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ABSTRACT

How can we eciently generate large-scale signed networks fol-
lowing real-world properties? Due to its rich modeling capability
of representing trust relations as positive and negative edges,
signed networks have spurred much interests with various ap-
plications. Despite its importance, however, existing models for
generating signed networks do not correctly reect properties of
real-world signed networks.

In this paper, we propose BalanSiNG, a novel, scalable, and
fully parallelizable method for generating large-scale signed net-
works following realistic properties. We identify a self-similar
balanced structure observed from a real-world signed network,
and simulate the self-similarity via Kronecker product. Then,
we exploit noise and careful weighting of signs such that our
resulting network obeys various properties of real-world signed
networks. BalanSiNG is easily parallelizable, and we implement
it using Spark. Extensive experiments show that BalanSiNG ef-
ciently generates the most realistic signed networks satisfying
various desired properties.

KEYWORDS
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1 INTRODUCTION

Signed networks [26] exhibit relationships between nodes as
positive (trust) and negative (distrust) edges, and various on-
line social services such as Epinions [10] have naturally formed
signed networks by allowing users to express their trust. In-
spired by these interesting trust relationships, many researchers
have been recently attracted to mining useful information from
signed networks, inducing advanced techniques for diverse appli-
cations such as sign prediction [22, 25], link prediction [40, 47],
node ranking [15, 16, 28], node embedding [20, 46], node clas-
sication [42], anomaly detection [21], and community detec-
tion [5, 48].

Even though signed networks are important resources in so-
cial network analysis, the understanding of synthetically gen-
erating realistic signed networks from scratch was nascent. In
unsigned networks, many sophisticated generation models have
been proposed, including Barabási-Albert (BA) [1], Forest Fire
(FF) [27], Stochastic Kronecker Graph (SKG) [23], and Recur-
sive Matrix (R-MAT) [4]. Among those models, SKG and R-MAT
have received signicant interest from data mining communi-
ties [12, 13, 31, 34, 37] since they well capture various prop-
erties of real-world graphs such as power-law degree distribu-
tions [1, 8, 9, 23, 31], shrinking eective diameters [3, 9, 27],
power-law singular value distribution [4, 9, 23], etc.
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However, the existing models cannot generate realistic signed
networks because they do not provide a mechanism for deter-
mining signs of edges. Real-world signed networks exhibit not
only the traditional properties in unsigned networks, but also
distinct characteristics derived from signs (Figure 11). Especially,
real-world signed networks are dominated under balance the-
ory [2, 11] that plays a crucial role in the construction of signed
networks [6, 26]. According to the balance theory, balanced tri-
angles are more likely to be created than unbalanced ones in real
signed networks (details in Section 2). Thus, modeling signed
networks demands careful considerations on how to positively
or negatively associate three nodes on each triangle.

Motivated by this, several methods have been proposed for
signed network generation considering the balance theory. Vukaši-
nović et al. [45] proposed an interaction based model (IB) sim-
ulating the generation of signed edges using ant pheromone
mechanism and the balance theory. Ludwig et al. [29] suggested
an evolutionary model (Evo) that randomly inserts or removes
signed edges over time so that the evolving network follows
the balance theory. Derr et al. [6] have recently proposed Bal-
anced Signed Chung-Lu (BSCL), the state-of-the-art model im-
itating an input network based on Transitive Chung-Lu [35]
and the balance theory. However, they are limited in generating
realistic signed networks (see Figure 1), and computationally
inecient. Furthermore, the scale of existing signed networks
remains small; consequently, researchers have suered from the
lack of large-scale signed networks when testing the scalability
of their methods. Thus, generating realistic large-scale networks
is extremely useful to evaluate the scalability [14, 19, 30–32],
simulate their performance depending on various properties of
networks [17, 18, 23, 39], and anonymize their data [6, 24].

In this paper, we propose BalanSiNG (Balanced Signed Net-
work Generator), a novel and scalable method for generating
synthetic but realistic signed networks. We rst identify a self-
similar pattern observed from a real signed network. Then, we
design Basic Stochastic Kronecker Signed Graph (SKSG-B),
a basic model that simulates the self-similarity using Kronecker
product and generates fully balanced signed networks. On top
of SKSG-B, we propose Stochastic Kronecker Signed Graph
(SKSG) by adding random noises to the self-similar pattern and in-
troducing careful weighting to increase the probability of forming
positive edges to generate signed networks following real-world
properties. From SKSG, we derive BalanSiNG that eciently
creates signed edges fully in parallel. Through extensive experi-
ments, we show that BalanSiNG eciently generates the most
realistic signed networks capturing various properties of real-
world signed networks.

Our main contributions are summarized as follows:

• Novel self-similarity. We suggest a novel self-similar
pattern called self-similar balanced structure to be satised
for generating signed networks (Figure 4).
• Method. We propose BalanSiNG, an ecient and par-
allel method that simulates the suggested self-similarity
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Figure 1: BalanSiNG generates the most similar network to the real-world network, compared to other methods. The

plots show the comparison of properties from real-world signed networks and those from BalanSiNG and competitors.

We use BitcoinO dataset [22] for representing the properties of real-world signed networks; other real-world networks

give similar results. (a)-(d) illustrate properties derived from edge signs, and (e)-(h) depict traditional properties of real-

world networks regardless of edge signs (see Section 2.1). Red colored boxes denote that the corresponding graph does not

match the corresponding property.

by using Kronecker product, exploiting noise, and careful
weighting (Algorithm 3).BalanSiNG generates signed net-
works satisfying various desired properties of real-world
signed networks listed in Section 2.1.
• Experiments. We demonstrate that BalanSiNG gener-
ates the most realistic signed networks following real-
world properties compared to competitors as shown in Fig-
ure 1. We also show that BalanSiNG generates signed net-
works up to 265× faster than the state-of-the-art method,
and near linearly scales up w.r.t. the number of edges on
both single and distributed machines (Figure 9).

The source code of BalanSiNG and datasets are available at
hps://datalab.snu.ac.kr/balansing.

2 PRELIMINARIES

We describe the desired properties of real-world signed networks
to consider when generating a synthetic signed network in Sec-
tion 2.1. We formally dene the problem addressed in this paper
in Section 2.2. We then review Stochastic Kronecker Graph (SKG),
a representative generation model for unsigned networks to cap-
ture the concept of self-similarity simulation in Section 2.3.

Symbols used in this paper are summarized in Table 1. Through-
out the paper, we use a blue arrow and a red arrow to indicate a
positive edge and a negative edge, respectively.

2.1 Desired Properties of Signed Networks

We investigate real-world signed networks to grasp their unique
properties to be satised when generating signed networks. As

shown in the rst row of Figure 1, there are not only unique
properties derived from signs on edges but also traditional ones
studied in unsigned networks. The properties of other real-world
networks are in Figure 11. We examine properties induced by
signs in Section 2.1.1, and then review the typical ones regardless
of signs in Section 2.1.2.

2.1.1 Properties with respect to signs on edges.

• D1) Positively skewed sign proportion [25, 26, 43].

Real-world signed networks contain much more positive
edges than negative ones, as demonstrated in the rst row
of Figure 1(a).
• D2) Highly balanced triangle proportion [6, 11, 26,

41, 43, 48]. Signed triangles have been extensively stud-
ied in signed networks based on balance theory [2, 11]
stating that triangles 4+++ with three positive signs and
those 4+−− with one positive sign are much more plau-
sible than other types of triangles 4++− and 4−−−. The
former are called balanced triangles, and the latter are un-
balanced triangles. Thus, the ratio of balanced triangles is
much larger than that of unbalanced triangles as shown
in Figure 1(b).
• D3) Power-law degree distribution for only positive

or negative edges [43]. In scale-free networks, in- and
out-degree distributions follow a power-law [1]. In real-
world signed networks, when we consider only positive
(or negative) edges, corresponding degree distributions
also follow power-laws as shown in Figures 1(c) and 1(d).

https://datalab.snu.ac.kr/balansing
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Figure 2: Overview of our approach. (a) We suggest self-similar balanced structure observed from a real-world signed net-

work (Section 3.1). (b) We design SKSG-B, a basic version of our model, that simulates the self-similarity using Kronecker

product, and generates a fully balanced signed network (Section 3.2). (c) We then propose SKSG, an advanced version that

produces realistic signed networks by introducing noise and weight splitting (Section 3.3). From SKSG model, we derive

BalanSiNG which quickly generates realistic signed networks satisfying the desired properties in parallel (Section 3.4).

2.1.2 Properties without respect to signs on edges.

• D4) Power-law degree distribution [1, 8, 9, 23, 31].

Real-world networks without signs also show power-law
degree distributions as shown in Figures 1(e) and 1(f).
• D5) Small eective diameter (hop plot) [3, 9, 27]. The
hop plot shows the ratio of node pairs reachable from each
other within k-hop for each integer k . It is closely related
to the eective diameter, the 90 percentile distance in the
hop plot. As seen in Figure 1(g), the eective diameters of
real-world graphs are small (typically between 4 and 5).
• D6) Power-law singular value distribution [4, 9, 23].

The singular values in the adjacency matrix of a real graph
follow a power-law distribution as shown in Figure 1(h).

2.2 Problem Denition

Problem 1 (Signed Network Generation). Given the tar-

get numbers |V| and |E| of nodes and edges, respectively, we aim
to synthetically generate a directed signed network from scratch

having |V| nodes and |E| signed edges where the output network
should follow the desired properties of real-world signed networks

listed in Section 2.1. �

2.3 SKG: Stochastic Kronecker Graph Model

SKG [23] is an unsigned network generation model based on
Kronecker product. Its motivation is that power-law phenomena
in nature occur due to self-similarity, i.e., a self-similar object is
approximately similar to a part of itself [36]. SKG stochastically
simulates a self-similarity with a tiny seed graph using Kronecker
product denoted by ⊗ (Denition D.1 in Appendix D). Speci-
cally, SKG creates a self-similar graph by recursively computing
A(k ) = Aseed ⊗ A

(k−1) where A(k ) is k-th Kronecker product
result over the adjacency matrixAseed of the seed graph. In SKG,
(u,v)-th entry ofA(k) is the probability P(u,v) that edge u → v
exists in the graph. When a randomly generated value for each
entry is within the probability, the corresponding edge is created.
Several methods such as FastKronecker [24] and R-MAT [4] were
proposed to reduce the generation time of SKG.

Although many research works [23, 37] have shown that SKG
well captures various real-world properties (e.g., D4-6) in un-
signed networks, the model is not proper for modeling signed
networks since it does not consider how to form signs on edges.
More essentially, it has not been revealed which self-similarity
should be simulated when we generate signed networks through
Kronecker products. Hence, our main challenge is to identify a
desirable self-similarity for generating signed networks based on
Kronecker product so that a resulting network establishes a solid
foundation for the aforementioned properties.

Table 1: Table of symbols.

Symbol Denition

V set of nodes
E set of singed edges
⊗ Kronecker product
L target recursion depth
T stochastic signed tensor T ∈ R|V|×|V|×2 = {+P, −M}

Tseed 2 × 2 × 2 seed stochastic signed adjacency tensor, i.e.,
Tseed = {+Pseed, −Mseed }

N(l )seed 2 × 2 × 2 seed tensor with noise at level l
fb (·) balanced sign aggregator in Denition 3.2
fα (·) weight splitter with α in Denition 3.4
T̃(l ) l -th Kronecker product result with fb (·) and fα (·)
γ parameter for noise
α parameter for weight splitting
ρ(·) ratio of a given input

4b and 4u balanced and unbalanced triangles, respectively
4+++ balanced triangles with three + signs
4++− unbalanced triangles with two + signs and one − sign
4+−− balanced triangles with one + sign and two − signs
4−−− unbalanced triangles with three − signs

3 PROPOSED METHOD

We propose BalanSiNG, a novel method for generating realistic
signed networks following the desired properties in Section 2.1.
The technical challenges and our approaches are as follows:
• Which self-similarity should be satised for generating
signed networks (Section 3.1)? We suggest a novel self-
similarity called self-similar balanced structure to be satis-
ed for generating balanced signed networks by investi-
gating a real-world signed network.
• How can we generate signed networks following the self-
similarity (Section 3.2)?We design Basic Stochastic Kro-
necker Signed Graph (SKSG-B), a basic model that pro-
duces a fully balanced signed network by simulating the
self-similarity via Kronecker product.
• How canwe generate realistic signed networks (Section 3.3)?
We propose Stochastic Kronecker SignedGraph (SKSG),
an advanced model introducing noise and weight split-
ting to SKSG-B so that the resulting network exhibits the
aforementioned characteristics in Section 2.1.
• How can we eciently generate large-scale signed net-
works (Section 3.4)? We derive Balanced Signed Net-
work Generator (BalanSiNG) from SKSG, a fully paral-
lelizable method that quickly generates signed edges.

We illustrate the overview of our approaches in Figure 2. Our
main goal is to design a generation method for signed networks
showing the distinct properties of real world signed networks.
Among the various properties, we mainly focus on the balanced



Figure 3: Balanced Structure in Congress dataset [44]

where two large clusters are observed. Most nodes in each

cluster are positively connected, and nodes between the

clusters are negatively connected.

triangle distribution indicating balanced signed networks since it
is one of the most distinct properties derived from signs [6, 26].
For that purpose, we rst design a self-similarity to be satised
for balanced signed networks, inspired from balanced structure
in signed networks as shown in Figure 2(a).

We then propose a basicmodel SKSG-B and an advancedmodel
SKSG. SKSG-B simulates the self-similarity using Kronecker prod-
uct so that it produces a fully balanced signed network (i.e., there
are no unbalanced triangles) as depicted in Figure 2(b). However,
we observe that the fully balanced network of SKSG-B has dif-
ferent properties than those from real-world signed networks in
terms of edge sign and balanced triangle proportions as shown
in Figure 2(b). Thus, we suggest SKSG by introducing noise and
weight splitting to SKSG-B so that SKSG produces realistic signed
networks following the desired properties as seen in Figure 2(c).
Furthermore, we develop BalanSiNG that generates balanced
signed networks fully in parallel while supporting SKSG.
3.1 Self-Similarity for Signed Networks

We investigate a real-world signed network to understand its
structure with signs, and then model a self-similarity behind the
structure. We analyze the Congress dataset [44], a real-world
signed network where nodes represent politicians, and signed
edges indicate supports (i.e., positive) or oppositions (i.e., neg-
ative) between nodes. The detailed statistics of the dataset are
summarized in Table 4. We visualize the signed network of the
Congress dataset in Figure 3. Note that two distinct clusters ap-
pear where most nodes are mutually friends in each cluster while
nodes between the clusters exhibit mutual antagonism. This struc-
ture is called balanced signed network. If a signed network is fully
balanced [7], there are two groups; nodes in each group create
only positive edges while nodes between the groups form only
negative edges as in Figure 4(a). This structure is directly related
to balance theory [11] since there are only balanced triangles in
a fully balanced network, i.e., there are only triangles 4+++ in
each group and triangles 4+−− between the groups.

(a) Global balanced
structure

(b) Zoomed-in balanced
structure

1 2

(c) Self-similar
balanced structure

Figure 4: Self-similar pattern in balanced signednetworks.

From this structure, we observe a self-similar pattern, called
self-similar balanced structure, as illustrated in Figure 4. Figure 4(a)
represents a fully balanced signed network. Then, if we zoom in
the network as in Figure 4(b), a smaller but similar structure to
that of Figure 4(a) appears. Note that the structure in Figure 4(b)

Algorithm 1: SKSG-B
Input: seed tensor Tseed ∈ R2×2×2, target recursion level L, and target

number |E | of edges
Output: set E of signed edges
1: set T̃(1) ← Tseed and E← ∅
2: for l = 2 to L do

3: compute T̃(l ) ← fb (T̃(1) ⊗ T̃(l−1)) in Equation (4)
4: for each (u, v) such that u, v ∈ V do

5: set P (u, v, s) ← T̃(L)uvs where s ∈ {+, −}
6: compute P (u, v) and P (s |u, v) using Equation (2)
7: toss a biased coin with P (u, v)
8: if head appears, i.e., u → v is formed then

9: ŝ ← argmaxs∈{+,−} P (s |u, v)
10: insert a signed edge (u → v, ŝ) into E if |E | < m
11: return set E of signed edges

is also balanced; hence, the balanced structure is self-similar
according to the denition of self-similarity [36]. We abstract the
self-similar balanced structure as shown in Figure 4(c) where each
node indicates a group, and blue edges represent that positive
edges are created within each group while red edges indicate
that negative edges are formed between the groups.
3.2 SKSG-B: Basic Stochastic Kronecker

Signed Graph Model

We describe our basic model SKSG-B for modeling signed net-
works. The main intuition of SKSG-B is to simulate the self-
similarity explained in Section 3.1 using Kronecker product.

3.2.1 Formulation of SKSG-B. First of all, we dene stochastic
signed tensor used for constructing a signed networkG as follows:

Denition 3.1 (Stochastic Signed Tensor). Let |V| be the number
of nodes. A stochastic signed tensor T ∈R |V |× |V |×2 consists of
two stochastic adjacency matrices P ∈R |V |× |V | andM∈R |V |× |V |
with signs, i.e., T = {+P,−M} where P andM represent prob-
abilities for positive and negative edges, respectively. �

Then, the self-similar balanced structure in Figure 4(c) is rep-
resented as follows:

Tseed = {+Pseed, −Mseed } =
{
+

[
p11 0
0 p22

]
, −

[
0 m12

m21 0

]}
(1)

where + and − indicate positive and negative signs, respectively.
Each entry Tuvs is a joint probability P(u,v, s) where u and v
are nodes, and s ∈ {+,−} is a sign, e.g., T12− =m12 = P(1, 2,−).
The sum of all P(u,v, s) is 1, i.e.,

∑
(u,v,s) P(u,v, s) = 1. If we

know P(u,v, s), we are able to determine the creation process of
edge u → v and its sign. First, we compute P(u,v) = P(u,v,+)+
P(u,v,−), toss a biased coin with P(u,v), and determine to create
the edge if the coin’s head appears (line 7 in Algorithm 1). If
u → v is formed, we decide its sign based on P(s |u,v) as follows:

P (s |u, v) =
P (u, v, s)∑

t∈{+,−} P (u, v, t )
=
P (u, v, s)
P (u, v)

(2)

If P(+|u,v) > P(−|u,v), then its sign is determined to be positive,
otherwise, it is negative (line 9 in Algorithm 1). Note that we call
this approach deterministic sign decision.

Given a small seed signed tensor Tseed, SKSG-B repeats Kro-
necker product multiple times over Tseed. Kronecker product
between two signed tensors is dened as follows:

T(2) = T(1) ⊗ T(1) = {+P, −M} ⊗ {+P, −M} (3)
= {+P ⊗ P, −P ⊗ M, −M ⊗ P, +M ⊗ M}

where T(k ) is k-th Kronecker product result on Tseed = T(1) ∈
Rn×n×2. Note that the dimension of T(2) is n2 ×n2 ×22 where the



last dimension indicates {++,+−,−+,−−}. Each entry of T(2)
indicates a joint probability P(u,v, {s, s}). However, this is not
the probability that we want since we need P(u,v, s) to determine
the edge’s sign. Hence, we aggregate the terms according to their
sign using balanced sign aggregator fb (·) dened as follows:

Denition 3.2 (Balanced Sign Aggregator). Balanced sign ag-
gregator fb : RN×N×4 → RN×N×2 aggregates the terms in
Equation (3) according to their signs as follows:

T̃ = fb (T ⊗ T) = {+(P ⊗ P +M ⊗ M), −(P ⊗ M +M ⊗ P)}

= {+P̃, −M̃}

where T̃ ∈ RN×N×2 is a signed tensor aggregated by fb (·), P̃ =
P ⊗ P +M ⊗M, and M̃ = P ⊗M +M ⊗ P. �

The Kronecker product result with fb (·) is guaranteed to form
a fully balanced signed network (see Section 3.2.2 and Lemma 3.3).
Let T̃(l ) denote l-th Kronecker product result with fb (·), and T̃(1)
is initially set to Tseed in Equation (1). Then, we generalize the
Equation (3) as follows:

T̃(l ) = fb (T̃
(1) ⊗ T̃(l−1)) (4)

where T̃(l ) ∈ Rn
l×nl×2 is used for building a signed network

G given the recursion level l . Algorithm 1 summarizes SKSG-
B based on Equation (4). Given Tseed in Equation (1), a target
recursion level L, and a number |E| of edges, SKSG-B generates a
signed network having 2L nodes and |E| edges (line 3). For each
pair of nodes, it decides the creation of the edge (line 7) and its
sign (line 9) based on T̃(L).

3.2.2 Self-similar Balanced Network Simulated by SKSG-B. We
illustrate how SKSG-B simulates the self-similarity for balanced
signed networks. Given T̃(1) = Tseed in Equation (1), we compute
T̃(2), T̃(3), · · · based on Equation (4). Figure 5 depicts the results
of T̃(1), T̃(2) and T̃(3). Note that the balanced structure is kept
as level l increases, i.e., only positive edges are formed within
each group (dotted ellipses), and only negative edges are allowed
between the groups when we start from Tseed in Equation (1).
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(a) T̃(1)

2′1$

3′4′

(b) T̃(2) (c) T̃(3)

Figure 5: Illustrations on how SKSG-B simulates the self-

similarity for balanced signed networks given Tseed = T̃(1).
We formalize this property of the balanced structure generated

by SKSG-B in the following lemma:

Lemma 3.3. Given Tseed in Equation (1), T̃(l ) of Equation (4)
produces a fully balanced signed network.

Proof. See the detailed proof in Appendix B. �

3.3 SKSG: Exploiting Noise and Weight for

Realistic Signed Networks

We propose Stochastic Kronecker Signed Graph (SKSG), an
advanced model from SKSG-B for generating signed networks
following the desired properties in Section 2.1. Although SKSG-
B simulates a fully balanced signed network, we will observe
that the network’s properties deviate from those of real signed
networks. We explain the issues of SKSG-B step by step, and

Algorithm 2: SKSG
Input: seed tensor Tseed ∈ R2×2×2, target recursion level L, target

number |E | of edges, noise parameter γ , and weight parameter α
Output: set E of signed edges
1: generate random noises µ (l ) ∈ [−γ , γ ] [37], and obtain noisy seed

tensors N(l )seed using Equation (6) with Tseed and µ (l ) for 1 ≤ l ≤ L

2: set T̃(1) ← N(1)seed and E← ∅
3: for l = 2 to L do

4: compute T̃(l ) ← fα (fb (N
(l )
seed ⊗ T̃(l−1))) in Equation (7)

5: for each (u, v) such that u, v ∈ V do

6: set P (u, v, s) ← T̃(L)uvs for s ∈ {+, −}
7: compute P (u, v) and P (s |u, v) using Equation (2)
8: toss a biased coin with P (u, v)
9: if head appears, i.e., u → v is formed then

10: toss a biased coin with P (+ |u, v)
if head appears, then ŝ ← +, otherwise, ŝ ← −

11: insert a signed edge (u → v, ŝ) into E if |E | < m
12: return set E of signed edges
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(c) SKSG with noises

Figure 6: Out-degree distributions of (a) the Epinions

dataset, (b) a network from SKSG-B, and (c) a network

from SKSG.

suggest how to resolve each issue in the following subsections.
The approaches of SKSG are summarized in Algorithm 2.

3.3.1 Introducing Noise (line 1 in Algorithm 2). We investigate
whether a degree distribution of a graph from SKSG-B follows a
power-law. We focus on degree distributions regardless of edge
signs (i.e., D4). For Tseed, we use the values of Equation (9) in
Section 4.1.3. Figure 6(b) shows the out-degree distribution of
SKSG-B. Note that the distribution exhibits oscillations; it is far
from being monotonically decreasing unlike that of real networks
as in Figure 6(a). In fact, the oscillatory behavior is a well-known
issue of the standard SKG [37]. Since the edge formation of SKSG-
B is equivalent to that of SKG (see the details in Appendix E),
SKSG-B naturally inherits the oscillatory behavior from SKG.

Seshadhri et al. [37] analyzed the oscillatory issue of SKG,
and provided a technique called Noisy SKG. For each level l ,
Noisy SKG denes a noise seed matrix A(l )seed ∈ R

2×2 by introduc-
ing a random noise µ (l ) to the seed matrix Aseed ∈ R

2×2. More
specically, µ (l ) is chosen uniformly at random in [−γ ,γ ] for
γ ≤ min( a11+a222 , a12) while ai j denotes (i, j)-th entry of Aseed
dened as follows:

A
(l )
seed =


a11 −

2µ (l )a11
a11+a22

a12 + µ (l )

a21 + µ (l ) a22 −
2µ (l )a22
a11+a22

 (5)

Note that its entries sum to 1, and the expectation of A(l )seed is
Aseed. This approach introduces randomness to the degree of each
node so that the uctuation in the degree distribution is removed,
which is theoretically and empirically proved in [37, 38].

In this work, we adopt this technique to our advanced model
SKSG for power-law degree distributions in its signed networks.
We aim to obtain a noisy seed tensor N(l )seed by adding a noise µ (l )
to the seed tensor Tseed = {+Pseed, −Mseed } of Equation (1) for



each level l as follows (line 1 in Algorithm 2):

N(l )seed = {+P
(l )
seed, −M

(l )
seed } (6)

=

+

p11 −

2µ (l )p11
p11+p22

0

0 p22 −
2µ (l )p22
p11+p22

 , −
[

0 m12 + µ (l )

m21 + µ (l ) 0

]
where µ (l ) is a uniform random noise selected in [−γ ,γ ] for
γ ≤ min( p11+p222 ,m12). Note that Equation (6) is derived from
Equation (5) such that A(l )seed = P

(l )
seed +M

(l )
seed, while preserving

the self-similar balanced structure in Equation (1). Thus, our ap-
proach is able to model the probability of edge sign as well as the
randomness of node degree while Noisy SKG with Equation (5)
cannot model the probability for deciding the sign of an edge.

When generating a signed edge, we exploit N(l )seed according to
level l instead of the original Tseed as in line 4 of Algorithm 2 (see
Equation (7) in Section 3.3.2). Figure 6(c) depicts the out-degree
distribution of SKSG using N(l )seed with γ = 0.1. The in-degree
distribution of SKSG also shows the similar tendency.

3.3.2 Weight Spliing (line 4 in Algorithm 2). We analyze the
properties about signs in a network of SKSG-B. As shown in
Table 2, the ratio of positive edges in a network of SKSG-B is
almost equal to that of negative ones, and there are only balanced
triangles because SKSG-B generates fully balanced signed net-
works. However, real signed networks exhibit positively skewed
sign and highly balanced triangle proportions (i.e., there are few
unbalanced triangles) as seen in the ‘BitcoinO’ column of Table 2.
Table 2: Sign and balanced triangle ratios. ρ(+) and ρ(−)
are the ratios of positive and negative edges, respectively.

ρ(4b ) and ρ(4u ) are the ratios of balanced and unbalanced

triangles, respectively.

BitcoinO SKSG-B SKSG

ρ(+) 0.8999 0.5001 0.8993
ρ(−) 0.1001 0.4999 0.1007
ρ(4b ) 0.8934 1.0000 0.8254
ρ(4u ) 0.1066 0.0000 0.1746

To alleviate this issue, we suggest a weight splitting technique
that increases the probabilities on generating positive signs. Note
that SKSG-B produces a larger number of negative edges than ex-
pected; hence, we move a proportion of probabilities for negative
signs into that for positive signs using the following function:

Denition 3.4 (Weight Splitter). For 0 < α < 1, weight splitter
fα : RN×N×2 → RN×N×2 is dened as follows:

fα (T) = fα ({+P, −M}) = {+(P + αM), −(1 − α )M} �

The function fα increases the probabilities P of positive signs
by αM. Equation (4) is extended with fα and N(l )seed as follows:

T̃(l ) = fα (fb (N
(l )
seed ⊗ T̃(l−1))) (7)

where T̃(l ) is the level-l result with fα and fb . The eects of fα are
that it 1) increases the proportion of positive edges, and 2) forms
a few unbalanced triangles 4++− as in Figure 7(b). The reason for
the latter is as follows. SKSG-B produces a fully balanced network;
thus, there are two groups as in Figure 7(a). Since fα decreases
probabilities of negative sign by αM at each level l in Equa-
tion (7), a negative edge between the groups in SKSG-B could
become positive in SKSG, resulting in4++− as in Figure 7(b). Note
that after fα (·), probabilities for positive signs do not decrease
(Denition 3.4); thus, SKSG with fα still produces only positive
edges inside a group if the edge sign is decided deterministically.

With deterministic
sign decision

(a) SKSG-B without fα

With deterministic
sign decision

(b) SKSG with fα

With stochastic
sign decision

(c) SKSG with fα

Figure 7: Eects of weight splitter fα with (b) determinis-

tic sign decision (Section 3.3.2) and (c) stochastic sign deci-

sion (Section 3.3.3).

3.3.3 Stochastic Sign Decision (line 10 in Algorithm 2). SKSG-B
deterministically decides the sign of an edge based on P(+|u,v) >
P(−|u,v) (line 9 in Algorithm 1). However, this approach incurs
a subtle issue: such decision does not produce 4−−− at all even
though in real signed networks, there are a very few 4−−− as
shown in Table 5. Although we introduce fα in Section 3.3.2,
SKSG with fα does not form 4−−− since it generates only pos-
itive edges inside a group while for the case in Figure 7(b), the
formation of 4−−− needs one negative edge inside a group with
two negative ones between the groups. To resolve this issue, we
suggest stochastic sign decisionwhere SKSG stochastically decides
the edge sign by tossing a biased coin with P(+|u,v) (line 10 in
Algorithm 2). This allows an edge to become negative with a low
probability inside a group; thus, a few 4−−− are formed as in
Figure 7(c). Based on T̃(L) with fα and stochastic sign decision,
SKSG introduces the skewness of the sign and balanced triangle
ratios similarly to those of the real network as shown in Table 2
where we use γ = 0.1, α = 0.75, L = 13 and Tseed in Equation (9).

3.4 BalanSiNG: Fast and Scalable Balanced

Signed Network Generator

We propose BalanSiNG, an ecient method for generating
signed edges in parallel, while supporting SKSG. Algorithm 2 of
SKSG is not scalable since its time and space complexities are
O(|V |2), respectively, where |V | is the number of nodes to be
generated. The reason is that SKSG explicitly constructs signed
tensor T̃(L) ∈ R2

L×2L×2 through Kronecker product. Our main
intuition to design a scalable method for the problem is to di-
rectly determine edge and track its sign probabilities without
constructing T̃(L) explicitly.

We summarize BalanSiNG in Algorithm 3. At each iteration,
it exploits Generate-Edge function which determines an edge
(u, v) and its sign probabilities P (u,v,+) and P (u,v,−) (line 4). We
rst explain how the function determines the edge (u, v). Intu-
itively, this function divides the whole region of 2L×2L adjacency
matrix represented by P̃(L)+ M̃(L) of T̃(L) into four quadrants.
Then, it selects one of them with the corresponding probability,
and repeats the process recursively in the chosen quadrant until
the quadrant becomes a single cell where an edge is inserted.

To formalize this process, we need to dene selected region at
level l of Generate-Edge as follows:

Denition 3.5 (Selected Region). R(l ) = {[ssrc, tsrc], [sdst, tdst]}
represents a region of an adjacency matrix, which is selected at
level l , where [ssrc, tsrc] is a range of source nodes, and [sdst, tdst]
is that of destination nodes as shown in Figure 8(a). �

Suppose Generate-Edge is given R(l ) at level l . It splits the
region R(l ) equally into four quadrantsQ (l )i j (line 9) for 1 ≤ i, j ≤ 2
which are dened as follows:



Algorithm 3: BalanSiNG

Input: seed tensor Tseed ∈ R2×2×2, target recursion level L, target
number |E | of edges, noise parameter γ , and weight parameter α

1: generate random noises µ (l ) ∈ [−γ , γ ] [37], and obtain noisy seed
tensors N(l )seed using Equation (6) with Tseed and µ (l ) for 1 ≤ l ≤ L

2: parallel for k ← 1 to |E | do
3: set R(L) ← {[1, 2L ], [1, 2L ]} as an initial region
4: {+P (u,v,+), −P (u,v,−)} and (u, v)←Generate-Edge(L, R(L))
5: compute P (+ |u, v) using Equation (2)
6: toss a biased coin with P (+ |u, v)

if head appears, then ŝ ← +, otherwise, ŝ ← −
7: write (u → v, ŝ)
8: procedure Generate-Edge(level l , region R(l ))
9: divide R(l ) into four quadrants Q (l )i j for 1 ≤ i, j ≤ 2

10: randomly select a quadrant Q (l )i j according to probabilities

p(l )i j +m
(l )
i j in N(l )seed for 1 ≤ i, j ≤ 2

11: set R(l−1) ← Q (l )i j as a selected region for level l − 1
12: if l is 1 then
13: return {+p(1)i j , −m

(1)
i j } and (u, v) in R

(0)

14: else

15: {+p̃(l−1)uv , −m̃(l−1)uv } and (u, v)←Generate-Edge(l−1, R(l−1))
16: compute {+p̃(l )uv , −m̃

(l )
uv } using Equation (8)

17: return {+p̃(l )uv , −m̃
(l )
uv } and (u, v)
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Figure 8: The concept of region and quadrants.

Denition 3.6 (Quadrants in R(l )). Given R(l ), letmsrc = ssrc +
b
tsrc−ssrc

2 c andmdst = sdst+ b
tdst−sdst

2 c. Each quadrantQ (l )i j is dened
as in Figure 8(b) for 1 ≤ i, j ≤ 2. �

Then, it randomly selects a quadrant Q (l )i j with the probability
p(l )i j +m

(l )
i j which is based on the noisy seed tensor N(l )seed (line 10).

Note that p(l )i j +m
(l )
i j indicates P (i, j, +) + P (i, j, −) = P (i, j) inter-

preted as the probability of selecting (i, j)-th quadrant in R(l ). For
the next level l − 1, it sets R(l−1) to the selected Q (l )i j (line 11). The
function recursively repeats this process for R(l−1) (line 15) until
l becomes 1 when the selected region R(0) (called base region) is
a single cell representing the edge (u,v) (line 13) as shown in
Figure 8(c), after starting from the initial region R(L) (line 3).

The edge sign probabilities P(u,v,+) and P(u,v,−) are also
recursively computed using the following equation (line 16):

{+p̃(l )uv , −m̃
(l )
uv } ← fα

(
fb

(
{+p(l )i j , −m

(l )
i j } ⊗ {+p̃

(l−1)
uv , −m̃(l−1)uv }

))
(8)

which is the entry-wise version of Equation (7) where p(l )i j and
m(l )i j are the selected quadrant probabilities at line 10 (derivation
in Lemma C.1 of Appendix C). The terms p̃(l )uv and m̃(l )uv denote
the entries of P̃(l ) and M̃(l ) corresponding to edge (u,v), respec-
tively, where T̃(l ) = {+P̃(l ), −M̃(l ) }. Note that each probability
is scalar, i.e., p(l )i j ,m

(l )
i j ∈ R

1×1; thus, {+p(l )i j , −m
(l )
i j } ∈ R

1×1×2. Simi-
larly, {+p̃(l−1)uv , −m̃(l−1)uv } ∈ R

1×1×2. The Kronecker product result in
fb (·) is {+p(l )i j p̃

(l−1)
uv , −p(l )i j m̃

(l−1)
uv , −m(l )i j p̃

(l−1)
uv , +m(l )i j m̃

(l−1)
uv } ∈ R

1×1×4

which is consistent with the input denition of fb (·) when N = 1
(see Denition 3.2). For level l−1, {+p̃(l−1)uv , −m̃(l−1)uv } is recursively

Table 3: BalanSiNG has the smallest time and space com-

plexities. |E| and |V| are the number of edges and nodes,

respectively, and dmax is the maximum node degree.

Method Time Space Parallel?

IB [45] O ( |E | |V |) O ( |E |) No
Evo [29] O (d3

max |E | |V |) O ( |E |) No
BSCL [6] O (d2

max |E | + |V |) O ( |E |) No
BalanSiNG (proposed) O ( |E | log |V |) O (log |V |) Yes

computed by Generate-Edge (line 15). The nal {+p̃(L)uv , −m̃
(L)
uv }

returned by the function is {+P (u,v,+), −P (u,v,−)} (line 4).
Note that the generation of a signed edge of Generate-Edge

is independent of the generation of other edges; thus, Algorithm 3
of BalanSiNG generates signed edges in parallel (line 2). We let
Algorithm 3 call the Generate-Edge function in parallel using
Apache Spark, a widely used distributed computing framework.

3.4.1 Complexity Analysis. We analyze the complexities of
BalanSiNG. To compare BalanSiNGwith other sequential meth-
ods, we analyze the sequential complexities as follows:

Lemma 3.7 (Complexity of BalanSiNG). The time complexity

of BalanSiNG isO(|E| log |V|) where |E| and |V| are the number of

edges and nodes, respectively. The space complexity is O(log |V|).

Proof. Let T (L) be the time complexity of Generate-Edge
given L; then,T (L) = T (L−1)+O(1) since there is a recursive call
with L− 1 at line 15 of Algorithm 3, and other lines demandO(1).
Hence, it is obvious that T (L) is in O(L) = O(log |V|) where we
set |V| = 2L . BalanSiNG generates |E| edges; thus, the total time
complexity is O(|E| log |V|). BalanSiNG needs to have L noisy
seed tensors N(l )seed ∈ R

2×2×2 where each tensor exhibits constant
space complexity, i.e.,O(1) (line 1 in Algorithm 3). Therefore, the
space complexity is O(L) = O(log |V|). �

Table 3 compares signed network generation methods (see
Section 4.1.2) in terms of complexities and parallelism. The time
and space complexities of BalanSiNG are less than those of
other sequential methods such as IB, Evo, and BSCL. Especially,
these competitors require to store all generated edges in memory
(i.e., they require O(|E|) space) since they need to retrieve the
common neighbors of two nodes to determine the edge’s sign
between the nodes based on balance theory. On the other hand,
BalanSiNG is free of such restriction; i.e., as soon as an edge
is created, BalanSiNG is able to write it onto disk (line 7 of
Algorithm 3).

4 EXPERIMENT

We aim to answer the following questions from experiments:
• Q1. Properties of signed networks (Section 4.2). Is
our proposed BalanSiNG able to synthetically generate
signed networks following the desired properties of real-
world networks?
• Q2. Fine-grained comparison of signed triangles (Sec-

tion 4.3). Does BalanSiNG generate graphs with realistic
signed triangle distributions, compared to other methods?
• Q3. Eects of parameters (Section 4.4).How doweight
parameter α and recursion level L of BalanSiNG aect
the properties of generated networks?
• Q4. Computational performance (Section 4.5). How
ecient is BalanSiNG for generating large-scale signed
networks compared to other competitors? How does Bal-
anSiNG scale up in terms of the number of workers and
the data size on distributed machines?



4.1 Experimental Settings

We explain the detailed settings for our experiments.

4.1.1 Datasets. The datasets used for our experiments are
summarized in Table 4. The BitcoinO and BitcoinA datasets [22]
were extracted from online trust and directed networks served
by Bitcoin Alpha and Bitcoin OTC, respectively. The Epinions
dataset [10] is a directed signed network, and was scraped from
Epinions, a product review site where users are able to mark
their trust or distrust to others. We use the datasets to investigate
their distinct properties and provide baseline statistics on signed
triangle distributions in Table 5.

4.1.2 Competitors. We compare our proposed method Bal-
anSiNG to the following competitors:
• IB [45]: IB (Interaction-based model) generates signed
edges based on global and local interactions between nodes
under ant pheromone mechanism and balance theory.
• Evo [29]: Evo (Evolutionary model) randomly generates
signed edges, and keeps track of the number of unbalanced
triangles over time. Once a node reaches a certain thresh-
old of unbalanced triangle ratio, it randomly removes a
link from the node until the threshold is not exceeded.
• BSCL [6]: BSCL (Balanced Signed Chung-Lu) is the-state-
of-the-art model based on Transitive Chung-Lumodel [35]
and balance theory, which synthetically produces a signed
network by imitating an input signed network.

4.1.3 Parameters. We describe the setting of the parameters
for each method as follows:
• BalanSiNG: For the weight parameter α , we search for
α on a grid between 0 and 1 by 0.05, and choose α which
minimizes the absolute dierence for edge signs in Equa-
tion (12) between a generated network and a real network.
We set the noise parameter γ to 0.1 and the seed tensor
Tseed = {+Pseed, −Mseed } to the following values:

Tseed =
{
+

[
0.57 0
0 0.05

]
, −

[
0 0.19

0.19 0

]}
(9)

which are derived from Aseed =

[
0.57 0.19
0.19 0.05

]
. Many re-

searches [30, 31, 37, 38] have empirically proved that these
values produce monotonically decreasing power-law de-
gree distributions. Note that other values of γ and Tseed
can be used as well.
• IB:MG andML are the numbers of edges added globally
and locally, respectively. pG and pL are the probabilities of
the positive sign of the globally and locally added edges,
respectively. δ is the initial weight of an added edge. ϵ
is the parameter for the evaporation. According to their
work [45], we set MG = ML to 1 and pG = pL to ρ(+)
for each dataset in Table 4. For δ and ϵ , we perform grid
searches from 0 to 1.0 by 0.05 to minimize the absolute
dierence for edge signs in Equation (12).
• Evo: In Evo, α is a friendliness index aecting the forma-
tion of the positive sign of an edge, and β is a tolerance
threshold for unbalanced triangles. For α and β , we per-
form grid searches from −1 to 1 by 0.05 to minimize the
absolute dierence for edge signs in Equation (12).
• BSCL: ρBSCL is a parameter for closing wedge, αBSCL is
for creating positive edge, and βBSCL is for closing bal-
anced triangle. Given a real network, those parameters are
approximately tuned by the estimation phase of BSCL.

Table 4: Dataset statistics. |V| is the number of nodes, |E| is
the number of edges, and ρ(+) is the ratio of positive edges.

Dataset |V | |E | ρ(+) Description

Epinions1 131,828 841,372 0.85 Online social network
BitcoinO2 5,881 35,592 0.89 Bitcoin social network
BitcoinA2 3,783 24,186 0.93 Bitcoin social network
Congress3 219 764 0.78 Politician network
1 http://www.trustlet.org/wiki/Extended_Epinions_dataset
2 https://snap.stanford.edu/data/soc-sign-bitcoin-otc.html
3 http://www.cs.cornell.edu/home/llee/data/convote.html

4.1.4 Machines and Implementation. We describe the settings
of machines and implementation used for evaluating the compu-
tational performance of each method in Section 4.5 as follows:
• Setting on single machine (Section 4.5.1). We use a
single thread in a machine with an Intel Xeon E3-1240v5
CPU and 32GB RAM, and implement all tested methods
including BalanSiNG based on g++ v5.4.0.
• Setting on distributed machines (Section 4.5.2). We
implement BalanSiNG on Spark to test the scalability on
a cluster (managed by Hadoop YARN) that consists of 17
machines: a master and 16 worker nodes. Each worker
node has 4 physical cores (Intel Xeon E3-1240v5 CPU)
with 32GB RAM, and can run 4 workers. Java v1.8.0, Scala
v2.11.8, Hadoop v2.7.3, and Spark v2.11.9 are used.

4.2 Properties of Signed Networks (Q1)

We compare real-world signed network BitcoinO with those gen-
erated by BalanSiNG and competitors in Figure 1 to investigate
if they exhibit the desired properties of real-world signed net-
works listed in Section 2.1. We omit the comparisons for other
datasets due to the space limit, but the overall tendency is similar.
We adjust the parameters of each method so that the resulting
networks have almost the same positive edge sign ratios as that
of BitcoinO (details in Appendix F); thus, the sign distributions
in Figure 1(a) are similar for all graphs.

The signed network generated by BalanSiNG follows the
desired properties w.r.t. signs (D1-3) as well as those regard-
less of signs (D4-6). The balanced triangle distribution is highly
skewed as shown in Figure 1(b), and degree distributions follow
a power-law as seen from Figure 1(c) to Figure 1(f). The hop plot
of BalanSiNG in Figure 1(g) is similar to that of BitcoinO. Also,
top-k singular values of graphs from BalanSiNG and BitcoinO
monotonically decrease as shown in Figure 1(h).

On the other hand, the signed networks generated by IB and
Evo do not follow power-law degree distributions as shown in
the third and forth rows (Figure 1(c) to Figure 1(f)). The main
reason is that IB and Evo naively create random edges without
the consideration of power-law degree distribution. The hop
plot and singular value distributions of both methods are also
dierent from those of the real-world network as shown in Fig-
ures 1(g) and 1(h). BSCL generates signed networks obeying most
of the desired properties, but its balanced triangle distribution
(D2) does not; it is not skewed enough compared to the real
network (at the rst row) and BalanSiNG (at the second row)
as shown in Figure 1(b). We further provide the ne-grained
comparison about these signed triangles in Section 4.3.

4.3 Fine-grained Comparison of Signed

Triangles (Q2)

We compare BalanSiNG to other competitors in terms of signed
triangle distribution. As described in Section 2.1, the balanced



Table 5: Comparison of signed triangle distributions by BalanSiNG and competitors. ρ(4b ) and ρ(4u ) indicate the ratios
of balanced and unbalanced triangles, respectively. ρ(4+++), ρ(4+−−), ρ(4++−), and ρ(4−−−) denote the ratios of the trian-

gle types 4+++, 4+−−, 4++−, and 4−−−, respectively. Note that BalanSiNG (marked †) generates the most closest signed

networks to the corresponding real-world signed networks in terms of absolute dierence and Kolmogorov–Smirnov

statistic (the lower the better).

Datasets BitcoinA BitcoinO Epinions

Methods Real

Balan

SiNG†
IB Evo BSCL Real

Balan

SiNG†
IB Evo BSCL Real

Balan

SiNG†
IB Evo BSCL

ρ(4b ) 0.8805 0.8740 0.7604 0.8184 0.8366 0.8934 0.8254 0.7023 0.7402 0.7579 0.9240 0.8109 0.7061 0.7025 0.7104
ρ(4u ) 0.1195 0.1260 0.2396 0.1816 0.1634 0.1066 0.1746 0.2977 0.2598 0.2422 0.0760 0.1891 0.2939 0.2975 0.2896

Abs. Di. - 0.0130 0.2402 0.1242 0.0879 - 0.1360 0.3822 0.3064 0.2711 - 0.2261 0.4358 0.4430 0.4272
K-S Stat. - 0.0065 0.1201 0.0621 0.0439 - 0.0680 0.1911 0.1532 0.1356 - 0.1131 0.2179 0.2215 0.2136

ρ(4+++) 0.8413 0.8632 0.7285 0.7954 0.8240 0.8260 0.8014 0.6649 0.6975 0.7281 0.8723 0.7782 0.6688 0.6297 0.6677
ρ(4+−−) 0.0393 0.0108 0.0319 0.0231 0.0126 0.0675 0.0240 0.0374 0.0427 0.0298 0.0517 0.0328 0.0373 0.0728 0.0427
ρ(4++−) 0.1166 0.1259 0.2377 0.1816 0.1630 0.1026 0.1743 0.2945 0.2598 0.2408 0.0694 0.1886 0.2913 0.2975 0.2875
ρ(4−−−) 0.0028 0.0001 0.0009 0.0000 0.0005 0.0040 0.0003 0.0032 0.0000 0.0014 0.0066 0.0005 0.0026 0.0000 0.0021
Abs. Di. - 0.0625 0.2432 0.1299 0.0927 - 0.1434 0.3839 0.3145 0.2764 - 0.2383 0.4438 0.4984 0.4362
K-S Stat. - 0.0219 0.1202 0.0621 0.0441 - 0.0681 0.1912 0.1533 0.1357 - 0.1131 0.2179 0.2426 0.2136

triangle proportion is the most distinct property in real-world
signed networks. Hence, we analyze signed triangles of generated
signed networks to check if they exhibit distributions similar to
that of a real-world signed network.

For the purpose, we rst enumerate directed signed triangles
in each real signed network as in [43] since all of the signed net-
works used in this paper are directed, and then measure the ratio
ρ(·) for each triangle type. For example, 4+++ indicates triangles
with three positive signs; thus, ρ(4+++) = |4+++ |/|4total | where
|4total | is the total number of triangles. For large-scale signed
networks, distributed algorithms [33] can be used to enumerate
triangles. Then, we generate synthetic signed networks for each
dataset following the procedure in Section 4.2 (see the parame-
ters of each method in Appendix F), and compare the triangle
distributions of both real and synthetic networks. To measure the
distance between two distributions, we utilize Absolute Dier-
ence [6] and Kolmogorov–Smirnov statistic (K-S statistic) metrics.
The absolute dierence [6] is dened as the sum of absolute dif-
ferences between each ratio of real and synthetic triangles (see
Denition D.2). The K-S statistic is dened as the maximum gap
between the two cumulative distributions; it has been tradition-
ally used for measuring the dierence between two distributions.
We repeat the above procedure 10 times, and report the average
for each method and each dataset. For both of the metrics, small
values indicate that the synthetic network has a similar tendency
to the corresponding real network in terms of signed triangles.

Table 5 shows the ne-grained comparison on the four types of
signed triangles by BalanSiNG and competitors for each dataset.
Note that BalanSiNG gives the best signed triangle distribution,
showing the smallest absolute dierence and K-S statistic. Specif-
ically, BalanSiNG shows about 1.5 ∼ 2× better performance
than the second best method for each dataset.

4.4 Eect of Parameters (Q3)

We investigate the eect of parameters of BalanSiNG. We focus
on the eects of weight parameter α and target recursion level
L while noise parameter γ is set to 0.1 and seed ten sor Tseed
is set to the values of Equation (9), as described in Section 4.1.
The weight parameter α is introduced to increase the probability
of generating positive edges, and the level L controls the size of
networks to be generated.

Figure 10(a) shows the eect of the weight parameter α on
positive sign ratio ρ(+) and balanced triangle ratio ρ(4b ). We set
L = 17 and |E| = 219, and vary α form 0.1 to 0.9. As shown in the
gure, both of the ratios ρ(+) and ρ(4b ) increase as α increases.

The reason is that according to Denition 3.4, as we increase α ,
the probability of the positive term becomes large while that of
the negative term diminishes. Also, as the number of positive
edges increases, balanced triangles 4+++ and 4++− are more
likely to be formed. Note that α between 0.7 and 0.85 introduces
the skewness of both ratios similarly to those of real signed
networks. Thus, our method is able to control the skewness of
those ratios according to users’ preference through adjusting α .

Figures 10(b) and 10(c) demonstrate the eect of the recursion
level L on the ratios ρ(+) and ρ(4b ), and the out-degree distri-
butions of networks generated by BalanSiNG. We set α to 0.8,
and vary L from 12 to 21 to generate networks with |V| = 2L+1
and |E| = 2L+6. In Figure 10(b), ρ(+) and ρ(4b ) do not change
much as L increases. Also, as shown in Figure 10(c), the degree
distributions for dierent L have almost the same tendency w.r.t.
power-law distribution. These results indicate the eect of L on
those ratios and degree distribution is marginal, i.e., our method
is able to control the size of signed networks to be generated
while the tendency of such properties is preserved.

4.5 Computational Performance (Q4)

We evaluate the computational performance of BalanSiNG on
single and distributed machines.

4.5.1 Performance on Single Machine. We examine the per-
formance of BalanSiNG and competitors on a single machine.
The detailed setting is in Section 4.1.4. We x the size of each syn-
thetic network to that of the corresponding real-world network,
and compare the generation time of each method. As shown in
Figure 9(a), the generation time of BalanSiNG is up to 265×
faster than that of BSCL. Figure 9(b) shows the data scalability
of methods. Note that BSCL is excluded since it cannot generate
synthetic networks having arbitrary numbers of nodes and edges.
BSCL aims to imitate an input network, and thus the size of the
generated network of BSCL is xed to that of the input network.
We vary |V | = 2L+1 and |E | = 2L+6 for L = 4..26 where L is
the target recursion level. We report out of time (o.o.t.) error
when the generation time is more than 24 hours. As shown in
Figure 9(b), only BalanSiNG generates the largest network for
L = 26 within the limited time while IB and Evo generate o.o.t.
errors. BalanSiNG is 50, 149× and 3, 001× faster than Evo and
IV, respectively. Furthermore, the slope of BalanSiNG is 0.92,
indicating the data scalability of BalanSiNG is near linear w.r.t.
the number of edges. To sum, BalanSiNG provides the fastest
running time and the best scalability.
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Figure 10: Eects of weight parameter α , and target recur-

sion level L. BalanSiNG generates graphs of various sizes

following the power laws, while controlling the positive

sign ratio ρ(+) and the balanced triangle ratio ρ(4b ).

4.5.2 Performance on Distributed Machines. We demonstrate
the performance of BalanSiNG on distributed machines. The
detailed setting is in Section 4.1.4. We report the generation times
with and without writing edges onto disks (line 7 of Algorithm 3).
The former is execution time with disk I/O, and the latter is only
CPU execution time without disk I/O. To evaluate data scalability,
we use 64 workers, and vary |V | = 2L+1 and |E | = 2L+6 for
L = 20..30 where L is the target level. Figure 9(c) shows that
BalanSiNG has near linear scalability w.r.t. the number of edges
with the slope 0.85 in the plot. Note that BalanSiNG generates
|E |=236'68.7 billion signed edges within 45.5minutes including
disk I/O time on the distributed machines; the generated network
is 81, 675× larger than the Epinions dataset, the largest real signed
network currently open to the public, with respect to the number
of edges. Figure 9(d) shows BalanSiNG also scales up well with
the increase of the number of workers from 2 to 64 where we set
|V | = 227 and |E | = 232. The last point of the blue line at 64 is due
to the bottleneck of HDFS I/O, i.e., there are too many workers
trying to write edges to disks at the same time.

5 RELATEDWORK

Models for generating graphs from scratch. There are vari-
ous methods for generating unsigned networks following real-
world properties described in Section 2.1.2. Barabási et al. [1]
proposed Barabási-Albert model through a preferential attach-
ment process for generating scale-free networks. Leskovec et
al. [27] identied densication laws and shrinking diameters
inherent in graphs over time, and developed Forest Fire for mod-
eling such graphs. Also, they proposed Stochastic Kronecker
Graph (SKG) [23], a general generation model that simulates a
self-similarity using Kronecker product. They developed FastKro-
necker [24] that chooses edges in a recursive way to reduce
the generation time. However, those models cannot generate
signed networks, while BalanSiNG generates signed networks
following real-world properties. There are a few methods for
generating signed networks from scratch. Vukašinović et al. [45]

proposed an interaction based model (IB) using ant pheromone
mechanism and balance theory for simulating signed edge gener-
ation. Ludwig et al. [29] suggested an evolutionary model (Evo)
that simulates an evolving network by inserting or removing
signed edges so that the network keeps obeying balance the-
ory. However, their resulting networks give dierent properties
from those of the real-world signed networks, while BalanSiNG
generates realistic signed networks as shown in Figure 1.

Models for generating graphs imitating an input net-

work. Chung-Lu [35] model aims to generate a synthetic un-
signed network by randomly selecting an edge with its associ-
ated degree probability. Transitive Chung-LU (TCL) model [35]
stochastically performs a two-hop random walk from a node in
order to explicitly form at least one triangle, thereby imitating
clustering coecients in the input graph. Derr et al. [6] proposed
Balanced Signed Chung-LU (BSCL) model, the state-of-the-art
model for synthetic signed networks. They combined balance
theory and TCL model in order that the resulting network imi-
tates the signed triangle distribution of the input graph. However,
BSCL is not fast, does not generate networks which fully follow
the properties of real-world signed networks, and cannot gener-
ate signed networks having an arbitrary number of nodes from
scratch. On the other hand, BalanSiNG is fast and scalable, gen-
erates the most similar networks to real signed networks as in
Table 5, and generates graphs of arbitrary sizes as in Figure 9.

6 CONCLUSION

We propose BalanSiNG, a novel, scalable, and fully parallelizable
method for generating realistic signed networks from scratch.
BalanSiNG exploits the self-similar balanced structure with Kro-
necker product, and produces realistic signed networks by intro-
ducing noises and weights. We implement BalanSiNG in parallel
using Spark, a widely used distributed computing platform. Ex-
periments show that BalanSiNG generates the most realistic
signed networks. BalanSiNG is up to 265× faster than existing
methods for generating signed networks, and scales up near lin-
early with the size of networks and the number of workers on
both single and distributed machines, successfully generating
graphs with 68.7 billion edges.
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Figure 11: Various properties of real-world signed networks. (a)-(d) illustrate properties derived from edge signs, and

(e)-(h) depict traditional properties of real-world networks regardless of edge signs (see Section 2.1).
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APPENDIX

A PROPERTIES OF SIGNED NETWORKS

Figure 11 shows properties of other real-world signed networks.
The properties of the BitcoinO dataset are depicted in Figure 1.

B PROOF OF LEMMA 3.3

Proof. We use mathematical induction. For the base case,
T̃(1) = Tseed is trivially fully balanced as shown in Figure 5(a).
Assume T̃(l−1) is fully balanced. Then, T̃(l ) of Equation (4) with
Tseed = T̃(1) is represented as follows:
fb (T̃(1) ⊗ T̃(l−1))

= {+(P ⊗ P̃(l−1) +M ⊗ M̃(l−1)), −(P ⊗ M̃(l−1) +M ⊗ P̃(l−1))}
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Figure 12: Structures of (a) P̃(l−1)&M̃(l−1), (b) P̃(l ), & (c) M̃(l ).
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Figure 12(a) shows T̃(l−1) where P̃(l−1) represents edges within

each group (A and B), and M̃(l−1) represents edges between the
two groups. We depict the block structure of P̃(l ) in Figure 12(b)
where P̃(l )i j indicates (i, j)-th block of P̃(l ). Figure 12(b) has two
copies: (A,B) of 1st copy and (A′,B′) of 2nd copy. Then, P̃(l )11
means edges within A and B of 1st copy because they are from
p11 P̃(l−1) = P̃

(l )
11 . Also, P̃

(l )
12 represents directed edges from A to

B′, and from B to A′ bym12M̃
(l−1). Other blocks in P̃(l ) are simi-

larly interpreted; thus, there are two groups (A,B′) and (A′,B)
having positive between-group edges in the graph of P̃(l ). Each
block in M̃(l ) represents edges between the groups as shown in
Figure 12(c). These indicate T̃(l ) is also fully balanced. Hence, T̃(l )
is fully balanced for any l ≥ 1. �

C LEMMA OF ENTRY-WISE RECURSIVE

REPRESENTATION OF BALANSING

Lemma C.1. Let R(l ) be the selected region at level l with proba-

bility p(l )i j +m
(l )
i j in Generate-Edge. Let (u,v) be decided through

R(L), · · · , R(0). Equation (7) for (u,v) is equivalent to Equation (8).

Proof. Equation (7) is represented as follows:

T̃(l ) = fα (fb (N
(l )
seed ⊗ T̃(l−1))) ⇔ (10)

{+P̃(l ), −M̃(l ) } = fα (fb ({+P
(l )
seed, −M

(l )
seed } ⊗ {+P̃

(l−1), −M̃(l−1) }))

Let p̃(l )uv and m̃(l )uv indicate the xed location (u,v) in P̃(l ) and
M̃(l ) under R(l ) as shown in Figure 13(a). Let д(·) be a function
that extracts entries participating in the computation related to
(u,v) in a signed tensor of Equation (7). For {+P̃(l ), −M̃(l ) }, д(·)
extracts p̃(l )uv and m̃(l )uv :

{+p̃(l )uv , −m̃
(l )
uv } ← д

(
{+P̃(l ), −M̃(l ) }, (u, v)

)
Note that R(l−1) is a selected region with probability p(l )i j +m

(l )
i j

where p(l )i j ∈ P
(l )
seed and m(l )i j ∈ M

(l )
seed. As shown in Figure 13(b),

suppose p(l )i j and m(l )i j correspond to (1, 2)-th quadrant, respec-
tively, i.e., p(l )i j = p

(l )
12 andm(l )i j =m

(l )
12 . Then, other quadrant prob-

abilities except for p(l )12 and m(l )12 do not aect the computation
of {+p̃(l )uv , −m̃(l )uv } through Kronecker product. Also, since (u,v)
is xed, the only locations corresponding to (u,v) of P̃(l−1) and
M̃(l−1) aect the nal result as shown in Figure 13(b). In other
words, only p̃(l−1)uv and m̃(l−1)uv participate in the computation for
{+p̃(l )uv , −m̃

(l )
uv }, and {+p̃(l−1)uv , −m̃(l−1)uv } are recursively obtained by

д(·) as follows:

{+p̃(l−1)uv , −m̃(l−1)uv } ← д
(
{+P̃(l−1), −M̃(l−1) }, (u, v)

)
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Figure 13: The locations corresponding to (u,v) in (a)

{+P̃(l ),−M̃(l )} and (b) {+P̃(l−1),−M̃(l−1)}.

Hence, Equation (10) is represented with д(·) as follows:

д
(
{+P̃(l ), −M̃(l ) }, (u, v)

)
= fα

(
fb

(
{+p(l )i j , −m

(l )
i j } ⊗ д

(
{+P̃(l−1), −M̃(l−1) }, (u, v)

)))
⇔{+p̃(l )uv , −m̃

(l )
uv }= fα (fb ({+p

(l )
i j , −m

(l )
i j } ⊗ {+p̃

(l−1)
uv , −m̃(l−1)uv })). �

Note that Generate-Edge(·) represents the recursive function
д(·), and p̃(L)uv = P (u, v, +) and m̃(L)uv = P (u, v, −).

D DEFINITIONS

Denition D.1 (Kronecker Product). Given A ∈ Rm×n and B ∈
Rp×q , the Kronecker product of A and B is dened as follows:

A ⊗ B =

a11B · · · a1nB
.
.
.

. . .
.
.
.

am1B · · · amnB


where ai j is the (i, j)-th entry of A, and A ⊗ B ∈ Rmp×nq . �

Denition D.2 (Absolute Dierence for Signed Triangles and

Edge Signs [6]). Let ρreal(·) and ρsyn(·) denote ratios from a real
network and a synthetic network, respectively. Let T be the set
of signed triangles, i.e., T = {4+++,4++−,4+−−,4−−−}. Then,
absolute dierence for signed triangles is dened as follows:

Abs. Di. (T) =
∑
4∈T
|ρreal(4) − ρsyn(4) | (11)

Let S be the set of signs, i.e., S = {+,−}. Then, absolute dierence
for edge signs is dened as follows:

Abs. Di. (S) =
∑
s∈S
|ρreal(s) − ρsyn(s) | (12)

E CONNECTION TO SKG AND NOISY SKG

In terms of edge determination process (line 7 in Algorithm 1
and line 8 in Algorithm 2) without signs, SKSG-B and SKSG are
equivalent to Stochastic Kronecker Graph (SKG) [23] and Noisy
SKG [37], respectively. SKG constructs a stochastic adjacency
matrix A using Kronecker product where each entry Auv indi-
cates a probability P(u,v) of forming edge u → v . In our models,
the probability P(u,v) is divided into P(u,v,+) and P(u,v,−),
i.e., P(u,v) = P(u,v,+) + P(u,v,−), implying that A = P +M
where {+P,−M} is a stochastic signed tensor. Thus, the for-
mation of edges without signs in SKSG-B is equivalent to that
of SKG; consequently, networks from SKSG-B naturally inherit
characteristics of those of SKG. Similarly, the edge formation of
SKSG with noises corresponds to that of Noisy SKG.

F PARAMETER SETTING

Table 6 describes the selected α and the target recursion level L
of BalanSiNG for each dataset.

Table 6: Parameters used in BalanSiNG

Parameters BitcoinA BitcoinO Epinions

α 0.84 0.75 0.65
L 12 13 17
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