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Abstract
Given an edge-labeled graph and two nodes, how can we accurately infer the relation
between the nodes? Reasoning how the nodes are related is a fundamental task in ana-
lyzing network data, and various relevance measures have been suggested to effectively
identify relevance between nodes in graphs. Although many random walk based models
have been extensively utilized to reveal relevance between nodes, they cannot distinguish
how those nodes are related in terms of edge labels since the traditional surfer does not
consider edge labels for estimating relevance scores. In this paper, we propose MURWR
(MULTI-LABELED RANDOM WALK WITH RESTART), a novel random walk based model
that accurately identifies how nodes are related with, considering multiple edge labels.
We introduce a labeled random surfer whose label indicates the relation between starting
and visiting nodes, and change the surfer’s label during random walks for multi-hop rela-
tional reasoning. We also learn appropriate rules on changing the surfer’s label from the
edge-labeled graph to accurately infer relations. We develop an iterative algorithm for com-
puting MURWR, and prove the convergence guarantee of the algorithm. Through extensive
experiments, we show that our model MURWR provides the best inference performance.

Keywords Relational reasoning · Multi-labeled random walk with restart · Edge-labeled
graphs

1 Introduction

How can we accurately infer the relation between two arbitrary nodes in edge-labeled
graphs? Understanding how nodes are related is crucial for analyzing graph data, and
many researchers have designed various relevance measures to effectively identify relevance
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between nodes in graphs. Random Walk with Restart (RWR) [38], a random surfer
model, has been utilized for measuring relevance scores between nodes with considering
global network structure [10] and multi-faceted connections between nodes [37]. RWR
has been extensively utilized in numerous graph mining applications such as personal-
ized ranking [38], link prediction [22], recommender systems [30], anomaly detection [31],
community detection [1], etc.

Although many networks have been modeled with multiple edge labels to represent
diverse relationships between nodes [2], RWR has a limitation in inferring the edge’s label
between two nodes in edge-labeled graphs. For example, social networks such as Slash-
dot [15] represent trust or distrust for users as positive or negative edges. In knowledge
graphs such as WordNet [27], concepts are associated with predicates. Since RWR does
not consider edge labels for its relevance, it cannot identify how nodes are related with in
terms of edge labels (see Figure 1). For relation inference on multiple edge labels, there are
two main approaches: path feature models and translation models. Path feature models [16]
exploit paths between two nodes as features for predicting their relation. However, their rea-
soning focuses on relatively short paths due to the expensive cost of path enumeration. On
the other hand, translation models [4, 24, 41] discover latent embeddings for relations and
entities under a relational translation scenario; however, they do not take account of paths
between nodes into those embeddings. Although several translation models [9, 23] have
been proposed by considering paths, they still require complicated path enumeration as sim-
ilar to the path feature models. These limitations make the reasoning of those approaches
miss the information provided by complex and long paths between the nodes.

In this paper, we propose MURWR (MULTI-LABELED RANDOM WALK WITH

RESTART), a novel random surfer model which accurately identifies label relevance between
two nodes in an edge-labeled graph (see Figure 2). Our approaches are 1) to introduce
a labeled random surfer whose label indicates the relation between starting and visiting
nodes, 2) to change the surfer’s label during random walks for multi-hop reasoning pro-
cess, and 3) to learn suitable rules on how to change her label from the given edge-labeled
graph. We show that letting the labeled surfer move around the graph enables our model
to do accurate multi-hop relational reasoning without explicit path enumeration, as well as
to generalize RWR into edge-labeled graphs. Through extensive experiments, we show that
MURWR predicts edge labels between nodes more accurately than existing models. Our
main contributions are as follows:

– Model. We propose MURWR (MULTI-LABELED RANDOM WALK WITH

RESTART), a novel and accurate model for relation inference in edge-labeled
graphs (Definition 4). MURWR exploits a labeled random surfer who con-
siders edge labels to compute effective relevance scores between nodes for
each edge label. We show that MURWR is a generalized version of RWR to
edge-labeled graphs (Property 1).

?

childOf childOf spouseOf

Figure 1 Limitation of a random surfer in RWR for estimating relation of s and t . Since the surfer does not
consider edge labels, it cannot identify the relation
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Figure 2 Examples of labeled walks and label transitive triangles. (a) shows how our labeled surfer walks
along the path from s to t . The blue surfer is for childOf, the red one is for gclOf (grandchildOf),
and the black one is unlabeled. In (a), a dashed line indicates two disconnected nodes are related with a label
inferred by the surfer. (b) and (c) are the examples of label transitive triangles used for learning the rules on
how to change the surfer’s label

– Algorithm. We propose how to learn the surfer’s label from an edge-labeled
graph (Lemma 1) and an iterative algorithm for our model (Algorithm 3). We
also theoretically prove the convergence of the algorithm (Theorem 1).

– Experiment. Our experiments show our model provides the most accurate
performance for relation inference (Tables 3 and 4).

The rest of the paper is organized as follows. We first discuss related works and their
limitations in Section 2. Then, we provide preliminaries on a traditional random walk based
model, and formally define edge-labeled graphs in Section 3. We describe our model and
algorithms for computing our model scores in Section 4. After presenting experimental
results in Section 5, we conclude in Section 6. The symbols used in this paper are in Table 1.

2 Related work

There are various traditional graph measures for relevance between nodes in edge-unlabeled
graphs based on random walk, e.g., PageRank [29], HITS [13], and RWR [38]. Among
these models, RWR has received much attention and has been applied to many graph mining
tasks. However, RWR has a limitation on predicting the relation between two nodes in edge-
labeled graphs since it does not consider edge labels for its relevance (details in Section 3).

Several techniques [11, 19] have been proposed to compute RWR in heterogeneous
networks. These methods focus on how to determine the weights of edges by exploiting
attributes in the networks, and then construct a transition matrix with the weights to compute
RWR. However, they also cannot infer the relation between the nodes in edge-labeled graphs
because they produce only one relevance score between two nodes, similarly to RWR.

For relation inference, we need to obtain K relevance scores for edge labels between two
nodes if a graph has K edge labels.

Many researchers have recently made great efforts to apply RWR for relevance between
nodes in signed networks, a special type of edge-labeled graphs, represented by positive
(trust) and negative (distrust) edges. Modified RWR (MRWR) [32] computes RWR as trust
and distrust scores in positive and negative subgraphs, respectively. Although the idea is
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Table 1 Symbols
SymbolDefinition

G input edge-labeled graph

n number of nodes in G

m number of edges in G

K number of edge labels in G

s source node

c restart probability

li i-th edge label where 1 ≤ i ≤ K

luv label on the edge from node u to node v←−
N v set of in-neighbors of node v−→
N v set of out-neighbors of node v

L set of edge labels, i.e., L = {l1, · · · , lK }
A (n × n) labeled adjacency matrix of G

Ak (n × n) lk-labeled semi-adjacency matrix

Ãk (n × n) lk-labeled semi-row-normalized matrix

R (n × K) relevance score matrix w.r.t. source node s

Rvi relevance score between nodes s and v for edge label li
Sk (K × K) label transition probability matrix on lk

Skij probability that the surfer’s label changes from li

to lj through lk-labeled edge, i.e., P(li
lk−→lj )

1(·) indicator function that returns 1 if a given predicate

is true, or 0 otherwise

applicable to edge-labeled graphs by computing RWR on each subgraph containing only
a specific edge label, this leads to many disconnections between nodes; thus, MRWR is
unable to exploit meaningful patterns from multi-hop paths. Signed RWR (SRWR) [12]
measures trust and distrust scores between nodes based on random walks for signed net-
works. However, SRWR is inapplicable to relation inference on multiple edge labels since
it is specialized for only two sign labels.

Two major approaches on relation inference for multiple edge labels are classified into
path feature model and translation based model.

Path Ranking Algorithm (PRA) [16] is commonly used as a path feature model in hetero-
geneous networks. PRA extracts paths connecting two nodes, and exploits a random surfer
to measure path probabilities which are used as features when predicting their relation. PRA,
however, requires explicit path enumeration which becomes computationally problematic
when it comes to long paths. Although the authors presented heuristic pruning techniques,
PRA’s inference has still been restricted to short paths since the path enumeration essentially
has an exponential complexity to path length.

Translation based models such as TransE [4], TransR [24], and DistMult [41] have been
widely utilized due to its simplicity and effectiveness for modeling relational data. They
formulate the relation between two nodes as a translation between the corresponding node
embeddings. However, those models consider only one directed edge at a time in training;
hence, their reasoning is likely to miss the information provided by multi-hop paths between
them.
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To resolve this issue, PTransE [23] and COMP [9] have been proposed by utilizing multi-
step paths under the translation embedding mechanism. However, these methods also suffer
from the path enumeration problem as similar to PRA; thus, they have restricted the length
of paths for relational reasoning to at most three steps.

Compared to the above methods, our proposed model MURWR performs accurate multi-
hop relational reasoning without complicated and heuristic path enumeration.

3 Preliminary

We provide preliminaries on relation inference in edge-labeled graphs, our target research
task, and RWR in this section. Note that we use the terms edge label and relation
interchangeably.

Edge-labeledGraphs Many researchers from various application areas are confronted with
labeled edges which encode diverse relations between entities in graphs [2, 15, 21, 27].

Formally, an edge-labeled graph is defined as follows.

Definition 1 (Edge-labeled Graph and Labeled Adjacency Matrix) An edge-labeled graph
G = (V,E,L) consists of the set V of nodes, the set E of directed edges, and the set L
of edge labels. Let L = {l1, · · · , lK } where lk is k-th label, and K is the number of edge
labels. For each edge u → v ∈ E such that u, v ∈ V, the edge is associated with an edge
label luv ∈ L. The labeled adjacency matrix A of G is a sparse matrix such that Auv is luv

if there is an luv-labeled edge from u to v, and 0 otherwise.

Relation Inference Task We describe the formal problem definition of relation inference
handled in this paper.

Problem 1 (Relation Inference [16]) The relation inference task is defined as follows:

– Given: an edge-labeled graph G = (V,E,L), and two disconnected nodes s and t in V,
– Infer: the edge label from source node s to target node t among edge labels in L.

Note that Problem 1 is different from that of belief propagation (BP) [7, 14] that aims to
classify labels on nodes not edges while the goal of MURWR is to predict labels on edges.

RandomWalkwith Restart Given a graph and a source node s, RWR computes a relevance
score between s and each node using a random surfer who starts from s. The surfer performs
one of the followings at each step:

– Random Walk. The surfer randomly moves to one of its neighbors from the
current node with probability 1 − c.

– Restart. The surfer goes back to s with probability c.

The relevance score between s and node t is the stationary probability that the surfer is
at t after moving around the entire graph from s.

Note that RWR considers multi-faceted paths between nodes [37] with restart proba-
bility c which controls how long paths affect the score between s and t . If c is high, the
surfer frequently restarts from s; consequently, she mainly visits t via relatively short paths.
Otherwise, the surfer is also able to reach t through longer paths as well as short ones.
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The main challenge is to devise how to reflect multiple edge labels on relevance scores
between nodes in edge-labeled graphs. Although RWR is able to identify relevance scores
between nodes, it depends only on the link structure of the graph without considering labels;
therefore, it cannot estimate how nodes are related in terms of edge labels. Figure 1 shows
an example of representing family relationships such as childOf and spouseOf. The
traditional surfer in RWR does not consider edge labels at all during its walks while the
labeled edges should be interpreted differently. Thus, the information encoded in the path is
ignored when measuring the relevance between nodes s and t ; RWR cannot identify which
edge label should be associated with nodes s and t . How can we make the surfer recognize
edge labels to correctly predict their relation?

4 ProposedMethod

We propose MURWR (MULTI-LABELED RANDOM WALK WITH RESTART), a novel ran-
dom walk based model which measures relevance scores between a source node and other
nodes for each edge label in an edge-labeled graph. The technical challenges and our main
ideas are as follows:

– How can we make a surfer consider the edge labels? We introduce a labeled
random surfer whose label at a node indicates the relation from the source
node to that node.

– How can the surfer infer the relation between the nodes? We allow the surfer
to change her label during random walks with rules for a multi-hop reasoning.

– How can we discover the rules? We exploit a data-driven approach to extract
knowledge from the graph so that the surfer learns the rules.

In MURWR, the surfer’s movement from source node s to a node t is considered as a
process of reasoning about the relation from s to t . Figure 2 depicts howMURWR infers the
relation from node s to node t . The labeled surfer has one of edge-labels such as childOf
(blue-colored) or grandchildOf (red-colored) at each node except at s. Assume we have
the following rules for the surfer:

Rule 1 If childOf-surfer moves along childOf-edge, the surfer’s label changes to
grandchildOf.

Rule 2 If grandchildOf-surfer moves along spouseOf-edge, the surfer’s label
remains the same, i.e., grandchildOf.

In Figure 2a, the surfer first starts from source node s without any label, and moves to
node u. Then, she has childOf label at u since nodes s and u are directly connected with
childOf-edge (note that her label indicates the relation between the source node s and the
current node). After she moves to node v, her label changes to grandchildOf by the first
rule. At this time, MURWR infers the relation from s to v as grandchildOf as shown in
Figure 2a. When the surfer finally arrives at node t , her label is still grandchildOf by
the second rule, indicating that the relation from s to t is also inferred as grandchildOf.
Thus, introducing a label to the surfer enables her to do a multi-hop relational reasoning by
walking around the graph if the surfer knows appropriate rules.

Then, how can we discover the rules for the surfer? For this, we exploit a data-driven
approach, which extracts knowledge embraced in the given graph. The knowledge that the
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surfer learns is represented as labeled transitive triangles as in Figure 2b and c. A transitive
triangle is interpreted as a syllogistic knowledge, e.g., Figure 2b implies

childOf(x, y)
︸ ︷︷ ︸

current surfer’s label

∧ childOf(y, z)
︸ ︷︷ ︸

edge label

⇒ grandchildOf(x, z)
︸ ︷︷ ︸

next surfer’s label

.

An intuitive example for the surfer’s learning is as follows. Suppose an untrained surfer
(black-colored) is at node x in Figure 2a. The surfer then has childOf-label at node y

since x and y are directly related with the label. Similarly, she has grandchildOf-label
at node z. This is interpreted as: if childOf-surfer moves along childOf-edge, her label
changes to grandchildOf. Thus, we enumerate transitive triangles from the graph, and
use them as training instances, called label transition observations, for the surfer.

We first describe the details on label translation observations in Section 4.1, and explain
how to learn rules for our labeled surfer from the observations in Section 4.2. Then, we
formally define and formulate our model MURWR in Sections 4.3 and 4.4, respectively. We
present the algorithms for computing MURWR in Section 4.5, and prove its convergence.

4.1 Label transition observation

We describe how to collect observations for learning the surfer’s rules from the graph G.
We first define label transition observation as follows:

Definition 2 (Label Transition Observation) A label transition observation li
lk−→ lj is that

when li-labeled surfer moves along lk-labeled edge, her label changes to lj .

A label transition observation is obtained from a label transitive triangle interpreted as
a transition between edge labels. For example, suppose an untrained surfer (black-colored)
is at node x in Figure 3a. When the surfer moves to node y, her label should be li because
x and y are directly related with label li . Similarly, her label is lj at node z. Then we
observe how the surfer’s label changes as in Figure 3c: when li-labeled surfer moves along

lk-labeled edge, her label changes to lj , implying the label transition observation lj
lk−→ lj

in Definition 2. To collect such observations, we enumerate all transitive triangles from the
graph G using an efficient triangle enumeration algorithm [17].

In this paper, we exploit only transitive triangles for learning the surfer’s rules. Although
other types of structures might be used for this purpose, it is not very straightforward to

-labeled -labeled

Figure 3 Example of how to obtain label transition observations from label transitive relationships. (a)
presents a label transitive relationship. (b) shows how to interpret the triangle to obtain the label transition

observation li
lk−→ lj in (c)
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extract rules from arbitrary subgraphs. Even if we could discover some rules from the sub-
graphs, it is not efficient and scalable to enumerate all of the subgraphs from a graph. On the
other hand, triangles are easily interpreted as in Figure 3b, and efficiently enumerated. We
leave the problem of considering other types of subgraphs for the surfer’s rule as a future
work.

4.2 Learning label transition probabilities

We explain how to learn the surfer’s rules from the label transition observations. A label
transition probability is a conditional probability P(lj |li , lk) such that when li-labeled surfer

moves along lk-labeled edge, her label changes to lj . For brevity, let P(li
lk−→ lj ) denote

P(lj |li , lk). We formally define label transition probability matrix as follows:

Definition 3 (Label Transition Probability Matrix) Let Sk ∈ R
K×K be a label transition

probability matrix on edge label lk . The (i, j)-th entry Skij of Sk indicates the label transition
probability that the surfer’s label changes from li to lj through edge label lk , i.e., Skij =
P(li

lk−→ lj ). Note that
∑K

j=1P(lj |li , lk) = ∑K
j=1Skij = 1.

Given label transition observations, we aim to learn label transition probabilities Skij

maximizing a likelihood function of making the observations. Suppose we are given sets
Dk of label transition observations represented as follows:

where nk is the number of the observations in Dk . xkh is a label transition observation

xkhs
lk−→ xkht such that xkhs, xkht ∈ L where xkhs is the surfer’s source label, and xkht

is her destination label. Let P(xkh; Sk) denote the probability of xkh with regard to the
parameter Sk , i.e., P(xkh;Sk) = Skkxkhsxkht . Then, the log-likelihood function L(Sk;Dk)

is represented as follows:

L(Sk;Dk) = log
nk
∏

h=1

P(xkh; Sk) =
nk
∑

h=1

logP(xkh; Sk)

However, maximizing the classical likelihood L(Sk;Dk) would be unsatisfactory since
it is sensitive to noises or outliers in observations, and many networks such as knowledge
graphs would be noisy and incomplete [6]. Considering this issue, we adopt maximum
weighted likelihood estimation (MWLE) [40] that uses weights to vary the importance of
logP(xkh;Sk) for each observation. For the purpose, we define destination label weights
{wj |1≤ j ≤K} that weigh the importance of logP(xkh; Sk) according to destination label
xkht . The intuition is that destination labels play a key role in relation inference since the
relation between a source node and a destination node u is determined by the surfer’s (des-
tination) label when she arrives at u after starting from the source node. Thus, our weighted
log-likelihood function is defined as follows:

WL(Sk;Dk) =
nk
∑

h=1

wxkht
logP(xkh; Sk) (1)

The following lemma provides the result of MWLE on the weighted log-likelihood
function WL(Sk;Dk).
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Lemma 1 (Maximum Weighted Likelihood Estimation for Label Transition Probability
Matrices) The following estimator Ŝkij maximizes the weighted log-likelihood function
WL(Sk;Dk) in (1):

Ŝkij = wjNkij

K
∑

z=1
wzNkiz

(2)

where Nkij = ∑nk

h=11(xkhs = i, xkht = j) is the count for the label transition observations

li
lk−→ lj , and 1(·) returns 1 if a given predicate is true, or 0 otherwise.

Proof See the proof in Lemma 2 of Appendix A.

Lemma 1 indicates that Ŝkij is determined by the label weight wj and the count Nkij

for the observations. Suppose all label weights {wj } are fixed to 1 (i.e., no label weights).
Then Ŝkij depends only on the given observations. The label weights {wj } are interpreted
as the relative importances of the labels on the label transition probabilities Ŝkij . If we
set wj to a high value, the probability that the surfer’s label changes to label lj increases
compared to other labels during her random walk. We select proper {wj } that provide the
best performance in the validation sets, as described in Section 5.2.

4.3 Multi-Labeled RandomWalk with Restart

We describe our proposed model MULTI-LABELED RANDOM WALK WITH RESTART

(MURWR) in the following definition:

Definition 4 (Multi-Labeled RandomWalk with Restart) A labeled random surfer has label
li among K edge labels at a node except at source node s. The surfer starts from source node
s without any label. Suppose the surfer is currently at node u, and c is the restart probability
with 0 < c < 1. Then, the surfer performs one of the followings at each step:

– Multi-Labeled Random Walk. The surfer randomly moves from node u to
a neighboring node v with probability 1 − c through luv-labeled edge. If her
label was li at node u, then her label changes to label lj at node v according

to label transition probability P(li
luv−→ lj ).

– Restart. The surfer restarts at source node s with probability c. The surfer
becomes unlabeled.

MURWR measures K probabilities at each node. Let Rui denote the probability that li-
labeled surfer is at node u after MURWR from s. If Rui is higher than Ruj for j �= i, this
indicates that li-labeled surfer frequently visits node u, implying source node s is highly
related by edge label li to node u. Thus Rui is used for a relevance score between s and u

for label li .
Our model MURWR also considers multi-faceted paths between s and u, which is con-

trolled by the restart probability c. If c is low, the labeled surfer visits u via paths of
various lengths since the surfer prefers random walks to restart. On the other hand, if c

is high, the surfer mainly visits u through relatively short paths due to frequent restarts.
We will empirically study the effect of c on relation inference in the Experiment section
(see Figure 6).
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Note that when the unlabeled surfer moves from source node s to node u, her label
becomes lsu since they are directly related with label lsu as depicted in Figure 2a. To make
notations consistent, we add a dummy label ld indicating unlabeled at source node s. Then

we set label transition probabilities P(ld
lsu−→ lsu) to 1 for each out-neighbor u of source node

s (line 1 in Algorithm 3).

4.4 Formulation for MURWR

We present formulations of MURWR before proposing an algorithm for it. We derive a
recursive equation for the probabilities Rui (MURWR scores).

Element-wise Representation The MURWR scores at a node are recursively determined
by in-neighbors of the node. Figure 4 shows an example of the formulation for MURWR
probabilities where the figure depicts the part of a graph having two edge labels l1 and l2.
In Figure 4, we mark an (edge label, probability) pair on each edge where the probability is
for surfer’s choosing the corresponding edge.

Let R(t)
u1 denote the probability that l1-labeled surfer visits node u at time t after starting

from source node s. In order that the surfer visits node u with label l1 at time t , her label
should be changed into l1 when the surfer moves to node u from one of in-neighbors of u.
For example, when she moves from node v to node u, her label changes to label l1 with

probability R(t−1)
v1 P(l2

l1−→ l1)+R(t−1)
v2 P(l2

l1−→ l1). Considering the restart action with c, R(t)
u1

is determined as:

R(t)
u1 = (1 − c)

[

1

2

(

R(t−1)
v1 P(l1

l1−→l1) + R(t−1)
v2 P(l2

l1−→l1)

)

+
1

3

(

R(t−1)
w1 P(l1

l2−→ l1) + R(t−1)
w2 P(l1

l2−→ l1)

)]

︸ ︷︷ ︸

Labeled Random Walk

+c 1(u = s, l1 = ld )
︸ ︷︷ ︸

Restart

where 1(·) returns 1 if a given predicate is true, or 0 otherwise. Note that R(t)
u2 is also

determined similarly to the above equation.
The general equation for R(t)

ui is represented as:

R(t)
ui = (1 − c)

∑

v∈←−
N u

(

1
|−→N v |

∑K
j=1 R

(t−1)
vj P (lj

lvu−→ li )

)

+c1(u = s, li = ld )

(3)

where
←−
N u is the set of in-neighbors of node u, and

−→
N v is the set of out-neighbors of

node v. Note thatRt
ur is the accumulated result of MURWR until step t with decaying factor

1 − c, as interpreted similarly in PageRank or RWR.

Matrix Representation We represent (3) in a matrix form using symbols in the following
definitions:

Definition 5 (Labeled Semi-adjacency Matrix) The lk-labeled semi-ad-jacency matrix Ak

is a matrix such that (u, v)-th entry Akuv of Ak is 1 if the label of the edge u → v is lk , or 0
otherwise.



World Wide Web

Definition 6 (Labeled Semi-row-normalized Matrix) Let D be the out-degree diagonal
matrix of a graph G where Duu is the out-degree of node u. Then lk-labeled semi-row-

normalized matrix Ãk is defined by Ãk = D−1Ak . In other words, Ãkuv = |−→N u|−1 = D−1
uu

if there is lk-labeled edge from node u to node v in the graph G, or 0 otherwise, where
−→
N u

is the set of out-neighbors of node u.

Based on Definitions 3, 5 and 6, (3) is rewritten as follows:

R(t) = (1 − c)

K
∑

k=1

(Ã	
k R

(t−1)Sk)

︸ ︷︷ ︸

Labeled Random Walk

+ cQs

︸︷︷︸

Restart

(4)

whereR(t) ∈ R
n×K is an MURWR score matrix such that each entry R(t)

ui is a score between
source node s and node u for edge label li at step t , and Qs ∈ R

n×K is a single entry matrix
whose (s, d)-th entry is 1, and other entries are 0, where the index d is for the dummy label
ld . We provide the detailed derivation from (3) to (4) in Lemma 3 of Appendix B.

Note that MURWR is a generalized version of RWR, i.e., MURWR works on edge-
labeled graphs as well as plain graphs without edge labels, which is proved in the following.

Property 1 MURWR produces the same result with RWR in a plain graph.
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Proof This case is equivalent to when the number K of edge labels is 1. Then, R(t) and Qs

are written as vectors r(t) and qs in R
n×1, respectively, where n is the number of nodes.

Since K = 1, there is only one type of labeled transitive triangle; thus, S1 ∈ R
1×1 = 1.

Then, (4) is exactly the same with r(t) = (1 − c)Ã	r(t−1) + cqs , the recursive equation of
RWR [38].

4.5 Algorithm for MURWR

Learning Phase (Algorithm 1) Given a labeled adjacency matrix A, the learning phase
learns the label transition probability matrices Sk . We enumerate all transitive triangles from
the graph represented by A (line 1) using a triangle enumeration algorithm [17]. Based on
the enumerated transitive triangles, we estimate the label transition matrices Sk using (2)
(lines 2∼8).

Normalization Phase (Algorithm 2). This phase produces the semi-row-normalized matri-
ces Ãk for 1≤ k≤ K from the labeled adjacency matrix A after building semi-adjacency
matrices Ak by Definitions 5 and 6 (lines 1∼3).

Iteration Phase (Algorithm 3) This phase computes the MURWR relevance score matrix

R w.r.t. source node s. We first set P(ld
lsu−→ lsu) = 1 for each u ∈ −→

N s for the dummy label
ld (line 1). After setting starting matrix Qs and initializing r(0) to Qs (line 2), we repeat
the update for r(t) based on (4) until convergence (lines 4∼8). We compute residual δ(t)

between r(t) and r(t−1) which is the result from the previous iteration (line 7) where δ(t) is
measured by entry-wise L1 matrix norm, i.e., ‖A‖1,1 = ∑

i,j |Aij |. This stops when δ(t) is
smaller than error tolerance ε.

Convergence Analysis We prove the convergence guarantee of the iterative method
(Algorithm 3) of MURWR in Theorem 1.

Theorem 1 (Convergence of MURWR) Suppose r(t) = vec(R(t)) and qs = vec(Qs) where
R(t) is the MURWR score matrix at step t in Algorithm 3, and vec(·) is the vec-operator
which converts a matrix into a vector [18]. Then the residual δ(t) ≤ 2(1 − c)t , and r(t)
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Figure 4 Example of the formulation for the probability R(t)
u1 that l1-labeled surfer visits node u at time t

converges to r = c(I − (1 − c)B̃	)−1qs where B̃	 = ∑K
k=1 S

	
K ⊗ Ã	

k and ⊗ is Kronecker
product.

Proof Equation (4) is vectorized by vec(·) as follows:

vec(R(t)) = (1 − c)

K
∑

k=1

vec(Ã	
k R

(t−1)Sk) + c(vec(Qs))

= (1 − c)

K
∑

k=1

(S	
k ⊗ Ã	

k )vec(R(t−1)) + c(vec(Qs))

⇔ r(t) = (1 − c)B̃	r(t−1) + cqs (5)

where B̃	 = ∑K
k=1S

	
k ⊗ Ã	

k . The second equation is derived by vec(ABC) = (C	 ⊗
A)vec(B) [18].
Residual analysis The residual δ(t) = ‖R(t) − R(t−1)‖1,1 is equal to ‖r(t) − r(t−1)‖1 since
‖A‖1,1 = ‖vec(A)‖1 [18]. Thus, the residual is bounded as follows:

δ(t) = ‖r(t)−r(t−1)‖1=‖(1 − c)B̃	r(t−1)−(1 − c)B̃	r(t−2)‖1
≤ (1 − c)‖B̃	‖1‖r(t−1) − r(t−2)‖1
≤ (1 − c)‖r(t−1) − r(t−2)‖1 ≤ · · ·
≤ (1 − c)t−1‖r(1) − r(0)‖1 = (1 − c)t‖B̃	qs − qs‖1 ≤ 2(1 − c)t

Note that ‖B̃	qs −qs‖1 ≤ 2 since ‖B̃	qs −qs‖1 ≤ ‖B̃	qs‖1+‖qs‖1 ≤ ‖B̃	‖1‖qs‖1+1 ≤
2 where ‖qs‖1 = 1, and ‖B̃	‖1 ≤ 1 by Lemma 6. Hence, the bound for the residual is
δ(t) ≤ 2(1 − c)t .
Convergence analysis Equation (5) is also represented as follows:

r(t) = (1 − c)B̃	r(t−1) + cqs

=
(

(1 − c)B̃	)2
r(t−2) + c

(

(1 − c)B̃	 + I
)

qs = · · ·

=
(

(1 − c)B̃	)t

r(0) + c

t−1
∑

j=0

(

(1 − c)B̃	)j

qs

The spectral radius ρ((1−c)B̃	) ≤ (1−c) < 1 when 0 < c < 1 since ρ(B̃	) ≤ 1 according
to Lemma 6 of Appendix C. Hence, limt→∞((1 − c)B̃	)tr(0) = 0 [35] and limt→∞ r(k)

converges as:

lim
t→∞r(t) = c

∞
∑

j=0

(

(1 − c)B̃	)j

qs = c(I − (1 − c)B̃	)−1qs (6)
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∑∞
j=0((1 − c)B̃	)j is a geometric series of the matrix (1 − c)B̃	, and it converges to

(I − (1 − c)B̃	)−1 since the spectral radius of (1 − c)B̃	 is less than 1 [35]. Note that
I− (1− c)B̃	 is invertible when the spectral radius ρ((1− c)B̃	) ≤ (1− c) < 1 [35].

Theorem 1 implies that as step t increases, the residual δ(t) in Algorithm 3 monotonically
decreases, and converges to zero since 0 < c < 1 as specified in Definition 4. Also, r(t)

converges to a unique solution r = c(I − (1 − c)B̃	)−1qs .
According to Theorem 1, MURWR scores in r = vec(R) can be directly obtained from

(6). However, the matrix inversion of I − (1 − c)r(B) requires O((Kn)3) time because the
dimension of r(B) is Kn × Kn, and matrix inversion exhibits cubic time (i.e., O(t3) for
t × t matrix) [35] where K is the number of edge labels and n is the number of nodes.
Thus, the matrix inversion is not scalable, especially when n is large. On the other hand, our
iterative approach in Algorithm 3 shows a linear scalability w.r.t. m and n, i.e., O(T (Km +
K3n)) where T is the number of iterations and m is the number of edges, which is much
more efficient than the matrix inversion. We analyze the detailed time complexities of the
algorithms of MURWR in Appendix D.

5 Experiment

We perform experiments to answer the following questions:

– Q1. Performance of Relation Inference (Section 5.2). How accurately does MURWR
predict edge labels between nodes compared to other existing methods?

– Q2. Effects of Label Weights (Section 5.3). How does the label weights wj in
MURWR affect the predictive performance of MURWR for the relation inference task?

– Q3. Effects of Restart Probability (Section 5.4). How does the restart probability c in
MURWR affect the inference performance of MURWR?

– Q4. Convergence (Section 5.5). Does the iterative algorithm for MURWR converge?
How does the restart probability c affect the convergence behavior of the algorithm?

5.1 Experimental settings

Datasets The datasets used for our experiments are summarized in Table 2. In the Epin-
ions [25] and the Slashdot [15] datasets, users rate each other positively or negatively. The
WN11 [33] and WN18 [3] datasets are from WordNet [27], a knowledge graph of words
where an edge label is a relation between words. The WikiVote dataset is a signed network
where users vote positively or negatively on their candidates [20]. The Advogato dataset is
a social network where an edge label indicates a level of trust [26].

Competitors We compare our proposed model MURWR to other existing methods which
are categorized as follows:

– Random: Random predicts the label of a test edge randomly, which provides the worst
performance of each dataset.

– LINE [36] and node2vec [8]: We exploit well-known embedding models LINE and
node2vec as baseline methods, although they are not designed for relation inference.
Since they are designed for plain networks, we first extract an embedding vector of each
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Table 2 Dataset statistics. n is the number of nodes, m is the number of edges, and K is the number of edge
labels

Dataset n m K Description

Epinions1 131,828 841,372 2 Signed social network

Slashdot2 79,120 515,397 2 Signed social network

WN183 40,943 151,433 18 Knowledge graph

WN114 38,588 138,887 11 Knowledge graph

WikiVote5 7,118 103,675 2 Signed voting network

Advogato6 6,541 47,135 3 Social network

1http://www.trustlet.org/wiki/Extended Epinions dataset
2http://dai-labor.de/IRML/datasets
3https://everest.hds.utc.fr/doku.php?id=en:transe
4http://cs.stanford.edu/∼danqi/data/nips13-dataset.tar.bz2
5http://snap.stanford.edu/data/wiki-Vote.html
6http://konect.uni-koblenz.de/networks/advogato

node using those methods in a given network without edge labels. Next, we convert li-
edge between two nodes into a training instance, i.e., the feature is the concatenation
of the embeddings of those nodes, and the label is li . We perform multinomial logistic
regression based on a softmax function to predict the edge label.

– MRWR [32] and SRWR [12]:
We compare MURWR to MRWR and SRWR which are RWR based variants.

Although MRWR is originally designed for signed networks, it is easy to make the
method work on edge-labeled graphs by computing RWR on each subgraph contain-
ing only a specific edge label. Note that SRWR cannot work on general edge-labeled
graphs since it is designed only for signed networks (i.e., K = 2); hence, the results of
SRWR for other edge-labeled graphs (i.e., K > 2) are omitted in Tables 3 and 4.

– PRA [16]: PRA is a path feature model used for relation inference in edge-labeled
graphs. PRA extracts path features between two nodes using a random surfer, and
exploits those features with logistic regressors.

– TransE [4] and TransR [24]: TransE is a translation based method which consid-
ers the relation l between nodes s and t as a translation between the corresponding
node embeddings. Specifically, TransE discovers embeddings s, l, and t minimizing
f (s, l, t) = ‖s + l − t‖. Given nodes s and t , it predicts their relation l that minimizes
f (s, l, t). TransR models entities and relations in distinct spaces, i.e., sl = sMl and
tl = tMl where Ml is projection matrix for l. Then, TransR minimizes f (s, l, t) =
‖sl + l − tl‖.

– DistMult [41]: DistMult is a general framework modeling triples (s, l, t); it unifies
existing neural tensor and translating models for relational learning.

– PTransE [23]: PTransE extends TransE, and models relational paths between entities.

Suppose entities s and t are connected by a path s
l1−→ e1

l2−→ t . PTransE regards this path
as another relation consisting of l1 and l2 (i.e., p = (l1, l2)), and minimizes f (s, p, t) =
‖s + (l1 ◦ l2) − t‖ where ◦ is an operation such as addition or multiplication to join
these relations. PTransE exploits a network flow technique to extract relational paths to
be trained.

http://www.trustlet.org/wiki/Extended_Epinions_dataset
http://dai-labor.de/IRML/datasets
https://everest.hds.utc.fr/doku.php?id=en:transe
http://cs.stanford.edu/~danqi/data/nips13-dataset.tar.bz2
http://snap.stanford.edu/data/wiki-Vote.html
http://konect.uni-koblenz.de/networks/advogato
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Table 3 Performance of relation inference in terms of accuracy. The best method is in bold, and the second
best method is in italic. Our proposed model MURWR (marked †) shows the best performance in accuracy

Methods WikiVote Slashdot Epinions Advogato WN11 WN18

Random 0.497 0.500 0.493 0.340 0.090 0.078

LINE [36] 0.781 0.771 0.903 0.552 0.489 0.404

node2vec [8] 0.779 0.765 0.905 0.586 0.426 0.401

MRWR [32] 0.805 0.769 0.890 0.550 0.194 0.342

SRWR [12] 0.825 0.790 0.906 – – –

PRA [16] 0.813 0.804 0.913 0.683 0.580 0.556

TransE [4] 0.793 0.802 0.902 0.644 0.617 0.653

TransR [24] 0.800 0.757 0.874 0.672 0.609 0.530

PTransE [23] 0.775 0.754 0.864 0.639 0.611 0.607

COMP [9] 0.775 0.752 0.868 0.633 0.601 0.610

DistMult [41] 0.799 0.811 0.921 0.615 0.612 0.621

MURWR† 0.830 0.820 0.929 0.727 0.641 0.689

– COMP [9]: COMP is a unified framework to model relational paths by generalizing
existing embedding approaches such as TransE and bilinear models. COMP samples
relational paths by performing random walks on an edge-labeled graph.

5.2 Relation inference task

We evaluate our proposed model MURWR on a relation inference task defined as follows:
given an edge-labeled graph containing missed labels of edges, predict those edge labels.
We randomly select 500 source nodes and choose 20% of out-going edges from each source
node as a validation set which is used for selecting proper hyper-parameters of each method.
For a test set, we randomly select another 500 source nodes and choose 20% of out-going

Table 4 Performance of relation inference in terms of macro F1-score. The best method is in bold, and
the second best method is in italic. Our proposed model MURWR (marked †) shows better inference
performance than other methods on most datasets in terms of macro F1-score

Methods WikiVote Slashdot Epinions Advogato WN11 WN18

Random 0.504 0.502 0.501 0.334 0.094 0.059

LINE [36] 0.524 0.592 0.706 0.479 0.204 0.202

node2vec [8] 0.519 0.583 0.673 0.532 0.256 0.206

MRWR [32] 0.703 0.661 0.809 0.698 0.149 0.131

SRWR [12] 0.742 0.730 0.822 – – –

PRA [16] 0.733 0.692 0.815 0.682 0.569 0.536

TransE [4] 0.725 0.687 0.821 0.648 0.571 0.642

PTransE [23] 0.635 0.674 0.702 0.574 0.539 0.565

COMP [9] 0.615 0.616 0.641 0.581 0.525 0.567

DistMult [41] 0.730 0.770 0.841 0.594 0.559 0.566

MURWR† 0.746 0.748 0.830 0.723 0.594 0.660
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edges from each source node. We then remove each selected edge s → t , and predict the
edge’s label using relevance scores w.r.t. source node s, i.e., the predicted label l̂ is decided
as follows: l̂ = argmax1≤k≤K Rtk . We measure the prediction accuracy for the test dataset,
which is defined as follows: accuracy = # of correct predictions/# of test edges. This task
is also considered as multi-class classification (i.e., classify the label of a test edge); thus,
we measure macro F1-score which is a multi-class classification accuracy [34]. We repeat
the above procedure 10 times, and report the average accuracy over the multiple runs for
each method.

For the experiment, we select label weights wj which provide the best inference in the
validation set. To search for the label weights, we adopt the forward stepwise selection
strategy [28]. Suppose we consider three weights w1, w2, and w3 initialized to 1. For w1, we
fix other weights w2 and w3, and choose the value of w1 which provides the best accuracy
on the validation set when varying w1 in the range [0, 2] by step size 0.2. With the selected
value of w1, we fix w3, and repeat the above procedure for w2. We finally perform the
stepwise search for w3 with the selected values of w1 and w2. For other methods, we select
proper hyper-parameters of the methods via a grid search, which provide the best accuracy
on the validation set. For PRA, PTransE, and COMP, we set the maximum path length to 3
Note that we cannot perform relation inference using relevance scores measured by standard
RWR as described in Section 1.

Tables 3 and 4 show the performance of MURWR compared to other methods. Our
model MURWR provides the best accuracy for predicting edge labels: MURWR obtains
0.7 ∼ 6.1% relative improvement on accuracy over the second best method. Also, the per-
formance of MURWR is higher than that of other methods in terms of macro F1-score for
most datasets. MURWR outperforms the second best method by up to 0.5 ∼ 4% on the
datasets except the Slashdot and Epinions datasets. For these two datasets, although the
F1-score of DistMult is higher than that of MURWR, our method exhibits the second best
performance.

These results indicate that relevance scores computed by MURWR are effective for
predicting edge labels.

5.3 Effects of label weights in MURWR

We examine the impact of label weights in MURWR on the performance of the relation
inference task. We use MURWR-F (a version of MURWR where all weights {wj } are fixed
to 1) and MURWR using the forward stepwise strategy as described above.

We measure the performance of the relation inference task in terms of accuracy and
F1-score.

As seen in Figure 5, the inference performance of MURWR is better than that of
MURWR-F in terms of accuracy and F1-score, respectively.

This indicates that adjusting the label weights is helpful for the performance of MURWR
in the relation inference task.

5.4 Effects of restart probability in MURWR

We investigate the effect of restart probability c of MURWR. We measure the inference
performance of MURWR in terms of accuracy varying c from 0.01 to 0.99. As shown in
Figure 6, the performance of MURWR with c = 0.15 ∼ 0.3 is better than that of MURWR
when c is too low or high. Note that c controls how far the surfer walks from source node
s. If a value of c is high, the surfer frequently jumps back to the source node; thus, the
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Figure 5 Effect of the label weights in MURWR. The performance of MURWR is better than that of
MURWR-F (i.e., MURWR where all label weights are fixed to 1), verifying that introducing the weights
improves the performance of MURWR

relevance score between node s and a target node t are highly affected by paths of short
length from s to t , restricting the model’s complexity severely. Hence, an extremely high
value of c such as 0.99 has a bad influence on the performance of MURWR. On the other
hand, a too low value of c such as 0.01 also does not have a positive impact on relational
reasoning since such a low value effectively ignores the source vertex. With a proper value
of c between 0.15 and 0.3, MURWR provides the best performance, and outperforms other
methods as shown in Tables 3 and 4.

5.5 Convergence of MURWR

We explore the convergence behavior of MURWR described in Theorem 1. We vary the
restart probability c between 0.1 and 0.9, and measure the residual δ(t) in Algorithm 3
until convergence with error tolerance ε = 10−14. As seen in Figure 7, the residual δ(t)

monotonically decreases for 0 < c < 1 as step t increases, and then, δ(t) finally becomes
less than ε. Another observation is that a high value of c accelerates the convergence rate
for the residual δ(t), e.g., c = 0.9 makes MURWR converge faster than c = 0.1. The reason
is that by Theorem 1, δ(t) ≤ 2(1 − c)t ; thus, the higher c is, the faster the residual δ(t) goes

Figure 6 Effect of the restart probability c in MURWR. The inference performance of MURWR with c =
0.15 ∼ 0.3 is better than that of MURWR when c is too low or high



World Wide Web

Figure 7 Convergence of MURWR. The residual δ(t) in Algorithm 3 monotonically decreases in the datasets
for 0 < c < 1 where c is the restart probability in MURWR

toward zero. Note that an extremely high value of c such as 0.99 degrades the performance
of MURWR as shown in Figure 6, while a too low value of c requires many iterations to
converge as shown in Figure 7. A value of c between 0.15 and 0.3 provides a good trade-off
between inference performance and the number of iterations to converge.

6 Conclusion

We propose MURWR (MULTI-LABELED RANDOM WALK WITH RESTART), a novel ran-
dom walk based model which accurately infers edge labels between nodes by computing
relevance scores between a source node and other nodes for each edge label in edge-labeled
graphs. We introduce a labeled random surfer to consider labeled edges for multi-hop rela-
tional reasoning. We provide a learning procedure based on label transitive relationships
inherent in a given graph, and theoretically analyze our method including its convergence.
We also show that MURWR is a generalized version of RWR.

Experiments showMURWR gives the best accuracy in the relation inference task. Future
works include learning the label weights of MURWR from a given edge-labeled graph, and
extending the method for graphs with complex node labels.
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01772, Development of QA systems for Video Story Understanding to pass the Video Turing Test). The
Institute of Engineering Research at Seoul National University provided research facilities for this work. The
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Appendix A: Lemma for convexity and solution of label transition
probabilities

Lemma 2 The estimator in (2) maximizes the weighted log-likelihood function
WL(Sk;Dk) in (1).

Proof Our goal is to find Sk that maximizes WL(Sk;Dk), which is equivalent to minimiz-
ing −WL(Sk;Dk). The probability P(xkh; Sk) is written as follows:

P(xkh; Sk) = Skxkhsxkht
=

K
∏

i=1

K
∏

j=1

(Skij )
1(xkhs=i,xkht=j)
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Then −WL(Sk;Dk) is represented as follows:

−WL(Sk;Dk) = −
nk
∑

h=1

wxkht
logP(xkh; Sk)

= −
nk
∑

h=1

K
∑

i=1

K
∑

j=1

wj1(xkhs = i, xkht = j) log Skij

= −
K

∑

i=1

K
∑

j=1

wj

(

nk
∑

h=1

1(xkhs = i, xkht = j)

)

log Skij

= −
K

∑

i=1

K
∑

j=1

wjNkij log Skij

where Nkij = ∑nk

h=11(xkhs = i, xkht = j) is the count of the label transition observations.
Then the minimization problem is represented as follows:

minimize
Skij

− WL(Sk;Dk) = −
K

∑

i=1

K
∑

j=1

wjNkij log Skij

subject toSkij ≥ 0 for 1 ≤ i, j ≤ K,

K
∑

j=1

Skij = 1 for 1 ≤ i ≤ K . (7)

Note that the above problem is convex (see Lemma 3); thus, the optimization problem is
solved by the KKT theorem [5], and the solution of the problem is represented as (2) (details
in Lemma 4.

Lemma 3 The optimization problem in (7) is convex.

Proof The objective function is convex since the negative log functions − log Skij are con-
vex, and the sum of non-negatively weighted convex functions is convex (i.e., wjNkij ≥
0) [5]. Let C be a set of Sk satisfying the constraints, i.e., C = {Sk|Sk1=1, Skij ≥0, for 1≤
i, j ≤K}. For Sk1 , Sk2 ∈C and θ1 + θ2 = 1 such that θ1, θ2 ≥ 0, let Sk3 = θ1Sk1 + θ2Sk2 .
Then Sk31 = (θ1Sk1 + θ2Sk2)1 = 1 indicating Sk3 ∈C. Thus C is convex by the definition
of convex set [5].

Lemma 4 The solution of the optimization problem in (7) is represented as (2).

Proof The lagrangian L(·) of the objective function in (7) is represented as follows:

L(Sk, λ, ν) = −
K

∑

i=1

K
∑

j=1

wjNkij log Skij +
K

∑

i=1

K
∑

j=1

−λijSkij

+
K

∑

i=1

νi

K
∑

j=1

(

Skij − 1
)

where λ and ν are inequality and equality lagrange multipliers, respectively. Let Ŝkij be the
solution that minimizes (7). λ∗ and ν∗ denote the optional points for λ and ν, respectively.
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The stationarity condition ∇Sk
L(Ŝk, λ

∗, ν∗) = 0 implies the following equation:

∂L(Ŝk, λ
∗, ν∗)

∂Skij

= −wjNkij

Ŝkij

− λ∗
ij + ν∗

i = 0 ⇔ Ŝkij = wjNkij

ν∗
i − λ∗

ij

By the complementary slackness λ∗
ij Ŝkij =0, primal feasibility Ŝkij ≥ 0, and dual feasibility

λ∗
ij ≥ 0,

• Ŝkij > 0 ⇒ λ∗
ij = 0 ⇔ Ŝkij = wjNkij

ν∗
i

> 0 ⇔ wjNkij �= 0

• λ∗
ij > 0 ⇒ Ŝkij = 0 ⇔ Ŝkij = wjNkij

ν∗
i −λ∗

ij

= 0 ⇔ wjNkij = 0

For the case that Ŝkij > 0, ν∗
i is obtained from the equality constraint

∑K
z=1 Ŝkiz = 1 as

follows:

K
∑

z=1

Ŝkiz =
∑

{z|Ŝkiz>0}
Ŝkiz =

∑

{z|Ŝkiz>0}

wzNkiz

ν∗
i

= 1 ⇔

ν∗
i =

∑

{z|Ŝkiz>0}
wzNkiz =

∑

{z|Ŝkiz>0}
wzNkiz +

∑

{z|Ŝkiz=0}
wzNkiz =

K
∑

z=1

wzNkiz

Hence, Ŝkij = wjNkij /ν
∗
i = wjNkij /(

∑K
z=1wzNkiz).

Appendix B: Lemma for recursive equation of MURWR score matrix

Lemma 5 Equation (3) is represented as (4).

Proof In (3), let lp denote lvu. For edge v → u,

li ) =
K

∑

j=1

RvjP (lj
lp−→ li ) =

K
∑

j=1

RvjSpji

where Spji is the label transition probability P(lj
lp−→ li ). By Definition 6, Ãpvu =

|−→N v|−1 = Ã	
puv for all p when Ãpuv is non-zero. Hence,

∑

v∈←−
N u

⎛

⎝

1

|−→N v|
K

∑

j=1

RvjSpji

⎞

⎠ =
∑

v∈←−
N u

Ã	
puv

K
∑

j=1

RvjSpji (8)

Let
←−
N

(i)

u be the set of in-neighbors of node u such that node v ∈ ←−
N (i)

u is connected to

node u with edge label li . Then
←−
N bu is represented as

←−
N uh = ←−

N (1)
u ∪ · · · ∪ ←−

N (K)
u .
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If there is no li-labeled edge to node u from any in-neighbor node, Thus (8) is represented
as follows:

∑

v∈←−
N u

Ã	
puv

K
∑

j=1

RvjSpji

=
∑

v∈←−
N (1)

u

Ã	
1uv

K
∑

j=1

RvjS1ji + · · · +
∑

v∈←−
N (K)

u

Ã	
Kuv

K
∑

j=1

RvjSKji

=
K

∑

k=1

⎛

⎜

⎝

∑

v∈←−
N (k)

u

Ã	
kuv

K
∑

j=1

RvjSkji

⎞

⎟

⎠ (9)

Let (·)ij be (i, j)-th entry of a matrix. Then,
∑

v∈←−
N (k)

u
Ã	

kuv

∑K
j=1 RvjSkji in the above

equation is written as:

∑

v∈←−
N (k)

u

Ã	
kuv

K
∑

j=1

RvjSkji =
∑

v∈←−
N (k)

u

Ã	
kuv(RSk)vi = (Ã	

k RSk)ui

Then (9) is represented as follows:

K
∑

k=1

⎛

⎜

⎝

∑

v∈←−
N (k)

u

Ã	
kuv

K
∑

j=1

RvjSkji

⎞

⎟

⎠ =
K

∑

k=1

(Ã	
k RSk)ui =

(

K
∑

k=1

Ã	
k RSk

)

ui

Thus Rui in (3) is written as follows:

Rui = (1 − c)

(

K
∑

k=1

Ã	
k RSk

)

ui

+ c1(u = s, li = ld )

For 1 ≤ u ≤ n and 1 ≤ i ≤ K where n is the number of nodes, the above equation is
represented as (4).

Appendix C: Lemma for spectral radius in convergence theorem

Lemma 6 Suppose B̃	 = ∑K
k=1 S

	
k ⊗ Ã	

k where Ãk is k-th labeled semi-row-normalized

matrix, and Sk is k-th label transition probability matrix. Then, ‖B̃	‖1 ≤ 1, and the spectral
radius of B̃	 is bounded as follows: ρ(B̃	) ≤ 1.

Proof According to spectral radius theorem [39], ρ(B̃	) ≤ ‖B̃	‖1
where ‖B̃	‖1 is the maximum absolute column sum of B̃	. Since each entry of B̃	 is

non-negative, ‖B̃	‖1 is equal to the maximum value of the column sums of the matrix. The
column sums are represented as follows:

(1	 ⊗ 1	)B̃	 = (1	 ⊗ 1	)

(

K
∑

k=1

S	
k ⊗ Ã	

k

)

=
K

∑

k=1

(1	 ⊗ 1	)(S	
k ⊗ Ã	

k ) =
K

∑

k=1

1	S	
k ⊗ 1	Ã	

k
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According to Definition 3, the sum of each row of Sk is 1, i.e., Sk1 = 1 ⇔ 1	S	
k = 1	.

Hence,

K
∑

k=1

1	S	
k ⊗ 1	Ã	

k =
K

∑

k=1

1	 ⊗ 1	Ã	
k = 1	 ⊗

K
∑

k=1

1	Ã	
k

= 1	 ⊗ 1	
K

∑

k=1

Ã	
k

Note that Ã	
k = A	

k D
−1 according to Definition 5. Suppose A′ = ∑K

k=1 Ak is the adja-

cency matrix of the graph G without edge labels. Then, 1
∑K

k=1 Ã
	
k = 1

∑K
k=1 A

	
k D

−1 =
(A′1)	D−1. The u-th row of A′1 indicates the out-degree of node u, denoted by degu. If
node u is a deadend node, then degu = 0. Otherwise, degu > 0. Note that D is the out-
degree diagonal matrix of G and D−1

uu = 1/degu if node u is not a deadend. Otherwise,
D−1

uu = 0. Thus, (A′1)	D−1 = b	 where u-th entry of b is 1 if node u is non-deadend, or
0 otherwise. Hence, (1 ⊗ 1)B̃	 = 1 ⊗ b	 which is the column sum vector of B̃	, and the
maximum value of the vector is less than or equal to 1. Therefore, ‖B̃	‖1 ≤ 1, implying
ρ(B̃	) ≤ ‖B̃	‖1 ≤ 1.

Appendix D: Lemma for Complexity Analysis

Lemma 7 The time complexity of Algorithms 1 and 2 is O(m1.5 + K3) where m is the
number of edges, and K is the number of edge labels.

Proof In Algorithm 1, it takes O(m1.5) time to enumerate all transitive triangles in the
given graph G using a triangle enumeration algorithm [17] (line 1 in Algorithm 1). Also,
estimating Sk requires O(K3) time (lines 2 ∼ 8 in Algorithm 1). Algorithm 2 takes O(m)

time for counting out-degrees of nodes (line 2 in Algorithm 2) and computing Ãk = D−1Ak

for 1 ≤ k ≤ K (line 3 in Algorithm 2).

Lemma 8 The time complexity of Algorithm 3 is O(T (Km + K3n)) where T = log(1−c)
ε
2

indicates the number of iterations for convergence, ε is an error tolerance, m is the number
of edges, n is the number of nodes, and K is the number of edge labels.

Proof Let mk denote the number of non-zeros in k-th semi-row normalized matrix Ãk

stored in a sparse matrix format such as compressed column storage (CCS). For each
iteration, it takes O(Kmk + K2n) time to compute Ã	

k R
(t−1)Sk since the sparse matrix

product Ã	
k R

(t−1) requires O(Kmk) time, and the dense matrix product (Ã	
k R

(t−1))Sk

takesO(K2n) time. Thus, computing
∑K

k=1(Ã
	
k R

(t−1)Sk) takesO(
∑K

k=1(Kmk +K2n)) =
O(Km+K3n) where

∑K
k=1mk = m (line 6). Note that when 2(1− c)t ≤ ε, R(t) converges

since δ(t) ≤ 2(1 − c)t by Theorem 1. Hence, for t ≥ log(1−c)
ε
2 , the iteration is necessarily

terminated. Thus, the number of iterations for convergence is estimated at log(1−c)
ε
2 , and

the total time complexity is O((log(1−c)
ε
2 )(Km + K3n)).
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