresponding authors.
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On graphs, the concept of random walk with restart (RWR) [12] has also been widely used. RWRmeasures
the stationary probability distribution of random walk when we assume a random surfer who restarts at a
query node with a certain probability, and the distribution is naturally interpreted as the relevance of each
node with respect to the query node. Due to its ability to consider multi-faceted relationships between nodes,
RWR has been extensively utilized in graph mining applications including personalized ranking [12, 13],
anomaly detection [14], subgraph mining [15], graph neural networks [16], and graph augmentation [17, 18].
Since RWR is typically required to be computed separately for a larger number of query nodes or even for all
nodes, fast computation of it is indispensable. Therefore, many computation methods have been developed
[19, 20], and many of them rely on preprocessing the input graph [15, 21, 22, 23].

However, RWR on hypergraphs has been underexplored, while an extension of RWR to hypergraphs
is straightforward with many potential applications. One potential reason is the lack of fast and scalable
computation methods of it. For example, the previous work [7] has relied on naive power iteration, which
becomes impractical when dealing with a large number of query nodes on large-scale hypergraphs. Since
random walk on a hypergraph consists of two-step transitions (i.e., from node to hyperedge, and from
hyperedge to node), we cannot directly employ existing fast and scalable computation methods for RWR on
a graph whose transition is just from node to node. Similar to graphs, RWR scores on hypergraphs vary
across different query nodes, and computing RWR scores for a large number of query nodes is necessary for
applications. Thus, dedicated efforts are necessary to develop fast computation methods can offer low costs
per query node, even if it involves incurring a one-time preprocessing cost.

In this work, we propose ARCHER (Adaptive RWR Computation on Hypergraphs), a fast and space-
efficient framework for computing RWR on real-world hypergraphs. After formally defining RWR on hy-
pergraphs, we develop two computation methods for it based on two different (simplified) representations
of hypergraphs. These two computation methods are complementary, and they offer relative advantages on
different hypergraphs. Thus, we further propose an automatic selection method that chooses one computa-
tion method based on a simple but effective goodness criterion whose computation takes a very short time
compared to the total running time.

Through extensive experiments on 18 real-world hypergraphs, we substantiate the speed and space effi-
ciency of ARCHER and its two key driving factors: (a) the complementarity between the two computation
methods composing ARCHER and (b) the accuracy of its automatic selection method. In addition, we
demonstrate a successful application of RWR on hypergraphs and ARCHER to anomaly detection.

Reproducibility. The source code and datasets used in this paper are available at https://github.com/
jaewan01/ARCHER.

The rest of the paper is organized as follows. In Section 2, we introduce preliminaries and related work.
In Section 3, we describe our approaches for computing RWR on hypergraphs. In Section 4, we introduce
an application of RWR on hypergraphs for the purpose of anomaly detection. After sharing experimental
results in Section 5, we present conclusions and future directions in Section 6.

2 Preliminaries and Related Work

In this section, we introduce some preliminaries and related studies on random walks on (hyper-)graphs and
their applications.

2.1 Notations

We describe basic notations frequently used in this paper where related symbols are summarized in Table 1.

(Hyper)graph. A hypergraph GH = (V, E , ω, γ) consists of a set V of nodes, a set E of hyperedges, the
weight ω(e) of hyperedge e, and the weight γe(v) of node v depending on hyperedge e. Each hyperedge
e ∈ E is represented by a non-empty subset of an arbitrary number of nodes, i.e., e ∈ 2V . We let n = |V|
and m = |E| be the numbers of nodes and hyperedges, respectively. Similarly, a graph G = (V,E,w) consists
of a set V of nodes, a set E of edges, and edge weights w.

Matrix representation. Consider a one-to-one mapping f between V and {1, · · · , n} and a one-to-one
mapping g between E and {1, · · · ,m}. For any matrix X ∈ Rn×m, we denote its (f(v), g(e))-th entry
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Table 1: Symbols.

Symbol Definition

GH = (V, E , ω, γ) hypergraph where V and E are sets of nodes and hyperedges,
ω(e) is the weight of hyperedge e, and
γe(v) is the weight of node v depending on hyperedge e

n = |V| number of nodes
m = |E| number of hyperedges

W ∈ Rn×m hyperedge-weight matrix of GH and W̃ is row-normalized

R ∈ Rm×n node-weight matrix of GH and R̃ is row-normalized
G = (V,E,w) graph where V is the node set, E is the edge set, and

w(e) is the weight of edge e
GC clique-expanded graph from GH

G⋆ star-expanded graph from GH

E(v) hyperedges incident to node v, i.e., E(v) = {e ∈ E : v ∈ e}
d̄(v) unweighted degree of node v, i.e., d̄(v) = |E(v)|
|e| size of hyperedge e
γ(v) degree of hyperedge e, i.e., γ(v) =

∑
v∈e γe(v)

s query node for RWR
c restart probability of RWR where 0 < c < 1
c⋆ modified restart probability, i.e, c⋆ = 1−

√
1− c

q ∈ Rn RWR query vector w.r.t query node s
r ∈ Rn RWR score vector w.r.t. query node s

HC ∈ Rn×n HC = In − (1− c)P̃⊤ where P̃ = W̃R̃

H⋆ ∈ RN×N H⋆ = IN − (1− c⋆)S̃
⊤ where S̃ =

(
0 W̃
R̃ 0

)
and N = n+m

Xf(v)g(e) simply by Xve. Similarly, for any matrix Y ∈ Rm×n, we let Yev denote Yg(e)f(v), and for any
Z ∈ Rn×n, we let Zvv denote Zf(v)f(v). The matrix W ∈ Rn×m is the hyperedge-weight matrix whose entry
Wve = ω(e) if v ∈ e, and 0 otherwise. The matrix R ∈ Rm×n is the node-weight matrix whose entry
Rev = γe(v) if v ∈ e, and 0 otherwise. In the adjacency matrix A ∈ R|V |×|V | of any graph G, Auv = w(e) if
there is an edge between nodes u ∈ V and v ∈ V ; otherwise, Auv = 0.

Hypergraph expansions. A hypergraph can be converted into graphs using clique- and star-expansion.
Clique expansion [24] constructs a graph GC = (V, EC) from GH by replacing each original hyperedge with
a clique composed of the nodes in the hyperedge, i.e., EC = {(u, v)|u, v ∈ e, e ∈ E}. Notably, the adjacency
matrix of GC has the same sparsity pattern as P = WR, as illustrated in Figure 1.

Star expansion [25] constructs a graph G⋆ = (V⋆, E⋆) by aggregating nodes and hyperedges as a new
set of nodes (i.e., V⋆ = V ∪ E), and edges are created between each pair of incident node and hyperedge
(i.e., E⋆ = {(v, e)|v ∈ e, v ∈ V, e ∈ E}). The sparsity pattern of the adjacency matrix of G⋆ is the same as
S =

(
0 W
R 0

)
, as illustrated in Figure 1.

2.2 Random Walk with Restart on Graphs

We introduce the concept of random walk with restart (RWR) on a graph and existing methods for computing
RWR scores.

Concept. Given a graph G and a query node s, random walk with restart (RWR) aims to obtain a vector
r of proximities from s to each node on the graph [12]. Specifically, it assumes a random surfer that starts
from node s and takes one of the following actions at each step:

• Action 1) Random walk. The surfer randomly moves to one of the neighbors from the current node
with probability 1 − c. The probability of selecting each neighbor is proportional to the edge weight
between the current node and the neighbor.

• Action 2) Restart. The surfer jumps back to the query node s with restart probability c.
The stationary probability of the surfer visiting a node u is denoted by ru. That is, the RWR score vector
r of all nodes w.r.t. s (a.k.a. single-source RWR scores) is the unique solution of the following equation:

r = (1− c)Ã⊤r + cq, (1)

3



Figure 1: Clique- and star-expansions of an example hypergraph and their sparsity patterns.

where Ã is the row-normalized adjacency matrix of G, and c is called restart probability. An RWR query is
denoted by q ∈ Rn, which is a unit vector whose s-th entry is 1. The resulting RWR score vector for the
query q is denoted by r ∈ Rn. The choice of the query node s determines a specific RWR query q, leading
to a distinct RWR score vector r. Note that the surfer often goes back to the query node s with probability
c, and thus the proximities are spatially localized around s [26], i.e., scores of nodes tightly connected to s
are high, while those of distant nodes are low.

In the following paragraphs, we introduce several existing methods for exact single-source RWR cal-
culation on graphs, with a focus on iterative methods and preprocessing methods. Note that there also
exist approximate methods [12, 27, 28, 29], and those for identifying only the top-k nodes with the highest
scores [20, 30, 31].

Iterative methods. This approach repeatedly updates RWR scores from the initial ones until convergence.
Among various methods, power iteration has been widely utilized due to its simplicity, which is described as
follows:

• Power iteration: [32] utilized the power iteration method that repeats updating r based on the
following equation:

r(i) ← (1− c)Ã⊤r(i−1) + cq, (2)

where r(i) denotes r at the i-th iteration. It is repeated until r converges. If 0 < c < 1, r is guaranteed
to converge to a unique solution [33].

Although the iterative approach does not require any computational cost for preprocessing, it exhibits
expensive query processing cost (i.e., computational cost per RWR query q) due to the repeated matrix-
vector calculation for each query.

Preprocessing methods. This approach aims to quickly calculate r for a given query node s based on
preprocessed results. From Equation (1), we can represent the problem as solving the following linear system:(

In − (1− c)Ã⊤
)
r = cq ⇔ Hr = cq ⇔ r = cH−1q, (3)

where In is an identity matrix of size n, H = In − (1− c)Ã⊤ ∈ Rn×n is called the random-walk normalized
Laplacian matrix with probability 1− c, and each column of H−1 is the RWR scores w.r.t. each query node.
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Note that the inverse of H always exists since its transpose is a strictly diagonally dominant matrix [34].
However, preprocessing H−1 for large graphs is impractical due to its expensive computational costs (spec.,
it requires O(n3) time and O(n2) space). To overcome the issues, preprocessing approaches focus on precom-
puting intermediate sub-matrices related to H−1 and computing RWR scores rapidly based on them. These
preprocessed matrices are computed only once and can be reused for multiple query nodes while reducing
the computational cost per query.

As described later, preprocessing approaches designed for graphs can also be utilized to accelerate RWR
computation on hypergraphs within our proposed framework ARCHER. In this paper, we consider the
following state-of-the-art methods for computing RWR on graphs, while our framework can be used with
any preprocessing-based approaches, such as [15, 21]:

• BEAR: [22] developed BEAR, a block elimination approach that efficiently preprocesses sub-matrices
related to H−1. For that, they utilized a node reordering technique called SlashBurn1 [35] using the
hub-and-spoke structure to reorder and partition the matrix H. After that, they applied the block
elimination [36] to the partitioned sub-matrices for computing r.

• BePI: [23] proposed BePI, a scalable and memory-efficient method for computing r. Although BEAR
achieves a fast speed for computing an RWR query, its scalability for larger graphs is limited due to
the high cost of the inversion of a sub-matrix inside the block elimination. To resolve the issue, they
first utilized SlashBurn1 to reorder the matrix and then incorporated an iterative approach into the
block elimination by replacing the sub-matrix inversion with an iterative linear solver2.

Note that these two methods have distinct advantages. BePI is more space-efficient and thus can be
applied to larger graphs, while BEAR processes each RWR query faster on small datasets. Our experimental
results show that the same distinct advantages are observed also in RWR computation on hypergraphs (see
Figures 3 and 4).

Other methods to address the substantial cost of the computation of H−1 include employing graph
sparsification (i.e., reducing non-zeros of H). For example, [38] developed a spectral sparsification method for
directed graphs, demonstrating a strong correlation between the RWR scores computed from the sparsified
graph and those obtained from the original graph. Another approach involves approximating H as an
Eulerian Laplacian matrix, followed by the application of a directed Laplacian system-solving algorithm.
From the obtained values, approximated values of the original solution can be derived in nearly linear
time [39, 40]. These methods differ from BEAR and BePI in that they yield an approximate solution
by transforming H into a computationally efficient form. We plan to explore the incorporation of such
approximate computation algorithms into our framework as a part of our future research directions.

Applications. RWR has been extensively utilized in diverse graph mining tasks based on node-to-node
similarities on graphs. [14] designed normality scores based on RWR to detect abnormal nodes in a bipartite
graph. [15] used RWR to measure the goodness of a match between a query graph and a subgraph. [41]
employed RWR for measuring the relevance between a query image and the data images. [13, 42] extended
RWR to signed RWR in order to calculate personalized ranking scores in a signed graph. [16] incorporated
RWR into graph neural networks (GNNs) to prevent aggregated embeddings from being over-smoothed. The
RWR score matrix has been used for augmenting static graphs [17] and dynamic graphs [18] to improve the
performance of GNNs.

2.3 Random Walk on Hypergraphs

In this section, we introduce several previous random walk models and other related studies on hypergraphs.

Random walk models on hypergraphs. A typical random walk on a hypergraph [6] repeats (a) selecting
an incident hyperedge with probability proportional to edge weights and (b) selecting an incident node
uniformly at random. [7] extended the concept of random walk to hypergraphs with edge-dependent node

1 Let k and n denote the hub selection ratio and the number of nodes, respectively. SlashBurn removes ⌈kn⌉ high-degree
nodes (called hubs) from a graph so that it is split into the giant connected component (GCC) and remaining disconnected
components (called spokes), and it recursively repeats this process on the GCC. The hubs and spokes are then utilized to
construct its reordering permutation (refer to its paper for details). It is used in both BEAR and BePI.

2As an iterative solver, BePI employs GMRES [37], a Krylov subspace method, with a preconditioner such as incomplete
LU decomposition where the iterative solver converges if its residual is less than error tolerance ϵ.
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Figure 2: Overview of ARCHER, which consists of 1) a star-expansion-based RWR computation method, 2)
a clique-expansion-based RWR computation method, and 3) a preprocessing (including automatic selection)
method.

(i.e., vertex) weights (EDNW). Given a hypergraph GH = (V, E , ω, γ) where γe(v) is the weight of node v
depending on edge e, the random walk on GH is defined as follows:

• Action 1-1) For the current node u, the surfer selects a hyperedge e containing node u with probability
proportional to ω(e).

• Action 1-2) The surfer moves to node v selected from one of the nodes in the hyperedge e with
probability proportional to γe(v).

In the above model, we set γe(u) = 0 if u /∈ e. If each node has the same node weight for all of its
incident hyperedges (i.e., γe(v) = γe′(v), ∀e ̸= e′ ∈ E), it is called a hypergraph with edge-independent node
weights (EINW). As described in [7], a random walk on a hypergraph with EINW is equivalent to that on an
undirected clique-expanded graph from the hypergraph with some choice of weights; thus, its expressiveness
is limited. On the other hand, a random walk on a hypergraph with EDNW is more expressive in that it
may not be equivalent to that on any undirected clique-expanded graph.

It should be noticed that even when random walk (with restart) on a hypergraph can be reduced to that
on a graph, it may not be computationally optimal to calculate the equivalent random walk (with restart)
on a graph. Thus, regardless of this (in)equivalence, it can be useful to develop fast computation methods
for random walk (with restart) on hypergraphs.

Applications. [8] employed the random walk to devise a flexible framework for clustering hypergraph
data. [9] proposed a local graph cut algorithm using the random walk for product-return prediction on
a hypergraph. [10] utilized the random walk for dynamic hypergraph structure learning. [11] proposed
HashNWalk which exploits the concept of random walk for detecting anomalous hyperedges in hyperedge
streams. Note that these works utilized the concept of random walks on hypergraphs with EDNW, but
they did not incorporate the concept of restart. [7] conducted a theoretical analysis of random walks on
hypergraphs with EDNW. The authors briefly mentioned that extending this concept to incorporate restart
is straightforward, but they did not provide further details. In their work, they utilized RWR for ranking
problems on hypergraphs by using naive power iteration, which becomes impractical when dealing with many
query nodes on large-scale hypergraphs.

3 Proposed Framework

In this section, we propose ARCHER (Adaptive RWR Computation on Hypergraphs), a novel framework
for rapid and space-efficient computation of random walk with restart (RWR) scores on a hypergraph. As de-
picted in Figure 2, ARCHER consists of three components: (a) star-expansion-based computation methods,
(b) clique-expansion-based computation methods, and (c) automatic selection methods. In ARCHER, for
a given hypergraph GH , one between star-expansion-based and clique-expansion-based computation meth-
ods is automatically selected based on the number of non-zeros in their resulting matrices (Component 3
in Section 3.4). Then, to leverage preprocessing techniques for fast RWR computation on graphs (e.g.,
BEAR and BePI), the RWR problem on the hypergraph is converted into that on the star-expanded graph
(Component 1 in Section 3.2) or that on the clique-expanded graph (Component 2 in Section 3.3). After
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that, the RWR scores with respect to (potentially a large number of) query nodes are computed rapidly by
employing a preprocessing-based approach. Note that our framework, ARCHER, can be equipped with any
preprocessing-based approaches for RWR computation on graphs.

3.1 Random Walk with Restart on Hypergraphs

First of all, we formally describe the random walk with restart (RWR) model on hypergraphs as follows:
Definition 1 (RWR on a hypergraph). Given a hypergraph GH = (V, E , ω, γ) and a query node s, a random
surfer starts from node s. Then, the surfer takes one of the following actions at each step:

• Action 1) Random walk. The surfer performs the following random walk on GH with probability
1− c.

– Action 1-1) For the current node u, the random surfer selects a hyperedge e containing node u
with probability proportional to ω(e).

– Action 1-2) The surfer moves to node v selected from one of the nodes in the hyperedge e with
probability proportional to γe(v).

• Action 2) Restart. The surfer jumps back to the query node s with restart probability c.
The stationary probability of the surfer visiting a node u is denoted by ru, and the RWR score vector

r ∈ Rn×1 of all nodes w.r.t. s in GH is the unique solution of the linear system:

r = (1− c)R̃⊤W̃⊤r︸ ︷︷ ︸
Random walk

+ cq,︸︷︷︸
Restart

(4)

where 0 < c < 1 is the restart probability of a random surfer, q is the RWR query vector, which is the unit
vector whose s-th element is 1, and (W̃R̃)⊤ is the transition matrix of the random walk on GH where W̃
and R̃ are defined as follows:

• (Regarding Action 1-1) W̃ = D−1
V W ∈ Rn×m is the row-normalized hyperedge-weight matrix where

W̃⊤ indicates the transition from a node to a hyperedge. W is the hyperedge-weight matrix, and
DV = diag(W1m) is the node degree diagonal matrix where 1m ∈ Rm×1 is a column vector of ones.

• (Regarding Action 1-2) R̃ = D−1
E R ∈ Rm×n is the row-normalized node-weight matrix, where R̃⊤

indicates the transition from a hyperedge to a node. R is the node-weight matrix, andDE = diag(R1n)
is the hyperedge degree diagonal matrix where 1n ∈ Rn is a column vector of ones.

Although the RWR score vector r on GH can be obtained by repeatedly iterating Equation (4) based
on the power iteration method, such an iterative approach is not satisfactory due to its high computational
cost per query node, as discussed in Section 2.2. As quickly computing RWR scores for a large number of
query nodes is necessary for many applications, in the following sections, we propose two RWR computation
methods that provide low cost per query node by preprocessing an input hypergraph, which incurs a one-time
cost.

3.2 Component 1. Star-expansion-based Method

We first propose a star-expansion-based method that computes the RWR scores on the graph G⋆ star-
expanded from the hypergraph GH . For this purpose, we construct a new transition matrix S̃ as follows:

S̃ =

[
0 W̃

R̃ 0

]
, (5)

where S̃ ∈ RN×N is also row-normalized as W̃ and R̃ are row-normalized, and N = n +m. Note that the
sparsity pattern of S̃ is the same as that of S which is the star-expanded graph G⋆ from GH as described in
Section 2.1 (see the example in Figure 1).

Our star-expansion-based method aims to calculate RWR scores on the new transition matrix S̃ through
the following equation:

r⋆ = (1− c⋆)S̃
⊤r⋆ + c⋆q⋆, (6)
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Algorithm 1 Star-expansion-based Method for RWR on Hypergraphs

1: function Preprocess(R, W, c)
▷ Input: node-weight matrix R, hyperedge-weight matrix W, restart probability c

▷ Output: set Θ⋆ of preprocessed matrices

2: compute DV and DE
3: construct S̃ from W̃ and R̃ where R̃ = D−1

E R and W̃ = D−1
V W

4: compute H⋆ = IN − (1− c⋆)S̃
⊤ where c⋆ = 1−

√
1− c and N = n+m

5: compute a set Θ⋆ of preprocessed matrices from H⋆ using
a preprocessing method (e.g., BEAR or BePI)

6: return Θ⋆

7: end function

8: function Query(s, Θ⋆)
▷ Input: query node s, set Θ⋆ of preprocessed matrices

▷ Output: RWR score vector r w.r.t s in hypergraph GH

9: create q⋆ whose s-th entry is 1 and the others are 0
10: compute r⋆ by querying q⋆ based on the preprocessed matrices in Θ⋆

11: decompose r⋆ into rV and rE
12: compute r = c

c⋆
rV

13: return r
14: end function

where c⋆ is a modified restart probability from c (i.e., c⋆ = 1−
√
1− c), r⋆ ∈ RN×1 is the RWR score vector

on S̃, and q⋆ is a modified query vector from q defined as follows:

r⋆ =

[
rV
rE

]
and q⋆ =

[
q
0

]
,

where rV and rE denote the RWR score vectors on nodes and hyperedges, respectively. Once we obtain rV ,
the target RWR score vector r is easily converted from rV according to the following theorem:
Theorem 1 (Star Expansion Equality). Suppose r is the RWR score vector on a hypergraph GH in Equa-
tion (4), and rV is the sub-vector of r⋆, which is the RWR score vector on a star-expanded graph G⋆ of S̃
in Equation (6). Then, the following equality holds:

r =
c

c⋆
rV ,

where c⋆ = 1−
√
1− c is the modified restart probability, which ranges from 0 to 1 if 0 < c < 1.

Proof. We rewrite Equation (6) using the definitions of S̃, r⋆ and q⋆ as follows:[
rV
rE

]
= (1− c⋆)

[
0 R̃⊤

W̃⊤ 0

] [
rV
rE

]
+ c⋆

[
q
0

]
.

Then, rV and rE are represented as:

rV = (1− c⋆)R̃
⊤rE + c⋆q, (7)

rE = (1− c⋆)W̃
⊤rV . (8)

By plugging in Equation (8) into Equation (7), we obtain the following equation:

rV = (1− c⋆)
2R̃⊤W̃⊤rV + c⋆q

⇔ rV = (1− c⋆)
2P̃⊤rV + c⋆q, (9)
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where P̃ = W̃R̃. Note that c⋆ = 1−
√
1− c by its definition, satisfying (1−c⋆)2 = (1−c). Then, Equation (9)

is represented as follows:

rV = (1− c)P̃⊤rV + c⋆q

⇔ rV = c⋆

(
In − (1− c)P̃⊤

)−1

q

⇔ rV = c⋆H
−1
C q =

c⋆
c
r,

where HC = IN − (1− c)P̃⊤, and r = cH−1
C q. This proves the claim r = c

c⋆
rV .

Theorem 1 indicates that the RWR score vector r of Equation (4) can be obtained by solving the RWR
problem on the star-expanded graph in Equation (6). Since Equation (6) has the same mathematical form
as Equation (1), we can apply preprocessing-based approaches (e.g., BEAR and BePI), which are based on
the following linear system:

H⋆r⋆ = c⋆q⋆,

where H⋆ = IN − (1 − c⋆)S̃
⊤ ∈ RN×N , and IN is an identity matrix of size N . Note that H⋆ is invertible,

as shown below, and thus the linear system on H⋆ can be solved using preprocessing methods.

Theorem 2 (Invertibility of H⊤
⋆ ). If 0 < c < 1, H⋆ is invertible.

Proof. We first show that H⊤
⋆ is strictly diagonally dominant. Note that H⊤

⋆ = IN − (1 − c⋆)S̃ by its
definition, and each entry of S̃ is non-negative. For each row i, |H⊤

⋆ii
| = 1 because S̃ii = 0 as shown in

Equation (5). For non-diagonal entries of the i-th row of H⊤
⋆ ,

∑
j ̸=i|H⊤

⋆ij
| = 1−c⋆ since S̃ is row-normalized.

Thus, the following inequality holds for every row i:∑
j ̸=i

|H⊤
⋆ij
| = 1− c⋆ < 1 = |H⊤

⋆ii
|,

where 0 < c⋆ < 1 for a given c, indicating H⊤
⋆ is strictly diagonally dominant.

The strict diagonal dominance of H⊤
⋆ implies its invertibility [34], which, in turn, implies the invertibility

of its transposed matrix, H⋆.

Algorithm 1 summarizes the star-expansion-based method for computing the RWR score vector r w.r.t.
a query node s in GH . The algorithm involves preprocessing and query phases as it adopts a preprocessing-
based approach (e.g., BEAR or BePI). Note that the preprocessing phase is run once, while the query
phase is run for each query node. In the preprocessing phase, the method first constructs the transition
matrix S̃ (lines 2 and 3). Then, it computes H⋆ (line 4) and preprocesses it by applying a preprocessing-
based approach (line 5), resulting in a set Θ⋆ of preprocessed matrices. Whenever a user submits a specific
query node s, the query phase computes the RWR score vector r w.r.t. s. Initially, its creates q⋆ (line 9),
followed by the computation of r⋆ (line 12) based on Equation (6). This process employs the query phase
of the preprocessing method using the preprocessed results Θ⋆. Based on Theorem 1, the algorithm finally
computes the target RWR score vector r (lines 11 and 12).

3.3 Component 2. Clique-expansion-based Method

We propose a clique-expansion-based method that computes the RWR scores on the graphGC clique-expanded
from the hypergraph GH . It explicitly construct the transition matrix P̃ = W̃R̃ by which Equation (4)
becomes

r = (1− c)P̃⊤r + cq, (10)

where the sparsity pattern of P̃ is the same as that of the adjacency matrix of the clique-expanded graph
GC from GH as described in Section 2.1 (see the example in Figure 1).
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Based on Equation (10), we apply a preprocessing approach to the graph of P̃ clique-expanded from GH ,
which solves the following linear system:

HCr = cq,

where HC = In − (1− c)P̃⊤ ∈ Rn×n and In is the identity matrix of size n. Note that HC is also invertible,
which is proven in the following theorem:
Theorem 3 (Invertibility of HC). If 0 < c < 1, HC is invertible.

Proof. We first show that H⊤
C is strictly diagonally dominant. H⊤

C = In − (1 − c)P̃ by its definition and

each entry of P̃ is non-negative. For each row i, |H⊤
Cii
| = 1 − (1 − c)P̃ii. Since P̃ is row-normalized,∑

j ̸=i|P̃ij | = 1− P̃ii. Then, the following inequality holds for every row i:∑
j ̸=i

|H⊤
Cij
| = (1− c)(1− P̃ii) = (1− (1− c)P̃ii)− c < 1− (1− c)P̃ii = |H⊤

Cii
|,

where 0 < c < 1. This indicates that H⊤
C is strictly diagonally dominant.

The strict diagonal dominance of H⊤
C implies its invertibility [34], which, in turn, implies the invertibility

of its transposed matrix, HC .

The clique-expansion-based method is summarized in Algorithm 2, which consists of preprocessing
and query phases. In the preprocessing phase, it first explicitly builds the transition matrix P̃ ∈ Rn×n

(lines 2 and 3). Then, the algorithm computes the matrix HC (line 4). By applying a preprocessing method,
it processes HC and obtains the preprocessed results ΘC (line 5). In the query phase, it creates the RWR
query vector q (line 9) and then computes the RWR score vector r by querying q using the preprocessed
results ΘC (line 10). The query phase is initiated whenever a user submits a query node.

The time and space complexities of both clique- and star-expansion-based methods can be directly derived
from the complexities of RWR computation methods (e.g., BEAR [22] and BePI [23]) and the definitions of
clique- and star-expansions. When employing BePI as the RWR computation method, although the complex-
ities involve many terms related to graph structures, empirically, processing time, space cost, and query time
are largely influenced by the number of edges after expansion, specifically, nnz(HC) and nnz(H⋆) in clique-
and star-expansion-based computations, respectively. For detailed empirical results, refer to Appendix E.
This empirical tendency is utilized in the subsequent subsection for the automatic selection between clique-
and star-expansion-based methods.

3.4 Component 3. Automatic Selection Method

As described in Sections 3.2 and 3.3, our clique- and star-expansion-based methods allow for fast RWR
computation on the hypergraph GH by leveraging a preprocessing approach. Interestingly, the preprocessed
matrices H⋆ and HC have very different characteristics. For example, HC may have a large number of non-
zeros because each hyperedge e is replaced with a clique of all nodes in e, which can exert a bad effect on
scalability as preprocessed results are densified. On the other hand, H⋆ ∈ RN×N can be relatively sparse,
but it is of large dimension. Recall that N = n +m where n and m are the numbers of nodes and edges,
respectively. As a result, the relative time and space required to preprocess H⋆ and HC heavily depends on
datasets. For example, if n≪ m, preprocessing a small matrix such as HC ∈ Rn×n can be computationally
advantageous even though it is dense.

Thus, we further develop an automatic selection method for choosing one between clique- and star-
expansion-based methods so that the chosen method brings out the best performance of a preprocessing
method. Various data statistics of a hypergraph can be considered to design a criterion based on which
one method is chosen. Among them, our strategy is to utilize the number of non-zeros of a matrix to be
preprocessed under a hypothesis that the performance of a preprocessing method is likely to be affected by
non-zero entries as it exploits the sparsity of the preprocessed matrix for efficiency. We empirically prove
the effectiveness of our strategy compared to various statistics in Section 5.5.

Based on the criterion, our framework selects the star-expansion-based method if the following predicate
satisfies:

nnz(HC) > nnz(H⋆) (11)
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Algorithm 2 Clique-expansion-based Method for RWR on Hypergraphs

1: function Preprocess(R, W, c)
▷ Input: node-weight matrix R, hyperedge-weight matrix W, restart probability c

▷ Output: set ΘC of preprocessed matrices

2: compute DV and DE
3: compute P̃ = W̃R̃ where W̃ = D−1

V W and R̃ = D−1
E R

4: compute HC = In − (1− c)P̃⊤

5: compute a set ΘC of preprocessed matrices from HC using
a preprocessing method (e.g., BEAR or BePI)

6: return ΘC
7: end function

8: function Query(s, ΘC)
▷ Input: query node s, set ΘC of preprocessed matrices

▷ Output: RWR score vector r w.r.t s in hypergraph GH

9: create q whose s-th entry is 1 and the others are 0
10: compute r by querying q based on the preprocessed matrices in ΘC
11: return r
12: end function

Algorithm 3 ARCHER: Adaptive RWR Computation on Hypergraphs

1: function Preprocess(R, W, c)
▷ Input: node-weight matrix R, hyperedge-weight matrix W, restart probability c

▷ Output: set Θ of preprocessed matrices

2: set nnz(HC) to nnz(WR) by Equation (12)
3: set nnz(H⋆) to n+m+ 2

∑
v∈V d̄(v) by Equation (13)

4: if nnz(HC) > nnz(H⋆) then
5: Θ← Preprocess(R, W, c) of Algorithm 1 ▷ star expansion

6: else
7: Θ← Preprocess(R, W, c) of Algorithm 2 ▷ clique expansion

8: end if
9: return Θ

10: end function

11: function Query(s, Θ)
▷ Input: query node s, set Θ of preprocessed matrices

▷ Output: RWR score vector r w.r.t s in hypergraph GH

12: if Θ is from the star-expansion-based method then
13: r ← Query(s, Θ) of Algorithm 1 ▷ star expansion

14: else
15: r ← Query(s, Θ) of Algorithm 2 ▷ clique expansion

16: end if
17: return r
18: end function

where nnz(·) returns the number of non-zeros of an input matrix. Otherwise, our method selects the clique-
expansion-based method. Note that counting nnz(HC) and nnz(H⋆) takes a very short time compared to the
total running time mostly consumed by non-trivial operations, such as reordering and matrix multiplications
of the preprocessing methods [22, 23]. While the empirical computation time is already very small, further
optimization allows us to calculate Equation (11) in O(

∑
e∈E |e|2) time with O(n) extra space, as explained

in Appendix D.
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3.5 Ultimate Framework: ARCHER

By putting all of the components together, we develop ARCHER, our ultimate framework for fast compu-
tation of RWR on hypergraphs, and the procedure in it is summarized in Algorithm 3. In the preprocessing
phase, ARCHER first computes nnz(HC) and nnz(H⋆) (lines 2 and 3), which are utilized to select either
clique- or star-expansion-based methods. Based on the criterion in Equation (11), ARCHER chooses one of
the methods and executes the corresponding preprocessing step (lines 4-8) to obtain a set Θ of preprocessed
matrices. In the query phase, for each query node s, ARCHER performs the query step depending on the
selected method (lines 12-16), using the preprocessed matrices Θ, to compute the RWR score vector r.

It is important to note that our framework ARCHER can be equipped with any pre-processing-based
RWR computation method (e.g., BEAR and BePI), which is used inside Algorithms 1 and 2, and the total
time and space complexity of ARCHER depends on the chosen method. Different methods offer distinct
advantages, as demonstrated empirically in Section 5.

4 Application to Anomaly Detection

In this section, we present an application of RWR scores on hypergraphs for the purpose of anomaly detection.
The empirical effectiveness of this approach is demonstrated in Section 5.6.

Given a hypergraph, this application aims to detect anomalous hyperedges that deviate from ordinary
group interactions. Inspired from [14], which uses RWR for anomaly detection on graphs, we measure
a normality score of a hyperedge based on relevance scores provided by hypergraph RWR. Our intuition
is that if a hyperedge e is normal, the relevance scores between any pair of nodes in e should be high.
Specifically, we define the normality score ns(e) as follows:

ns(e) =
1

|e|(|e| − 1)

∑
u∈e

∑
v∈e\{u}

ru→v

where ru→v is the RWR score of the node v w.r.t. the query node u. In other words, it is the average pair-
wise relevance scores between nodes in the hyperedge e. If the normality score is low, then the hyperedge
is considered anomalous. Note that we need a fast computation method such as ARCHER for this task
because it requires RWR scores for many query nodes.

More Applications. We have conducted a study on another application focused on the task of node re-
trieval, which is described in Appendix B.

5 Experiments

In this section, we evaluate the performance of ARCHER and compare it with other baselines for computing
RWR on hypergraphs. We aim to answer the following questions from the experiments:

• Q1. Preprocessing Time (Section 5.2). How long doARCHER and the two computation methods
composing it take for preprocessing?

• Q2. Space Cost (Section 5.3). How much memory space do they require for their preprocessed
results?

• Q3. Query Time (Section 5.4). How quickly do they process RWR queries?
• Q4. Automatic Selection Method (Section 5.5). How precisely does our automatic selection
strategy decide an appropriate computation method for a given hypergraph?

• Q5. Application to Anomaly Detection (Section 5.6). Can we achieve more accurate anomaly
detection on hypergraphs using RWR scores, compared to existing approaches?

5.1 Experimental Settings

We describe our experimental settings, including machines, methods, datasets, and parameters.

Machines. All experiments are conducted on a workstation with AMD Ryzen 9 3900X and 128GB memory.
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Table 2: Data statistics of real-world hypergraphs. n and m are the numbers of nodes and hyperedges,
respectively. The average and maximum sizes of hyperedges are denoted by avge∈E |e| and maxe∈E |e|, re-
spectively. The density is defined by m/n, and the overlapness [43] is defined by Σe∈E |e|/n.

Dataset n m avge∈E |e| maxe∈E |e| Density Overlapness

EEN 143 10,883 2.47 37 76.12 188.21
EEU 998 234,760 2.39 40 234.09 559.80
SB 294 29,157 7.96 99 99.17 789.62
HB 1,494 60,987 20.47 399 40.82 835.79
WAL 88,860 69,906 6.59 25 0.79 5.81
TRI 172,738 233,202 3.12 85 1.35 4.21
AM 55,700 105,655 8.12 555 1.90 15.41
YP 25,252 25,656 18.2 649 1.02 18.50
TW 81,305 70,097 25.2 1205 0.86 21.75
COH 1,014,734 1,812,511 1.32 925 1.75 2.32
COG 1,256,385 1,590,335 2.80 284 1.26 3.53
COD 1,924,991 3,700,067 2.79 280 1.92 5.35
THU 125,602 192,947 1.80 14 1.54 2.76
THM 176,445 719,792 2.24 21 4.08 9.13
THS 2,675,955 11,305,343 2.23 67 4.22 9.56
ML1 3,533 6,038 95.3 1435 1.71 162.83
ML10 10,472 69,816 84.3 3375 6.67 562.02
ML20 22,884 138,362 88.1 4168 6.05 532.93

Methods. For experiments evaluating the computational performance, we compare ARCHER with using
always one expansion method (star- or clique-expansion-based method). ARCHER and the baselines are
equipped with BEAR [22] or BePI [23], state-of-the-art preprocessing methods for RWR on graphs. We
also compare ARCHER with the power iteration methods on star- and clique-expanded graphs in Equa-
tions (6) and (10), respectively. We use our MATLAB implementation of the power iterations, and we use
the source code of the authors for BEAR3 and BePI4, which are also implemented in MATLAB.

For anomaly detection, we consider the following two hypergraph-based anomaly-detection methods as
baseline approaches:

• LSH-A [44]: For each incoming hyperedge, it computes the approximate frequency, which represents
the number of previous hyperedges that are similar to the new one, in the aspect of common nodes
shared. This is used to measure the unexpectedness of the hyperedge; intuitively, the hyperedge
can be considered unexpected if it is novel and significantly different from previous hyperedges (i.e.,
low frequency). The approximation scheme is efficiently implemented in hyperedge streams by using
Locality Sensitive Hashing (LSH) [45]. Specifically, it computes the MinHash signature with kh hash
functions and performs LSH with b bands. Then it scores the hyperedge with the similarity between
the signature of previous hyperedges. LSH-A takes O(kh|e|+ b+ b⌈mb

B ⌉+ 1) time per hyperedge, and
we use our Python implementation of LSH-A.

• HashNWalk [11]: In HashNWalk, each hyperedge is hashed into M buckets called supernodes
using each of kh hash functions. Based on the transition probability (i.e., random walk of length
1), HashNWalk calculates the proximity between supernodes. Whenever a new hyperedge emerges,
HashNWalk updates the proximity between the supernodes in it and compares it with the previous
proximity to compute the anomaly score of the hyperedge. In scoring, HashNWalk incorporates the
hyperparameter α to control the degree of emphasis placed on recent hyperedges. HashNWalk takes
O(kh|e|+ kh min(M, |e|)2) time per hyperedge, and we use the official implementation of HashNWalk
in C++.5

3https://datalab.snu.ac.kr/bear
4https://datalab.snu.ac.kr/bepi
5https://github.com/geon0325/HashNWalk
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Datasets. We conduct extensive experiments on eighteen real-world hypergraphs [1, 46, 47, 48, 49, 50, 51,
52, 53, 54, 55], whose statistics are summarized in Table 2. We provide details of each dataset in Appendix A.
The source code and datasets used in this paper are available at https://github.com/jaewan01/ARCHER.

Parameters. For the experiments of preprocessing and query costs, we set the restart probability c to 0.05,
which has been widely used in previous work [12, 22, 23]. For BEAR, we set the hub selection ratio k of the
reordering method to 0.001 as in [22]. For BePI, we set the hub selection ratio k of the reordering method
to 0.2, which is used for large graphs in [23] (see Footnote 1 for the usage of k). The error tolerance ϵ for the
power iteration and BePI is set to 10−9. We set the time and memory limits for preprocessing to 12 hours
and 128 GB, respectively.

We also perform careful hyperparameter tuning for the aforementioned anomaly detection methods. For
LSH-A, we measure performance with different numbers of bands in LSH signatures (b ∈ {2, 4, 8}) and the
length of LSH signatures (l ∈ {2, 4, 8}) and report the best result obtained. For HashNWalk, we adopt
a similar setting as described in [11]. Specifically, we set the hyperparameter α in the kernel function to
0.98. Additionally, we conduct a search for the optimal values of the number of hash functions kh and the
number of buckets M in the following ranges: (a) kh ∈ {10, 15, 20} and M ∈ {10, 20, 30} for the email-Enron
dataset (b) kh ∈ {8, 10, 12} and M ∈ {60, 80, 100} for the senate-bills dataset, and (c) kh ∈ {8, 10, 12} and
M ∈ {100, 150, 200} for the house-bills dataset. We report the best result achieved for each dataset.

5.2 Preprocessing Time

We evaluate the performance of ARCHER in terms of preprocessing time. BEAR and BePI are used as
preprocessing techniques. For each method, we report the average preprocessing time of 10 experiments.
Note that the iterative methods are excluded in this experiment because they do not require preprocessing.
Figure 3a shows the preprocessing time of all tested methods on 18 real-world hypergraphs.

We first compare ARCHER with BEAR and each expansion-based method with BEAR. ARCHER with
BEAR preprocesses hypergraphs up to 4.2× faster than applying BEAR to the star-expanded graph (see the
results on the SB dataset) and up to 2.4× faster than applying BEAR to the clique-expanded graph (see the
results on the ML20 dataset). Note that the clique-expansion-based method with BEAR cannot preprocess
medium-sized datasets such as WAL and AM because clique expansion produces a too-dense matrix that
BEAR cannot handle. For larger datasets such as TW, COG, COD, and THS, all methods with BEAR
fail due to their limited scalability. On the other hand, ARCHER with BePI provides better scalability for
preprocessing, and it successfully preprocesses all the datasets, showing up to 137.6× faster than applying
BePI to the clique-expanded graph (see the results on the TW dataset) and up to 4.5× faster than applying
BePI to the star-expanded graph (see the results on the EEU dataset).

These results imply the complementary nature of the clique-expansion-based methods and the star-
expansion-based methods. Specifically, they exhibit relative advantages on different hypergraphs, and these
advantages are significant. This underscores the importance of making careful choices between the two
methods, as ARCHER does. Our results regarding space cost and query time in the following subsections
further reinforce the importance of this selection, although we do not repeat the same discussion within
those subsections.

5.3 Space Cost

We analyze the space cost of ARCHER with each preprocessing technique compared to that of other
methods. The iterative methods are excluded from the comparison because they do not produce preprocessed
results beyond the size of the original data. We measure the memory size for storing preprocessed results in
MB. Figure 3b shows the space cost of each method. ARCHER with BEAR uses up to 16.2× less memory
than applying BEAR to the clique-expanded graph (see the results on the ML20 dataset) and up to 9.6× less
memory than applying BEAR to the star-expanded graph (see the results on the SB dataset). Furthermore,
the space cost of ARCHER with BePI is up to 12.3× less than applying BePI to the clique-expanded graph
(see the results on the TW dataset) and up to 9.0× less than applying BePI to the clique-expanded graph
(see the results on the SB dataset).
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(a) Preprocessing time

(b) Space usage for preprocessed results

Figure 3: Preprocessing costs for various calculation methods of RWR on hypergraphs in terms of (a)
preprocessing time and (b) space usage. For preprocessing times, the error bars indicate ±1 standard
deviation. However, in many datasets, the error bars are so small that they are practically invisible. As
shown in the figures, using ARCHER requires up to 137.6× less preprocessing time and 16.2× less space
than using always one expansion method. Results are omitted if the corresponding methods ran out of time
(> 12 hours) or out of memory (> 128 GB) during preprocessing.

5.4 Query Time

We examine the computational efficiency of ARCHER in processing RWR queries, compared to other
baselines, including power-iteration methods. For every method, we measure the average query processing
time for the same 30 query nodes. Figure 4 shows the results on 18 real-world hypergraphs. ARCHER with
BEAR answers the RWR queries up to 16.3× faster than applying BEAR to the star-expanded graph (see
the results on the EEU dataset) and up to 1.3× faster than applying BEAR to the clique-expanded graph
(see the results on the ML20 dataset) For ARCHER with BePI, its query time is up to 218.8× less than
applying BePI to the star-expanded graph (see the results on the EEU dataset) and up to 4.0× faster than
applying BePI to the clique-expanded graph (see the results on the AM dataset). Note that regardless of
the preprocessing techniques used, ARCHER significantly outperforms both power-iteration methods.

The experimental results regarding preprocessing and query costs imply that we should consider different
aspects of the preprocessing methods when choosing one of them. If query cost matters more than prepro-
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Figure 4: Query time for various calculation methods of RWR on hypergraphs. The error bars indicate ±1
standard deviation. Using ARCHER takes up to 218.8× less query time than using always one expansion
method. Results are omitted if the corresponding methods ran out of time (> 12 hours) or out of memory
(> 128 GB) during preprocessing.

cessing cost, BEAR is a good choice because its query speed is faster than that of BePI, especially on small
datasets, as shown in Figure 4. On the other hand, BePI is required for scalable RWR computation on larger
hypergraphs because BEAR fails to process such hypergraphs, as discussed in Section 5.2.

5.5 Automatic Selection Method

We investigate the effectiveness of the proposed criterion in our automatic selection method in ARCHER,
compared to other potential criteria based on major statistics of hypergraphs, including average hyperedge
size, density, and overlapness [43], which are summarized in Table 2.

To evaluate the effectiveness of each criterion, we set the ground-truth label between star- and clique-
expansion methods for each dataset depending on which expansion method leads to a shorter preprocessing
time of BePI. The reason for labeling the datasets in this manner is that only BePI successfully preprocesses
all the datasets, and the preprocessing time of each method is distinctly different, as shown in Figure 3a.
Our method selects the star method if nnz(HC)/nnz(H⋆) > 1; otherwise, it picks the clique method, i.e., the
threshold for our suggested method is 1 in Figure 5a. For the other criteria, we selected the threshold values
that maximize the number of correct selections. Specifically, we set the threshold for density in Figure 5b to
1.26, the threshold for overlapness in Figure 5c to 15.41, and the threshold for the average size of hyperedges
in Figure 5d to 3.12.

Figure 5 demonstrates that, when using our proposed criterion, we can choose the better expansion
method for 17 (out of 18) datasets, while the number of wrong choices increases when we use the other
criteria. This result empirically confirms our hypothesis that the performances of preprocessing methods
heavily depend on the number of non-zeros in the preprocessed matrix.

We further analyze the correlation between two ratios: (1) the ratio of nnz(HC) and nnz(H⋆), and (2)
the ratio of (preprocessing, space, and query) costs of the clique- and star-expansion-based methods, across
various datasets when BePI is used. In Figure 6, we observe a strong positive correlation between the non-
zero-count ratio and the cost ratio for each aspect of computation. This indicates that the cost in each
aspect is closely related to the number of non-zero entries in the matrix being processed. Additionally, the
positioning of data points in each plot demonstrates the effectiveness of our suggested method selection.
Data points located in the lower left area indicate the correct selection of the clique method, while those in
the upper right area indicate the correct selection of the star method. This demonstrates that our suggested
selection approach is effective for most of the tested datasets.
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(a) Proposed relative ratio nnz(HC)/nnz(H⋆) (17/18 correct)
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(d) Average hyperedge size (16/18 correct)

Figure 5: Effectiveness of various data statistics in selection between the star- and clique-expansion-based
methods. BePI is used as the preprocessing approach. Each dashed line indicates the best threshold for the
corresponding criterion. Note that, when using our proposed criterion, we can choose the better expansion
method for 17 (out of 18) datasets, while the number of wrong choices increases when we use the other
criteria.

5.6 Application to Anomaly Detection

In this section, we evaluate the effectiveness of RWR scores in detecting anomalies on hypergraphs. Refer
to Section 4 for a detailed procedure on how we utilize RWR scores for anomaly detection.

Settings. We conduct this experiment on the EEN (email-Enron), SB (senate-bills), and HB (house-bills)
datasets, which are small enough for all compared methods to terminate. As the original datasets do not
contain anomalous hyperedges, we synthetically generate them by injecting unexpected hyperedges follow-
ing [11]. Specifically, we randomly select a hyperedge e ∈ E, and then create a hyperedge by replacing half
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(a) Preprocessing Time (b) Space Cost (c) Query Time

Figure 6: Correlation between two ratios on a natural logarithmic scale: (1) the ratio of nnz(HC) and
nnz(H⋆), and (2) the ratio of the costs of the clique- and star-expansion-based methods in terms of (a)
preprocessing time, (b) space cost, and (c) query time. BePI is used as the preprocessing technique. We
report the Pearson correlation coefficient for each scatter plot.
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Figure 7: Anomaly detection performance on hypergraphs in terms of AUROC and MAP. RWRs using
weights, especially EDNW, are more accurate than the other methods, including RWR on unweighted clique-
expanded graphs.

nodes in e with random nodes. We repeat this process until t hyperedges are generated.
We consider three models of RWR on hypergraphs: 1) RWR using EDNW, 2) RWR using EINW, and 3)
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naive RWR. Note that the datasets used in the experiment do not contain explicit weights. For EDNW, we
make the weights to be edge-dependent by setting γe(v) = d̄(v)−β , where d̄(v) denotes the unweighted degree
of node v. That is, we adopt the principle that, since high-degree nodes are present in multiple hyperedges,
they are likely to have a reduced impact within each hyperedge. We then set β = 0.5 and ω(e) = 1 (refer
to Appendix C for the selection of β = 0.5). In the case of EINW (edge-independent node weights), we
set γe(v) = 1 and ω(e) = 1. To check the effect of those weights, we further compare naive RWR that
computes RWR scores on the unweighted clique-expanded graph from the input hypergraph. We vary the
restart probability c from 0.1 to 0.9 by 0.1.

We compare those RWR models with LSH-A and HashNWalk, anomaly detection methods on hyper-
graphs. While they are originally designed for hypergraphs with timestamps, the used datasets are static,
and thus we assign a random timestamp to each hyperedge (spec., we randomly order the hyperedges and
use their orders as timestamps) when testing them.

Results. Figure 7 demonstrates the performance of each model for detecting the anomalous (unexpected)
hyperedges in terms of AUROC and MAP. As shown in the figure, RWR using EDNW performs best,
implying that it is beneficial to utilize the edge-dependent node weights. Even RWR using EINW outper-
forms HashNWalk and LSH-A. Naive RWR performs worst as the weights of nodes and hyperedges are all
disregarded.

6 Conclusion and Future Directions

In this work, we consider random walk with restart (RWR) on hypergraphs after formally defining it (Defini-
tion 1). Then, we propose ARCHER (Algorithm 3) for its rapid and space-efficient computation. ARCHER
is composed of two RWR computation methods (Algorithms 1 and 2) that are based on clique- and star-
expanded graphs, respectively, of the input hypergraph. Since their relative performance heavily depends
on datasets, ARCHER is equipped with a lightweight automatic method for selecting one between them.
Using 18 real-world hypergraphs, we substantiate the speed and space efficiency of ARCHER (Figures 3
and 4), revealing that these qualities are attributed to the complementary nature of the two RWR compu-
tation methods and the accuracy of the automatic selection method (Figure 5). In addition, we introduce
anomaly detection as an application of RWR on hypergraphs and show the empirical effectiveness of RWR
on it (Figure 7).

As potential directions for future work, we intend to extend our framework to incorporate approximate
RWR computation algorithms, as discussed in Section 2.2. Furthermore, the present automatic selection
algorithm in Section 3.4 is grounded in empirical observations, in which we plan to develop theoretically
grounded yet efficient selection algorithms.
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A Experimental Datasets

We provide a brief description of the datasets used in this paper.
• EEN and EEU.6 These hypergraphs represent sets of email addresses on emails in Enron (EEN)
and a European research institution (EEU) where users are nodes and the group of the sender and all
receivers of each email is a hyperedge.

• HB and SB.6 These represent co-sponsorships of bills in the House of Representatives (HB) and the
Senate (SB) where US Congresspersons are nodes, and groups of sponsors and co-sponsors of bills are
hyperedges.

• WAL.6 This is a hypergraph where products are nodes and hyperedges are sets of co-purchased
products at Walmart.

• TRI.6 This is a hypergraph where nodes are accommodations (mostly hotels) and hyperedges are sets
of accommodations that a user performed “click-out” during the same browsing session at Trivago.

• COD, COG, and COH.6 These are co-authorship hypergraphs where authors are nodes and each
hyperedge represents the authors of a publication recorded on DBLP (COD), Geology (COG), and
History (COH).

• THS, THM, and THU).6 These are hypergraphs where users are nodes and each hyperedge repre-
sents the group of users associated with a thread at StackOverflow (THS), MathStackOverflow (THM),
and AskUbuntu (THU).

6https://www.cs.cornell.edu/~arb/data/
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(a) AUROC on SB (b) AUROC on HB

(c) MAP on SB (d) MAP on HB

Figure 8: Similar-node-retrieval performance on hypergraphs in terms of AUROC and MAP. The hypergraph
RWR using EDNW provides the best accuracy among all the baselines in the SB and HB datasets.

• AM.7 This is a hypergraph of Amazon (AM) product reviews (spec., those categorized as Movies &
TV) where users are nodes and a group of products reviewed by the same user is a hyperedge. Each
user has at least 5 reviews.

• YP.8 This is a hypergraph of user ratings on locations (e.g., hotels and restaurants) at Yelp (YP)
where users are nodes and a group of locations a user rated is a hyperedge. Ratings higher than 3 are
considered.

• TW.9 This is a hypergraph of social relationships on Twitter (TW) where users are nodes and each
hyperedge represents a group of users that compose a ‘circle’ (or ‘list’) together on Twitter.

• ML1, ML10, and ML20.10 These hypergraphs represent interactions of movies at MovieLens with
different sizes of 1M (ML1), 10M (ML10), and 20M (ML20) movie ratings where nodes are movies and
a group of movies a user rated is a hyperedge. Ratings higher than 3 are considered.

B Application to Node Retrieval

In this section, we introduce an application of RWR scores on hypergraphs for the task of node retrieval.
Additionally, we evaluate the empirical effectiveness of this approach.

Similar Node Retrieval. Given a hypergraph and a query node s, this task is to search for nodes struc-
turally similar to the query node. Specifically, we measure node-to-node proximities for s and use them as
ranking scores to sort all nodes except s in the order of the scores. If nodes with the same class of the

7https://cseweb.ucsd.edu/~jmcauley/datasets/amazon_v2
8https://www.yelp.com/dataset
9https://snap.stanford.edu/data/ego-Twitter.html

10https://grouplens.org/datasets/movielens/
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query node are ranked high, structurally similar nodes are successfully retrieved, which can be evaluated by
ranking metrics such as AUROC and MAP. For this task, we compute the hypergraph RWR scores r w.r.t.
query node s through ARCHER, and utilize the scores for ranking.

Settings. We conduct this experiment on the SB (senate-bills) and HB (house-bills) datasets, which contain
binary node labels. The RWR models used in Section 5.6 are also used for this task. To introduce edge-
dependent node weights (EDNW), we set γe(v) = d̄(v)−β , where d̄(v) represents the unweighted degree of
node v. We then set β = 1.0 and ω(e) = 1 (refer to Appendix C for the selection of β = 1.0). For EINW,
we set γe(v) = 1 and ω(e) = 1. We vary the restart probability c from 0.1 to 0.9 by 0.1.

Results. Figure 8 shows the experimental results on the node retrieval task in terms of AUROC and MAP.
As shown in the figure, the RWR using EDNW shows the best performance, especially with high values of
restart probability c, among all tested methods. Note that the RWR using EDNW outperforms that using
EINW and naive RWR, indicating the edge-dependent node weights are useful also for this task.

C Experiments on Edge-dependent Node Weights for Applica-
tions

In this section, we provide the experimental results regarding the effectiveness of the edge-dependent node
weights for applications.

Anomaly Detection. For anomaly detection in Section 5.6, we set edge-dependent node weights γe(v) =
d̄(v)−β for hypergraph RWR. For the experiment, we assess the performance of RWR by varying two pa-
rameters: β and the restart probability c. Specifically, we explore different values of β within the range
of {0.5, 1.0, 2.0}, and we also vary c between 0.1 and 0.9 in increments of 0.1. Figure 9 shows the results,
β = 0.5 generally yields the best performance across the tested datasets.

Similar Node Retrieval. For node retrieval in Appendix B, we also set γe(v) = d̄(v)−β for hypergraph
RWR. We test the node-retrieval performance of RWR by varying the values of β and c. Specifically, the
list of values tested for β is {0.5, 1.0, 2.0}, while the range for c spans from 0.1 to 0.9. Figure 10 shows the
results, and β = 1.0 leads to the best performance in most cases.

D Counting of the Number of Non-zero Entries

In this section, we discuss how to compute nnz(HC) and nnz(H⋆) rapidly and space-efficiently. They are
used in Equation (11) by ARCHER to select one between clique- and star-expansion-based methods.

Calculation of nnz(HC). While it is possible to naively count the number of non-zeros in HC = In − (1−
c)P̃⊤, materializing HC typically requires more space than the input data due to its relatively high density.
Hence, we suggest a more efficient way based on the following property regarding HC :

nnz(HC) = nnz(P̃) (12)

where P̃ = W̃R̃. The equality is from the fact that the diagonal entries of P̃ are non-zeros because P̃
involves the transition probability that moves from each node v to one of its hyperedges, and goes back to v.
Note the sparsity pattern of P̃ is the same as that of the adjacency matrix of the clique-expanded graph GC
(with additional self-loops on every node) of the hypergraph GH . Thus, we can calculate nnz(P̃) without
materializing P̃, by directly counting the edges that are clique-expanded from each hyperedge.

Algorithm 4 summarizes the procedure for computing nnz(HC). For each node v (line 2), we find
every node u that appears together with v in at least one hyperedge (line 5). Whenever we find such
u, it is equivalent to finding an edge (v, u), and thus we increment the count accordingly (line 7). Note
that we maintain a set C of such nodes to prevent duplicated counting (lines 3 and 8). Regardless of the
input, Algorithm 4 requires O(|C|) = O(n) extra space to maintain the set C. The time complexity is
O(

∑
v∈V

∑
e∈E(v)|e|) = O(

∑
e∈E |e|2) because it requires |e| operations for each node in e.
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Figure 9: Anomaly detection performance on hypergraphs in terms of AUROC and MAP with different
edge-dependent node weights, i.e., γe(v) = d̄(v)−β . When β = 0.5, it provides the best accuracy.

Algorithm 4 Counting the number of non-zeros of HC

Input: sets V and E of nodes and hyperedges in GH , resp.
Output: number of non-zeros of HC
1: set nnz← 0
2: for v ∈ V do
3: C ← ∅ ▷ C is a set of nodes that appear together in one or more hyperedges

4: for e ∈ E(v) do ▷ E(v) is the set of hyperedges incident to node v

5: for u ∈ e do
6: if u /∈ C then
7: nnz← nnz+ 1 ▷ (v, u) is counted

8: C ← C ∪ {u}
9: end if

10: end for
11: end for
12: end for
13: return nnz

Calculation of nnz(H⋆). Similarly, nnz(H⋆) can also be efficiently calculated based on the following equal-
ities:

nnz(H⋆) = n+m+ nnz(S̃)

= n+m+ nnz(W̃) + nnz(R̃)

= n+m+ nnz(W) + nnz(R), (13)
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(a) AUROC on SB (b) AUROC on HB

(c) MAP on SB (d) MAP on HB

Figure 10: Similar-node-retrieval performance in terms of AUROC and MAP with different edge-dependent
node weights, i.e., γe(v) = d̄(v)−β . When β = 1.0, it provides better performance in most of the cases.

where H⋆ = IN − (1 − c)S̃⊤. Note that IN is the identity matrix of size N = n + m, occupying n + m
non-zeros in H⋆. The matrix S̃ consists of W̃ and R̃ as shown in Equation (5), and their sparsity patterns
are the same as W and R. The time complexity of this approach is dominated by that of counting the
numbers of non-zero entries in W and R. If W and R are in a sparse matrix format, the number of their
non-zero entries can be computed in O(nnz(W) + nnz(R)) = O(

∑
v∈V d̄(v)) = O(

∑
e∈E |e|) time and even

in O(1) time in some formats (e.g., compressed sparse row). With the exception of the inputs (i.e., W and
R), this approach requires a constant amount of additional space.

E Correlation between Data Statistics and Costs of BePI

In this section, we empirically investigate the correlations between basic data statistics and the costs of BePI,
which ARCHER employs for RWR computation. As the data statistics, we use nnz(H) (i.e., nnz(HC) and
nnz(H⋆) in clique- and star-expansion-based computations, respectively), density, overlapness, and average
hyperedge size. As the costs of the clique- and star-expansion-based computation of BePI, we consider
preprocessing time, space cost, and query time. The results obtained across all the datasets (refer to
Appendix A) for both clique- and star-expansion-based computations are presented in Figure 11. As shown
in Figure 11a, there exists a strong positive correlation between nnz(H) and the costs for the calculation
of RWR. For other statistics (see Figures 11b, 11c, and 11d), there is no noticeable correlation between the
statistics and the costs.
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(a) Correlation between nnz(H) (i.e., nnz(HC) and nnz(H⋆) in clique- and star-expansion-based computations,
respectively) and RWR computation costs

(b) Correlation between density and RWR computation costs

(c) Correlation between overlapness and RWR computation costs

(d) Correlation between average hyperedge size and RWR computation costs

Figure 11: Correlations between (a) basic data statistics and (b) the costs of RWR computation on hyper-
graphs in terms of preprocessing time, space cost, and query time. BePI is used for RWR computation. We
report the Pearson correlation coefficient for each scatter plot. Note that there is a strong positive correlation
between nnz(H) and the costs, whereas other statistics do not exhibit such a correlation.
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