
NeuKron: Constant-Size Lossy Compression of Sparse
Reorderable Matrices and Tensors

Taehyung Kwon
∗

Jihoon Ko
∗

Jinhong Jung Kijung Shin
Kim Jaechul Graduate Kim Jaechul Graduate Dept. of CSE, Jeonbuk Kim Jaechul Graduate
School of AI, KAIST School of AI, KAIST National University School of AI, KAIST
Seoul, South Korea Seoul, South Korea Jeonju, South Korea Seoul, South Korea

taehyung.kwon@kaist.ac.kr jihoonko@kaist.ac.kr jinhongjung@jbnu.ac.kr kijungs@kaist.ac.kr

ABSTRACT
Many real-world data are naturally represented as a sparse reorder-
able matrix, whose rows and columns can be arbitrarily ordered
(e.g., the adjacency matrix of a bipartite graph). Storing a sparse ma-

trix in conventional ways requires an amount of space linear in the
number of non-zeros, and lossy compression of sparse matrices (e.g.,
Truncated SVD) typically requires an amount of space linear in the
number of rows and columns. In this work, we propose NeuKron
for compressing a sparse reorderable matrix into a constant-size
space. NeuKron generalizes Kronecker products using a recurrent
neural network with a constant number of parameters. NeuKron
updates the parameters so that a given matrix is approximated by
the product and reorders the rows and columns of the matrix to
facilitate the approximation. The updates take time linear in the
number of non-zeros in the input matrix, and the approximation
of each entry can be retrieved in logarithmic time. We also extend
NeuKron to compress sparse reorderable tensors (e.g. multi-layer
graphs), which generalize matrices. Through experiments on ten
real-world datasets, we show that NeuKron is (a) Compact: requir-

ing up to fve orders of magnitude less space than its best competitor
with similar approximation errors, (b) Accurate: giving up to 10×
smaller approximation error than its best competitors with similar
size outputs, and (c) Scalable: successfully compressing a matrix
with over 230 million non-zero entries.

CCS CONCEPTS
• Information systems → Data mining; Data compression.

KEYWORDS
Data Compression, Sparse Matrix, Sparse Tensor

ACM Reference Format:
Taehyung Kwon, Jihoon Ko, Jinhong Jung, and Kijung Shin. 2023. NeuKron:
Constant-Size Lossy Compression of Sparse Reorderable Matrices and Ten-

sors. In Proceedings of the ACM Web Conference 2023 (WWW ’23), April
30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3543507.3583226
∗
Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583226

1 INTRODUCTION
We consider a matrix to be sparse if the number of non-zero entries
is much smaller than that of all entries. Sparse matrices naturally
represent many types of data from various domains, as follows:
• E-commerce: User-item matrices represent how many times

each user purchased each item [13, 28].
• Search Engines: Document-keyword matrices represent how

many times each document contains each keyword [27]. User-

ad matrices indicate how many times each user clicked each ad
given by search engines [31].

• Social Media: The adjacency matrices of social networks indicate
friendship between users [8, 30]. User-group matrices indicate
which user belongs to each group [41].

• Bibliography: Author-paper matrices represent who authored
each paper [32]. The adjacency matrices of collaboration net-

works represent co-authorships between authors [41].
Despite their sparsity, many real-world matrices require consid-

erable space. Examples include user-ad matrices [37] and the adja-
cency matrices of web graphs [3] with billions of rows or columns;
and keyword-document matrices [27] and the adjacency matrices
of online social networks [8, 30] with tens of billions of non-zeros.

Compression of such large sparse matrices becomes important
as smartphones and IoT devices become popular. Such memory-

limited mobile devices are often required to process a large amount
of data without sending them to clouds or servers, due to potential
privacy risks [19]. Moreover, as the size of large-scale matrices
grows rapidly, storing them is challenging also in desktops and
servers [2, 8, 30], and for federate learning, compressing matrices
is required to reduce communication costs [15]. As a result, a large
number of lossy matrix-compression techniques [2, 9, 36] have been
developed over the last few decades.

To the best of our knowledge, existing lossy-compression meth-

ods for sparse matrices create outputs whose sizes are at least linear
in the numbers of rows and columns of the input matrix. For exam-

ple, given an � -by-� matrix A and a positive integer � , truncated
singular value decomposition (T-SVD) [11, 35] outputs two matrices
of which the numbers of entries are � (��) and � (��). Recent
methods [2, 9, 36] have the same limitations, while they provide a
better trade-of between space and information loss than T-SVD.

Can we compress a matrix into a constant-size space, which can
even be smaller than the number of rows and columns? In this
paper, we exploit the fact that many real-world sparse matrices
are reorderable, i.e., the rows and columns of the matrices can
be arbitrarily ordered.1

All of the matrices discussed in the frst
1
A matrix is non-reorderable if the orders of rows and columns in it convey information.

For example, images and multivariate time series are non-reorderable matrices since
the orders of rows and columns in them indicate spatial and temporal adjacency.

71

https://doi.org/10.1145/3543507.3583226
https://doi.org/10.1145/3543507.3583226
mailto:kijungs@kaist.ac.kr
mailto:jinhongjung@jbnu.ac.kr
mailto:permissions@acm.org
mailto:jihoonko@kaist.ac.kr
mailto:taehyung.kwon@kaist.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583226&domain=pdf&date_stamp=2023-04-30

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Taehyung Kwon, et al.

paragraph, which are essentially bipartite graphs (nodes of one
type correspond to rows, and nodes of the other type correspond to
columns), are reorderable. For example, in the case of a user-item
matrix built based on e-commerce data, which user (item) comes
next to which user (item) does not matter. Our key idea is to order
rows and columns to facilitate our model to learn and exploit
meaningful patterns in the input matrix for compression.

Specifcally, we present NeuKron, a constant-size lossy com-

pression method for sparse reorderable matrices. It consists of a
machine-learning model and novel training schemes. The model
generalizes the Kronecker power and enhances its expressive power
using a recurrent neural network with a constant number of pa-
rameters. The training scheme, which is crucial for performance, is
to reorder rows and columns in the input matrix to create patterns
that the machine-learning model can exploit for better compres-

sion. Consider an � -by-� matrix with � non-zeros, where � ≤ �
without loss of generality. The model and the training schemes are
designed carefully so that each training epoch takes � (� +� log �)
time, and after training, the approximation of each entry can be re-
trieved in � (log �) time. Note that the time complexity of training
depends only on the number of non-zeros instead of all entries.

In addition, we extend NeuKron for lossy-compression of sparse
reorderable tensors while maintaining its strengths. Tensors (i.e.,
multi-dimensional arrays) generalize matrices to higher dimensions,
and in other words, matrices are 2-order tensors. Sparse tensors
have been used widely for various purposes, including context-

aware recommender systems [17] and knowledge base completion
[21]), and for lossy compression of them, tensor decomposition
methods (e.g., CP [1, 5] and Tucker [1, 38]) have been developed.

For evaluation, we perform extensive experiments using ten real-
world matrices (spec., bipartite graphs) and tensors. The results
reveal the following advantages of NeuKron:
• Compact: Its output is up to 5 orders of magnitude smaller

than competitors’ with similar approximation error.
• Accurate: It achieves up to 10.1× smaller approximation
error than its best competitors that give similar-size outputs.

• Scalable: Its running time is linear in the number of non-zero
entries, and it successfully compresses matrices with over 230
millions of non-zero entries on commodity GPUs.

Reproducibility: The code and datasets are available at [20].
Remarks on non-reorderable matrices: While we focus on re-
orderable matrices in this paper, NeuKron can also be applied to
non-reorderable matrices if the mapping between the original and
new orders of rows and columns are stored additionally. We present
a related experiment in Appendix C.

2 RELATED WORKS
In this section, we review lossy-compression methods for matrices
and tensors. Those for lossy compression of sparse matrices or
tensors of any size are compared in Table 1 and also in Section 6.
Factorization-based matrix compression: Given a matrix A ∈
R� ×�

, singular value decomposition (SVD) [12] decomposes A into
, V ∈ R� ×� UΣV�

where U ∈ R� ×�
, � is a diagonal matrix with its

singular values, and � is its rank. Truncated SVD (T-SVD) [11, 35]
outputs the � (≤ �) largest singular values and the corresponding
vectors of U and V from which the rank-� approximation of A best
in terms of the Frobenius norm can be obtained [35]. Its outputs

Table 1: Comparison of lossy-compression methods for
sparse matrices and tensors. For simplicity, we treat the ten-
sor order and all hyperparameters as constants. Comparisons
are relative, and we provide details in [20].

Space & Training Inference Number Training
Methods Accuracy Complexity Complexity of Hyper- Time

Trade-of (per iteration) (per entry) parameters (total)

NeuKron

T-SVD [11, 39]

Strong

Weak

∝ #non-zeros ∝ log(�max)*
∝ #non-zeros constant

4**

1

Long

Short
CMD [36], CUR [9] Moderate ∝ #non-zeros constant 2 Moderate

ACCAMS [2] Moderate ∝ #all-entries constant 2 Moderate
bACCAMS [2] Moderate ∝ #all-entries constant 4 Long
KronFit [25, 26]

CP [5], Tucker [38]

Weak

Weak

∝ #non-zeros ∝ log(�max)*
∝ #non-zeros constant

4

1

Long

Moderate

* Here �max = max(�1, · · · , ��) is the maximum dimensionality (i.e., mode length).
** The learning rate, the optimizer, the weight parameter for the criterion of switching,
and the size of hidden dimensions in LSTM.

have � (� (� + �)) real values, and typically most of them are
non-zero. For further compression, CUR decomposition [9] aims to
yield sparse outputs. Specifcally, a sparse matrix A is decomposed
into CUR (i.e., A ≈ CUR), where C ∈ R� ×�

and R ∈ R� ×�
are

constructed by sampling � columns and rows from A, respectively.
The matrix U ∈ R� ×�

is dense but small, and it is determined by
C and R so that the approximation error is minimized. Compact
matrix decomposition (CMD) [36] keeps only unique columns and
rows in C and R for further efciency.
Co-clustering-based matrix compression: ACCAMS and bAC-

CAMS [2] use an additive combination of small co-clusters to ap-
proximate a given matrix. While the numbers of parameters of them
are linear in the numbers of rows and columns, they produce inter-

mediate results whose size is linear in the number of (potentially
zero) known entries. Thus, they are computationally and memory
inefcient when most entries are known but zero.
Kronecker product-based matrix compression: The adjacency
matrix of a Kronecker graph [24] is a Kronecker power of a fxed
seed matrix (e.g., 2-by-2 matrix). KronFit [25, 26] searches for a seed
matrix whose Kronecker power approximates the adjacency matrix
of a given graph. While KronFit is designed for adjacency matrices,
it can be easily extended to matrices of any size, and the output seed
matrix can be considered as a constant-size lossy compression of
a given matrix. However, the approximation error is considerable,
even when the seed matrix is large, due to the infexibility of the
Kronecker product, as shown in Section 6.2.
Tensor compression: CP decomposition (CP) [5] and Tucker de-
composition (Tucker) [38] generalize the aforementioned T-SVD
to higher-order tensors. They approximate a given tensor using
the sums and products (e.g., outer product and �-mode product)
of much smaller low-rank tensors and matrices, which can be
considered as a lossy compression of the given tensor. Efcient
CP and Tucker methods for sparse tensors have been developed
[1]. For lossless compression of sparse tensors, compressed sparse
fber (CSF) [33, 34] is available.
Other related works: Unipartite-graph summarization algorithms
[22, 23, 29] can be used for compressing adjacency matrices of uni-

partite graphs, while they cannot be directly applied to weighted
and/or non-symmetric matrices, which we aim to compress. Ma-

trix sketching methods replace a given large matrix with a more
compact matrix that follows the properties of the input matrix, for

72

NeuKron: Constant-Size Lossy Compression of Sparse Reorderable Matrices and Tensors WWW ’23, April 30–May 04, 2023, Austin, TX, USA

example, by leaving only important columns (rows) of the input
matrix [9, 10]. These methods, however, cannot be applied to our
problem because the entries of the input matrix cannot be estimated
directly from their outputs.

3 NOTATIONS AND PROBLEM DEFINITION
In this section, we introduce basic concepts and give a formal prob-
lem defnition. See Table 2 for common notations.

3.1 Notations and Concepts
Sparse reorderable matrix and tensor: A matrix A ∈ R� ×�

is
a 2-dimensional array with � rows and � columns, and real entries.

· · ·×��
A �-order tensor X ∈ R�1 ×

is a �-dimensional array of size
�1 × · · · × �� with real entries. We use �� � or �(�, �) to denote
the (�, �)-th entry of A, and we use ��1,· · · ,�� to denote the (�1, · · · ,
��)-th entry of X. We consider a matrix or a tensor to be sparse
if the number of non-zero entries is much smaller than that of all
entries.

2
We call a matrix reorderable if its rows and columns can

be arbitrarily ordered. We provide some examples of reorderable
matrices where the orders of rows and columns do not convey
any information and some examples of non-reorderable ones (see
Footnote 1) in Section 1. Similarly, we call a tensor reorderable if
the indices in each mode can be arbitrarily ordered.
Approximation error: The Frobenius norm is a function ∥·∥� :
R� ×� → R defned as the square root of the square sum of all en-

tries in the given matrix. Similarly, the Frobenius norm of a tensor
is defned as the square root of the square sum of all entries in the
given tensor. The approximation error of a matrix Ã

� that approx-
imates A is defned as ∥A − Ã

� ∥2
� . Similarly, the approximation

error of X̃
� that approximates X is defned as ∥X − X̃

� ∥2
� .

Kronecker product and power: Given two matrices A ∈ R� ×�

and B ∈ R� ×�
, the Kronecker product A ⊗ B ∈ R� � ×��

is a large
matrix formed by multiplying B by each element of A, i.e.,

 B B�11 · · · �1� 
:

. A . . ⊗ B =   . . .  �� 1B · · · �� � B
We denote the �-th Kronecker power of A as A⊗�

, where A⊗� =
A⊗(� −1) ⊗ A and A⊗1 = A.

3.2 Problem Defnition
The constant-size lossy matrix compression problem that we ad-
dress in this paper is defned in Problem 1. It should be noted that
the given constant � can be even smaller than � and � . The prob-
lem of constant-size lossy compression of a sparse reorderable tensor
can be defned by simply replacing the matrix A with a tensor X
and ∥A − Ã

� ∥2
with ∥X − X̃

� ∥2 .
� �

2
The ratio is at most 0.0046 in the datasets considered in the paper.

Table 2: Frequently-used notations

Symbol Defnition

A ∈ R� ×�
an � -by-� sparse matrix

�� � or A(�, �) (� , �)-th entry of A
A�,:, A:,� �-th row of A, �-th column of A

�X R 1 ×···×�∈ �
tensor

� order of X
��1,· · · ,�� (�1, · · · , �)-th entry of X�

nnz(A), nnz(X) number of non-zero entries in A and X
∥A∥ , ∥X∥� Frobenius norm of A and X�

⊗ Kronecker product
A⊗� , ⊗� X �-th Kronecker power of A and X

� a NeuKron model which compresses A and X
Ã , X̃
� � approximated matrix and tensor of A and X by �
� a parameter for the scale of model outputs
ℎ hidden dimension in LSTM
[�] a set of integers from 1 to � (i.e., {1, 2, · · · , �})

Problem 1. (Constant-size Lossy Compression of a Sparse
Reorderable Matrix)

• Given: (1) a sparse and reorderable matrix A ∈ R� ×�
,

(2) a constant � = � (1),
• Find: a model �
• to Minimize: the approximation error ∥A − Ã

� ∥2
, where

�
Ã
� is the matrix approximated from �.

• Subject to: the number of parameters in � is at most � .

4 PROPOSED METHOD
In this section, we present NeuKron, a constant-space lossy com-

pression method for sparse reorderable matrices and tensors. We
frst describe its neural network model and then the training strate-
gies for it. After that, we analyze the computational complexity of
NeuKron. For ease of explanation, we assume that the input is a
matrix through the section, and then we describe the extensions
for tensors in Section 5.

4.1 Model
4.1.1 Overview. When designing a neural network model � for
NeuKron, we aim to achieve the following goals:

• G1. Constant Size: The number of parameters of the model
should be constant, regardless of the size of the input matrix.

• G2. Exploitation of Sparsity: It should be possible to ft the
model to the input by accessing only non-zero entries.

• G3. Fast Approximation: From the trained model, it should
be possible to approximate each entry of the input matrix in
sublinear time (preferably, in constant or logarithmic time).

For G1, given a matrix A to be compressed, we encode the posi-

tion (�, �) of each entry �� � as a sequence and use an auto-regressive
sequence model, specifcally LSTM [14], which has a constant num-

ber of parameters, to process the sequence. For our purpose, LSTM
performs similarly with GRU [7] and outperforms the decoder layer
of Transformer [40], as shown empirically in [20]. For an entry
�� � , the sequence encoding the position (�, �) is fed into LSTM,
and the outputs of LSTM are combined for its approximation �̃� � in
logarithmic time, achieving G3 (see Theorem 1 in Section 4.3). More-

over, regarding G2, the outputs of LSTM are combined so that the

73

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Taehyung Kwon, et al.

(top, left) (bottom, right) (top, right)

(bottom, left) (top, left) (top, left)

(bottom, right) (bottom, left) (bottom, left)

(top, left) (bottom, right) (left)

(bottom, right) (bottom, left) (right)

Input Matrix (8x8)

Target Position

Encode

Embedding

Linear
(for 2x2)

LSTM

Reconstruct

≈ × ×
𝐀𝐀(3,4)

LSTM

Embedding

Linear
(for 2x2)

(top, left) (bottom, right)

Real-valued Outputs

𝐊𝐊1 𝐊𝐊2 𝐊𝐊3

�𝐀𝐀𝚯𝚯(3,4)

𝐊𝐊1(1,1) 𝐊𝐊2(2,2) 𝐊𝐊3(2,2)

Encode

Embedding

Linear
(for 2x2)

LSTM LSTM

Embedding

Linear
(for 1x2)

(top, left) (bottom, right)

Real-valued Outputs

𝐊𝐊1 𝐊𝐊2 𝐊𝐊3

≈ × ×
𝐊𝐊1(1,1) 𝐊𝐊2(2,2) 𝐊𝐊3(1)

𝐀𝐀(2,3) �𝐀𝐀𝚯𝚯(2,3)

Input Matrix (4x8)

Target Position

Reconstruct

(a) Encoding Examples (b) Model for Square Matrices (c) Model for Matrices of Any Size

Figure 1: The overall approximation process of NeuKron. It encodes the input position into a sequence by recursively dividing
the input matrix. The sequence is fed into LSTM, and the outputs of LSTM are aggregated based on the Kronecker product.

sparsity can be exploited for efcient computation of the objective
and its gradient (see Section 4.2.2). The details of encoding inputs
and combining outputs are described in the following subsections.
Regarding G3, it should be noticed that many factorization-based
methods approximate each entry even in constant time (see Table 1).

4.1.2 Encoding inputs (lines 1-3 of Algorithm 1). For simplicity,
= 2� we assume an input matrix A ∈ R� ×�

where � = � (see
Section 4.1.4 for generalization to matrices of any size). Algorithm
1 depicts how NeuKron approximates such A.

For each entry �� � of A, NeuKron encodes its position (�, �) in
a sequence of length � = log

2
� by recursively subdividing A in

a top-down manner. NeuKron frst chooses the partition where
�� � lies when A is divided into 2 × 2 partitions of the same size
(i.e., 2� −1 × 2� −1

). Each division gives four partitions at top left
(TL), top right (TR), bottom left (BL), and bottom right (BR). Then,
NeuKron repeats the process on the chosen partition until only
the target entry �� � is left. The sequence of the positions of the
chosen partition is used to encode �� � . In our implementation, each
entry of the sequence, which is a position, is converted into a tuple
in {1, 2} × {1, 2}. Specifcally, the �-th entry of the sequence that
encodes the position (�, �) is (� (�, �), � (�, �)) where �

� (�, �) := (
�
(� − 1)

mod 2) + 1. (1)

2
� −�

Example 1 (Encoding in Sqare Matrices). Suppose we encode
the position (3, 4) of the square matrix in Figure 1(a), where � = 3. The
position (3, 4) is located in the top-left partition of the input matrix,
and it is located in the bottom-right part of the chosen partition. Lastly,
the position (3, 4) is located at the top-right one of the lastly chosen
partition. Thus, the position (3, 4) is encoded in the sequence TL→BR
→TR, which becomes (1, 1)→ (2, 2)→ (1, 2) based on � (Eq. (1)).

Each tuple in the sequence, except for the last one, goes through
an embedding layer (line 2) to be converted into a corresponding
embedded vector of size ℎ, where ℎ is a hyperparameter. Then, the
vector is fed into LSTM (line 3).

4.1.3 Handling outputs (lines 4-6 of Algorithm 1). Below, we present
how NeuKron produces an approximation. See Figure 1(b) for a
pictorial description. We again assume an input matrix A ∈ R� ×�

where � = � = 2� for ease of explanation. Given the position (�, �)
of a target entry �� � , NeuKron creates K1 ∈ R2×2

, · · · , K� ∈ R2×2
.

Specifcally, given the sequence of tuples that encode (�, �) (see
Section 4.1.2 for encoding), for each � ∈ [� − 1], the �-th LSTM cell
receives the embedding of the �-th tuple, and then the hidden state

of the cell goes through the linear layer and the Softplus activation
to produce K�+1 (line 5). The entries of K1 are separate learnable
parameters. The approximation �̃� � is computed from the (�, �)-th
entry of their Kronecker product K1 ⊗ · · · ⊗ K� as follows (line 6):

√ Ö�
�̃� � := � · K� (� (�, �), � (�, �))/∥K� ∥� , (2)

�=1

where
Î�

=1 K� (� (�, �), � (�, �)) is the (�, �)-th entry of the Kronecker
�

product, and � is a learnable parameter. It should be noticed that
the entire Kronecker product does not have to be computed. By
combining the outputs of LSTM using Eq.(2), G2 in Section 4.1.1
can be achieved. Specifcally, using Eq.(2) enables the exploitation
of the sparsity of the input matrix A for linear-time training, as
described in detail in Section 4.2.2 (see Lemma 1).

4.1.4 Handling matrices of any size. Below, we describe how the
above processes of NeuKron are generalize to compress a matrix of
any size. For a given matrix � ∈ R� ×�

, we consider integers �row

and �
col such that 2�row ≥ � and 2�col ≥ � . Then, � ∈ R� ×�

is ex-
tended to the 2�row

-by-2
�col

matrix with additional rows and columns
flled with zeros. Specifcally, NeuKron sets �row to ⌈log

2 � ⌉ and
set �

col to ⌈log
2 �⌉ so that the number of new entries is minimized.

Without loss of generality, we assume � ≤ � and thus �row ≤ �col.
If �row =�col, the extended square matrix is considered as the input
and processed as described in Sections 4.1.2 and 4.1.3. Otherwise
(i.e., if �row < �col), to encode the position (�, �) of a target entry �� � ,
NeuKron frst recursively divides A into 2 × 2 partitions, �row times,
to obtain a partition has a size of 1×2

�col −�row
, and then it recursively

divides the partition into two partitions of the same size (i.e., 1 × 2),
�
col − �row times. Each division gives two partitions at left (L) and
right (R). Specifcally, the �-th entry of the sequence that encodes
the position (�, �) is (�row (�, �), �col (�, �)), where ∀� ∈ {row, col},

(j k)⎧ (� − 1)/2�� −�
mod 2 + 1, if � ≤ �� ,

�� (�, �) = (3)

0, otherwise. ⎨
⎩

Example 2 (Encoding in Rectangular Matrices). Suppose
we encode the position (2, 3) of the non-square matrix in Figure 1(a),
where (�row, �col) = (2, 3). The position (2, 3) is located in the top-left
partition and in the bottom-right partition, respectively, in the frst
two divisions. In the last division, the position (2, 3) is located in the
left one. Thus, the position (2, 3) is encoded in the sequence TL → BR
→ L, which becomes (1, 1) → (2, 2) → (0, 1) based on �� (Eq. (3)).

As in Section 4.1.3, NeuKron produces an approximation of �� �
using the (�, �)-th entry of the modifed Kronecker product in Eq. (2)

74

NeuKron: Constant-Size Lossy Compression of Sparse Reorderable Matrices and Tensors WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Algorithm 1: Approximation process of NeuKron for an
� -by-� (= 2�) matrix A

= 2� Input: (a) a position: (�, �) ∈ [�] × [�] where �
(b) parameters of Embedding, LSTM, and the linear layer (W, b)
(c) scale parameter � and the frst matrix of Kronecker products K1

Output: an approximation �̃� � of �� � , which is the (�, �)-th entry of
the input matrix A ∈ R� ×�

1 for � ← 1 to � do ()
2 x� ← Embedding � (�, �), � (�, �) ⊲ Sect. 4.1.2
3 y2, · · · , y� ← LSTM(x1, x2, · · · , x� −1)
4 for � ← 2 to � do
5 K� ← Softplus(Wy� + b) ⊲ Sect. 4.1.3 ()
6 return �̃� � ←

√
� · Î

�
�
=1 K� � (�, �), � (�, �) /∥K� ∥�

K1 ⊗ · · · ⊗ K�col . The only diference is that K�row+1, · · · , K�col are
matrices of size 1×2, and for them, a separate embedding and linear
layers are used, as described in Figure 1(c).

4.1.5 Comparison with Kronecker Graphs. Our model � general-

izes the Kronecker graph model [25, 26] in two ways:

• While the Kronecker graph model uses the power of a single seed
matrix, � uses the Kronecker product of potentially diferent
matrices (i.e., K1, · · · , K�) for approximation.

• In �, the matrices K1, · · · , K� may vary depending on the position
of the target entry to be approximated. Specifcally, �̃� � is com-

⊗ K(�2 (�),�2 (�))
puted using the (�, �)-th entry of K(�1 (�),�1 (�)) ⊗

1 2

· · · ⊗ K(�� (�),�� (�)) ⌊(� − 1)/2� −� ⌋., where �� (�) =
�

This generalization leads to a signifcantly better trade-of between
parameter size and approximation error in practice, as shown in
Section 6.2. Notably, there are also two diferences:

• While the Kronecker graph model is trained under a log-likelihood
objective, Θ uses the squared Frobenius norm and normalizes
the matrices to apply the tricks in Eq. (5) and Eq. (6).

• As specifed in Eq. (2), each matrix (i.e., K1, · · · , K�) is normalized
and mapped onto the unit hypersphere.

4.2 Training Strategies
In this subsection, we propose novel training schemes for NeuKron’s
model �. We frst present how to ft � to a given sparse reorder-
able matrix while exploiting its sparsity. Then, we present how to
reorder the rows and columns of the input matrix so that � can be
better ft to it. These two steps are alternated until convergence, as
described in Algorithm 2. Below, we assume a matrix A ∈ R� ×�

where (�, �) = (2�row , 2�col). As described in Section 4.1.4, a matrix
of any size can be extended by zero-padding to satisfy this condition.
We also assume � ≤ � , without loss of generality.

4.2.1 Update of row/column orders. It is crucial to properly order
the rows and columns of a given reorderable matrix for NeuKron’s
model � better ft the matrix. This is because proper ordering
reveals patterns (e.g., self-similarity and co-clusters), which � can
exploit for accurate compression.
Overall process: For initialization, any co-clustering algorithms
can be used. In our implementation, the matrix reordering scheme
in [16] is used (see Section 6.3 for the efect of initialization). After
initialization, NeuKron repeats (a) sampling two rows (or columns),
(b) measuring the change in the approximation error (i.e., ∥A −

Algorithm 2: Overall training process of NeuKron

Input: (a) a sparse reorderable matrix A
(b) a number �� of permutation updates

Output: a NeuKron model �
1 Initialize �
2 while not converged do
3 for � ← 1 to �� do
4 A ← UpdateRowOrder(A) ⊲ Sect. 4.2.1
5 A ← UpdateColOrder(A) ⊲ Sect. 4.2.1
6 � ← UpdateModel(A, �) ⊲ Sect. 4.2.2
7 return �

Ã
� ∥2

), and (c) determining whether to swap the sampled rows (or
�

columns) or not probabilistically using the following criterion:

� < exp(−� · Δ), (4)

where � ∼� (0, 1), Δ is the change in the approximation error, and
� > 0 is a hyperparameter that controls the probability of accepting
swaps that increase the approximation error.
Similarity-aware sampling: Below, we describe how NeuKron
samples candidate pairs of rows (or columns) to be potentially
swapped. Compared to a naive uniform sampling, the proposed
sampling method has two advantages: (a) efective: it samples
pairs based on the similarity of rows (or columns) so that swapping
the pairs is likely to reduce the approximation error, and (b) easy-
to-parallelize: it samples disjoint pairs, which can be processed in
parallel. The main idea is to select candidate pairs so that swapping
pairs is likely to make similar rows (or columns) close to each other
and thus to make them encoded in similar sequences in Section 4.1.2.
Below, we describe the sampling method step by step for sampling
row pairs. Column pairs are sampled similarly.

• Estimating similarity: In order to quickly estimate the similar-

ity, min-hashing [4] is used. Specifcally, for a uniform random
bijective function ℎ

col : [�] → [�] for the columns, the shingle
min�� � ≠0 (ℎcol (�)) of each �-th row is computed. It can be shown
that two rows have the same shingle with probability propor-

tional to the Jaccard similarity of the column indices of their
non-zeros [4].

• Locating similar rows/cols nearby: We match rows with the
same shingle disjointly, and for each matched rows, we sample
pairs of rows to be swapped so that they are located in nearby
positions, which we defne as positions whose binary representa-

tions difer in only 1 bit. Let � (�, �) be the position whose binary
representation difers with that of � only in the �-th bit. Specif-

ically, if two rows in the �1-th and �2-th positions are matched,
we sample (�1,� (�2, �)) and (�2,� (�1, �)) so that �1 and �2 become
nearby after swaps. The position � ∈ [�

col
] is sampled probabilis-

tically (see Appendix B for details).
• Pairing unmatched rows: The rows remaining unmatched are

randomly matched, and for each matched rows, we sample pairs
as described above.

We describe the entire process of reordering for rows in Algorithm 3.

4.2.2 Update of model parameters. The objective function of op-
timization is ∥A − Ã

� ∥2
, as in Problem 1. Naively computing it

�
takes Ω(�� log �) time since all � � entries are approximated

75

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Taehyung Kwon, et al.

and approximating each entry takes Θ(log �) time (see Theorem 1
in Section 4.3).

For its efcient computation, we reformulate the error as
� � ∑∑ ∑

∥A − Ã
� ∥2 = (�� � − �̃� �)2 = (�� � − �̃� �)2

(5)�
�=1 � =1 �� � ≠0

� � ∑ ∑ ∑∑
+ �̃� �

2 = ((�� � − �̃� �)2 − �̃� �
2) + �̃� �

2 .
�� � =0 �� � ≠0 �=1 �=1

In our model �, the last term, (i.e., the sum of squares) can be
immediately computed from a learnable parameter � ∈ R+

(which
is used in Eq. (2)), as formalized in Lemma 1.

Lemma 1. For approximation by Eq. (2), Eq. (6) always holds.

2
�row

2
�
col∑ ∑
�̃2 = ����� (6)� �

�=1 � =1

Proof. To prove this lemma, we use an induction. For (�row, �col) =
(1, 1) and (�row, �col) = (0, 1), the statement holds trivially. Sup-

pose the statement holds when (�row, �col) = (0, �2). For (�row, �col) =
(0, �2 + 1), the statement also holds since

2
�row

2∑�2+1 2
�row

2
�
2∑ �K1 (1, 1)2 ∑ ∑ �̃

� �
2

�̃2 = � � ∥K1 ∥2 �K1 (1, 1)2/∥K1 ∥2
�=1 �=1 � �=1 � =1 �

2
�row

2∑�2+1∑ �K1 (1, 2)2 �̃
� �
2

+
∥K1 ∥2 �K1 (1, 2)2/∥K1 ∥2

� �=1 � =2
�
2 +1 �

�K1 (1, 2)2
= ��2 (�K1 (1, 1)2

) = ��2 = ��2+1+ · �
∥K1 ∥2 ∥K1 ∥2

� �

Similarly, if the statement holds for (�row, �col) = (�1, �2) and
�1 ≤ �2, the statement also holds for (�row, �col) = (�1 + 1, �2 + 1). By
induction, the statement holds for all 0 ≤ �row ≤ �

col
. □

This property follows from our careful design of Eq. (2), which
is based on the Kronecker product. While � can be set so that
the square sum of entries of Ã

� is equal to that of A, making it
learnable leads to better compression since this gives more degrees
of freedom to the model (see Section 6.3). As a result, the error
becomes

Í
�� � ≠0 ((�� � − �̃� �)2 − �̃

� �
2) + ����� , and thus the error and

its gradient can be computed in time proportional to the number
of non-zeros, without having to approximate zero entries in A
explicitly (see Theorem 2 in Section 4.3). It should be noticed that we
do use the loss function that encourages the model to ft all entries
including zeros, and we speed up its computation without changing
it. Gradient descent is used for updating the model parameters.
Implementation in practice: Since candidate pairs are disjoint,
processing them, including computing Eq. (4), is performed in par-
allel in our implementation. Shingles are also computed in parallel.

4.3 Theoretical Analysis
We analyze the time and space complexity of NeuKron. We as-
sume that (a) � ≤ � for the input matrix A ∈ R� ×�

and (b) the
dimension ℎ of LSTM is a constant (i.e., � (1)), which is a user-

defned hyperparameter. NeuKron requires logarithmic time for
approximation (Theorem 1), as confrmed empirically in Section 2

of [20]. For training, it requires time proportional to the number of
non-zero entries of A, denoted by nnz(A) (Theorem 2).

Theorem 1 (Approximation Time for Each Entry). The ap-
proximation of each entry by NeuKron takes Θ(log �) time.

Proof. First, we need to encode the position of the given entry.
Since we need the subdivision Θ(log �) times, the time complexity
of the encoding step is Θ(log �). The computational cost to ap-
proximate an entry only depends on the length of the input of the
LSTM, so the time complexity for inference is Θ(log �). □

Theorem 2 (Training Time). Each training epoch in NeuKron
takes � (nnz(A) · log �) time.

Proof. The time complexity for inference is � (log �) for each
input. Thus, computing the approximation error takes � (nnz(A) ·
log �) with Eq. (5) (see Lemma 1). The time complexity for comput-

ing the gradients is also � (nnz(A) · log �), since the gradient of
each component in the model, such as matrix multiplication and tak-
ing a non-linearity, does not require a greater time complexity. For
optimizing the orders of rows and columns, computing the shingle
values for rows and columns takes � (nnz(A)) time since we need
to look up all non-zero entries. Matching the rows and the columns
as pairs requires � (� + �) time. Only the entries of the output
that correspond to non-zero entries are changed due to swaps and
inference of a single element takes � (log �) time. Thus, checking
the criterion in Eq. (4) takes � (nnz(A) · log �) time. Therefore, the
overall training time per epoch is � (nnz(A) · log �). □

While NeuKron requires space proportional to the number of
non-zero entries in the input matrix during training (Theorem 4),
it gives a constant-size compression. (Theorem 3). Refer to Appen-

dix D for the proofs of Theorems 3 and 4.

Theorem 3 (Space Complexity of Outputs). The number of
model parameters of NeuKron is Θ(1).

Theorem 4 (Space Complexity during Training). NeuKron
requires � (nnz(A) + �) space during training.

5 EXTENSION TO TENSORS
We extend NeuKron to sparse reorderable tensors. Theoretical
analyses are available at Section 3 of [20].

5.1 Model
· · ·

For a given �-order tensor X ∈ R�1 × ×��
(we assume �1 ≤ · · · ≤�

�� without loss of generality), we frst compute �� = log
2 �� for

each � ∈ [�] and extend X to the tensor of size 2�1 × · · · × 2��
with

additional entries flled with zeros. As in Section 4.1.4, for encoding,
NeuKron frst recursively divides the extended tensor into 2�

partitions �1 times to obtain a partition has a size of 1 × 2�2 −�1 ×· · ·×
2
�� −�1

. Then, it recursively divides the partition as it handles a (� −
1)-order tensor. As a result, the �-th entry of the encoded sequence
for the position (�1, · · · ��) is (�1 (�1, �), · · · �� (�� , �)), where �� is
identical to Eq. (3). We provide an example of NeuKron on a 3-
order tensor in Figure 2. After encoding, NeuKron produces an
approximation using the Kronecker product K1 ⊗ · · · ⊗ K�� from
� linear layers for handling tensors of � diferent sizes.

76

NeuKron: Constant-Size Lossy Compression of Sparse Reorderable Matrices and Tensors WWW ’23, April 30–May 04, 2023, Austin, TX, USA

Input Tensor (2x4x8)

Target Position

Encode

Embedding

Linear
(for 1x2x2)

LSTM LSTM

Embedding

Linear
(for 1x1x2)

00 0

0 01 0
0 0
0 1

(top, left, front) (top, right)
𝒳𝒳(1, 2, 2) �𝒳𝒳𝚯𝚯(1, 2, 2)

× ×≈
𝒦𝒦1(1, 1, 1) 𝒦𝒦2(1, 2) 𝒦𝒦3(2)

𝒦𝒦3

Real-valued Outputs

𝒦𝒦2𝒦𝒦1

Reconstruct

Figure 2: Example of NeuKron on an 3-order tensor X.

5.2 Training Strategies
The main diference in training strategies lies in computing shingles.
For a �-order tensor, � random bijective functions are used, thus
each mode index has � − 1 shingles from those functions except for
the function of the same mode. In our extension, we match positions
�1 and �2 as a pair only if the � − 1 shingles of �1 and those of index
� are all the same, and the orders of indices are randomly initialized.
All other procedures are identical to the original NeuKron.

6 EXPERIMENTS
We conducted experiments to answer the following questions:

Q1. Compression Performance: Does NeuKron perform more
compact and accurate compression than its best competitors?

Q2. Ablation Study: How efective are NeuKron’s training
strategies for compression performance?

Q3. Scalability and Speed: Does NeuKron scale linearly with
the number of non-zero entries of input data?

Q4. Approximation Analysis: How does the approximation
error of NeuKron vary depending on entry values?

Q5. Efects of Data Properties: How do the skewness, order,
and dimension of the input afect the approximation error?

The answers for Q3, Q4, and Q5 are provided in Appendix A.

6.1 Experiment Specifcations
Machine: We ran experiments for NeuKron on a machine with
4 RTX 2080Ti GPUs and 128GB RAM. For competitors, which do
not require GPUs, we ran experiments on a desktop with a 3.8GHz
AMD Ryzen 3900X CPU and 128GB RAM. Note that outputs and
compression ratios do not depend on machine specifcations.
Datasets: We used six real-world matrices and four real-world
tensors listed in Table 3. All the datasets are weighted (i.e., non-

binary matrices and tensors) except for the email and threads
datasets. Detailed semantics and structural properties of the datasets
are provided in Table 3 and Table 7 of [20], respectively.
Competitors: For matrices, we compared NeuKron with Kron-

Fit [25], T-SVD (truncated SVD), CMD [36], ACCAMS [2], CUR [9],
and bCCAMS [2]. In order to compress matrices of any size, we
extended KronFit so that it (a) fts a non-square seed matrix, (b)
permutes rows and columns separately, and (c) aims to minimize
the approximation error in Problem 1. We did not consider methods
designed for unipartite and/or unweighted graphs (e.g., [22, 23, 29])
as competitors since they are not applicable to most of the datasets.
For tensors, we compared NeuKron with CP [1] and Tucker [18]
decompositions and CSF [33], which is lossless. The competitors
are described in Section 2, and see [20] for implementation details.
Experimental Setup: We trained NeuKron and its competitors
under the following stopping condition with the patience of 100

Table 3: Real-world datasets used in the paper. All datasets
are publicly available, and links to them are available in [20].

Type Name Size # of non-zeros

Matrix

email
nyc
tky

kasandr
threads
twitch

1, 005 × 25, 919
1, 083 × 38, 333
2, 293 × 61, 858

414, 520 × 503, 702
176, 445 × 595, 778

790, 100 × 15, 524, 309

92, 159
91, 024

211, 955
903, 366

1, 457, 727
234, 422, 289

Tensor

nips
4-gram
3-gram
enron

2, 482 × 2, 862 × 14, 036
48� × 54� × 55� × 58�

88� × 100� × 110�
5, 699 × 6, 066 × 244�

3, 101, 609
7, 495, 550
9, 778, 281

31, 312, 375

epochs: Emin −Ecurr < 10−5
, where Emin is the lowest approximation Emin

error so far, and Ecurr is the current approximation error. For all
experiments, we set �� in Algorithm 2 to 2, and set � in Eq. (4)
to 10, after a preliminary study (see Section 6 of [20]). NeuKron
was trained by Adam optimizer whose learning rate was set to
10
−3

for the email and threads datasets, and 10−2
for the others.

Unless otherwise stated, we set the hidden dimension ℎ to 30 in the
email, nyc, and tky datasets and to 60 in the kasandr, nips, and
threads datasets. For the other datasets, we set ℎ to 90. We ran all
experiments 5 times with diferent random seeds and reported the
average error. The setups for the competitors are depicted in [20].

6.2 Q1. Compression Performance
We compared the (a) size in bytes3

and (b) approximation error of
the compressed output obtained by the considered algorithms. We
varied the hidden dimension ℎ of NeuKron from 5 to 30 for the
email, nyc, and tky datasets and from 10 to 60 for the kasandr,
nips and threads datasets. For the others, we varied ℎ from 15 to
90. Similarly, we varied the hyperparameters of each competitor as
to reveal its trade-of between the size and error (refer to [20]).

For all datasets, NeuKron achieved the best trade-of be-
tween the approximation error and the compressed size. As
seen in Figure 3, the size was up to fve orders of magnitude
smaller in NeuKron than in the competitors when their errors
were similar. The error was also up to 10.1× smaller in NeuKron
than in the competitors when the outputs were of similar size. Note
that the errors of KronFit do not always decrease as the number of
parameters increases, as previously reported in [25].
Performance on non-reorderable data: NeuKron can also be
applied to non-reorderable data if the mapping between the original
and new orders of rows and columns are stored additionally. Even
when we assume that the datasets are non-reorderable and consider
the extra cost, NeuKron gives by far the best trade-of between
size and approximation error, as shown in Figure 9.

6.3 Q2. Ablation Study
On the four smallest matrices and the two smallest tensors, we
demonstrate the efectiveness of the components of NeuKron il-
lustrated in Section 4 by comparing it with the following variants:

(a) NeuKron: the proposed method with all components.
(b) NeuKron-H (N-H): a variant that uniformly samples pairs

of rows and columns without using min-hashing.
(c) NeuKron-I (N-I): a variant that randomly initializes the

orders of rows and columns without using the scheme in
[16].

3
In our implementation, each foating-point number took 4 bytes.

77

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Taehyung Kwon, et al.

NEUKRON (Proposed, Storage for permutations is included) KRONFIT (Storage for permutations is included)

T-SVD CMD ACCAMS bACCAMS CP Tucker CSF CUR

Appendix, Fig. 1 (Compression) - horizontal

NEUKRON (Proposed) KRONFIT T-SVD CMD ACCAMS bACCAMS CP Tucker CSF CUR

463697.1X

1.3X

3 1́010

4 1́010

5 1́010

103 105 107 109

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

58.2X

1.3X

5 1́04

6 1́04

7 1́04

8 1́04

9 1́04

103 105 107

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

256.3X

1.2X

0 1́00

1 1́06

2 1́06

3 1́06

4 1́06

102 104 106 108

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

300.6X

1.2X

5 1́06

1 1́07

102 104 106 108

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

(a) kasandr (b) twitch (c) email (d) nyc (e) tky

2078.6X

1.2X

1.2 1́06

1.3 1́06

1.4 1́06

104 106 108

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

982.9X0
5.8 × 107

6.2 × 107

6.6 × 107

7.0 × 107

104 105 106 107 108

)Bytes(Compressed Size Ap
pr

ox
im

at
io

n
Er

ro
r

nips

433.4X

0
1.3 × 1010

1.7 × 1010

2.1 × 1010

2.5 × 1010

104 105 106 107 108

)Bytes(Compressed Size Ap
pr

ox
im

at
io

n
Er

ro
r

enron

358.3X
0

5.0 × 1010

1.0 × 1011

1.5 × 1011

2.0 × 1011

104 105 106 107 108

)Bytes(Compressed Size Ap
pr

ox
im

at
io

n
Er

ro
r

3 - gram

149.9X

0
1.2 × 1010

1.5 × 1010

1.8 × 1010

104 105 106 107 108

)Bytes(Compressed Size Ap
pr

ox
im

at
io

n
Er

ro
r

4 - gram

(f) threads (g) nips (h) enron (i) 3-gram (j) 4-gram

Figure 3: NeuKron provides concise and accurate compressions. The outputs of NeuKron are up to fve orders of magnitude
smaller than those of the competitors when the approximation errors in them are similar. When the sizes of the outputs are
similar, the approximation error was up to 10.1× smaller in the outputs of NeuKron than those in the competitors. ACCAMS,
bACCAMS, CUR, and CMD ran out of memory in some datasets, and their results do not appear in the corresponding plots.
Note that the errors of KronFit do not always decrease as the number of parameters increases, as previously reported in [25].

NEUKRON-A NEUKRON-F NEUKRON-I

Fig 3, 4 (Ablation)
Ours Fixed 𝑇𝑇 Random permutation initialization

Ours Fixed 𝑇𝑇

NEUKRON (Proposed) NEUKRON-H NEUKRON (Proposed) NEUKRON(N)-H N-A N-F N-I

3

6

9

12

email
nyc tky

kasandr
nips

4-gram

R
el

at
iv

e

 A
pp

ro
xi

m
at

io
n

E
rr

or

0.3

0.6

0.9

1.2

1.5

email
nyc tky

kasandr
nips

4-gram

R
el

at
iv

e

 A
pp

ro
xi

m
at

io
n

E
rr

or

(a) Efect of min-hashing and the auto- (b) Efect of � and initialization
regressive architecture

Figure 4: Efectiveness of the components of NeuKron. We
report the approximation errors of variants relative to that
of NeuKron. Results of NeuKron-I on tensors are omitted
since, for tensors, NeuKron also randomly initializes orders.

ACCAMS bACCAMS CP Tucker CSF
NEUKRON (Proposed) KRONFIT T-SVD CMD CUR

Figure 5: Training time of NeuKron and the competitors.
Note that NeuKron requires much longer training time than
many competitors, while it provides the best trade-of be-
tween space and accuracy (Figure 3). See Appendix A.1 for
detailed hyperparameter settings for each method.

(d) NeuKron-F (N-F): a variant that fixes � to the sum of the
squares of all entries in the input.

(e) NeuKron-A (N-A): a variant without any auto-regressive
architecture. It only uses two learnable matrices Ksquare ∈

R2×2
and Krect ∈ R1×2

, as in KronFit, to compute K⊗�row
square ⊗

K⊗(�col −�row)
rect for approximation. Similarly, it uses � learnable

tensors to approximate � -order tensors.

As seen in Figure 4, NeuKron outperformed NeuKron-A and
NeuKron-H, which indicates that the auto-regressive architecture
(i.e., LSTM) and the min-hashing technique are crucial to enhance
the performance of NeuKron. Moreover, making � learnable was
efective especially on the email, nips, and 4-gram datasets. For

the order initialization, NeuKron-I showed comparable or slightly
poor performance than NeuKron, implying that how the rows and
columns are initialized can afect the compression quality.
Extra Results: For details results regarding Q3-Q5, refer to Ap-

pendix A. A training time comparison is available in Figure 5.

7 CONCLUSION
We focus on compressing sparse reorderable matrices and tensors
into a constant-size space. Our contributions are three-fold:

• Compact yet Accurate Method: We proposed NeuKron, which
lossily compresses matrices and fxed-order tensors of any size
with a constant number of parameters. NeuKron provided an
output that is up to fve orders of magnitude smaller than the
outputs of the best competitors when the approximation errors
in them are similar (Figure 3).

• Theoretical Analysis: We carefully designed NeuKron so that,
for sparse reorderable matrices and fxed-order tensors of any
size (a) the number of parameters is constant, (b) each entry is
approximated in a logarithmic time, and (c) the model is ftted to
an input in time proportional to the number of non-zero entries
in it. We proved these desirable properties (Theorems 1-3).

• Extensive Experiments: Through extensive experiments on
10 real-world datasets, we demonstrated the efectiveness and
scalability of NeuKron (Figures 3 and 6). Especially, we showed
that NeuKron successfully compressed a matrix with up to 230
millions of non-zero entries.

Reproducibility: The code and datasets used are available at [20].

ACKNOWLEDGMENTS
This work was supported by Samsung Electronics Co., Ltd., Na-

tional Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No.2021R1C1C1008526), and Institute of
Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No. 2022-0-
00157, Robust, Fair, Extensible Data-Centric Continual Learning)
(No. 2019-0-00075, Artifcial Intelligence Graduate School Program
(KAIST)) (No.2021-0-02068, Artifcial Intelligence Innovation Hub).

78

NeuKron: Constant-Size Lossy Compression of Sparse Reorderable Matrices and Tensors WWW ’23, April 30–May 04, 2023, Austin, TX, USA

REFERENCES
[1] Brett W Bader and Tamara G Kolda. 2008. Efcient MATLAB computations with

sparse and factored tensors. SIAM Journal on Scientifc Computing 30, 1 (2008),
205–231.

[2] Alex Beutel, Amr Ahmed, and Alexander J Smola. 2015. Accams: Additive co-
clustering to approximate matrices succinctly. In WWW.

[3] Paolo Boldi and Sebastiano Vigna. 2004. The webgraph framework I: compression
techniques. In WWW.

[4] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher.
2000. Min-wise independent permutations. JCSS 60, 3 (2000), 630–659.

[5] J Douglas Carroll and Jih-Jie Chang. 1970. Analysis of individual diferences in
multidimensional scaling via an N-way generalization of “Eckart-Young” decom-

position. Psychometrika 35, 3 (1970), 283–319.
[6] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. 2004. R-MAT: A

recursive model for graph mining. In SDM.
[7] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning phrase
representations using RNN encoder-decoder for statistical machine translation.
EMNLP (2014).

[8] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey
Pupyrev, and Alon Shalita. 2016. Compressing graphs and indexes with recursive
graph bisection. In KDD.

[9] Petros Drineas, Ravi Kannan, and Michael W Mahoney. 2006. Fast Monte Carlo
algorithms for matrices II: Computing a low-rank approximation to a matrix.
SIAM Journal on computing 36, 1 (2006), 158–183.

[10] Petros Drineas, Michael W Mahoney, and Shan Muthukrishnan. 2008. Relative-

error CUR matrix decompositions. SIAM J. Matrix Anal. Appl. 30, 2 (2008),
844–881.

[11] Carl Eckart and Gale Young. 1936. The approximation of one matrix by another
of lower rank. Psychometrika 1, 3 (1936), 211–218.

[12] Gene H Golub and Christian Reinsch. 1971. Singular value decomposition and
least squares solutions. In Linear algebra. Springer, 134–151.

[13] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative fltering. In WWW.

[14] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[15] Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. 2022. FedPara: Low-rank
Hadamard Product for Communication-Efcient Federated Learning. In ICLR.

[16] Jinhong Jung and Lee Sael. 2020. Fast and accurate pseudoinverse with sparse
matrix reordering and incremental approach. Machine Learning 109, 12 (2020),
2333–2347.

[17] Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.
2010. Multiverse recommendation: n-dimensional tensor factorization for context-

aware collaborative fltering. In RecSys.
[18] Tamara G Kolda and Jimeng Sun. 2008. Scalable tensor decompositions for

multi-aspect data mining. In ICDM.
[19] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter Richtárik. 2016.

Federated optimization: Distributed machine learning for on-device intelligence.
arXiv preprint arXiv:1610.02527 (2016).

[20] Taehyung Kwon, Jihoon Ko, Jinhong Jung, and Kijung Shin. 2023. NeuKron:
Constant-Size Lossy Compression of Sparse Reorderable Matrices and Tensors (Code,

Datasets, and Appendix). https://github.com/kbrother/NeuKron
[21] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical

tensor decomposition for knowledge base completion. In ICML.
[22] Kyuhan Lee, Hyeonsoo Jo, Jihoon Ko, Sungsu Lim, and Kijung Shin. 2020. Ssumm:

Sparse summarization of massive graphs. In KDD.
[23] Kristen LeFevre and Evimaria Terzi. 2010. GraSS: Graph structure summarization.

In SDM.
[24] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos.

2005. Realistic, mathematically tractable graph generation and evolution, using
kronecker multiplication. In ECML/PKDD.

[25] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and
Zoubin Ghahramani. 2010. Kronecker graphs: an approach to modeling networks.
JMLR 11, 2 (2010).

[26] Jure Leskovec and Christos Faloutsos. 2007. Scalable modeling of real graphs
using kronecker multiplication. In ICML.

[27] Chao Liu, Fan Guo, and Christos Faloutsos. 2009. Bbm: bayesian browsing model
from petabyte-scale data. In KDD.

[28] Julian McAuley, Jure Leskovec, and Dan Jurafsky. 2012. Learning attitudes and
attributes from multi-aspect reviews. In ICDM.

[29] Matteo Riondato, David García-Soriano, and Francesco Bonchi. 2017. Graph
summarization with quality guarantees. DMKD 31 (2017), 314–349.

[30] Kijung Shin, Amol Ghoting, Myunghwan Kim, and Hema Raghavan. 2019. Sweg:
Lossless and lossy summarization of web-scale graphs. In WWW.

[31] Sumit Sidana, Charlotte Laclau, Massih R Amini, Gilles Vandelle, and André
Bois-Crettez. 2017. KASANDR: a large-scale dataset with implicit feedback for
recommendation. In SIGIR.

[32] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul)
Hsu, and Kuansan Wang. 2015. An Overview of Microsoft Academic Service
(MAS) and Applications. In WWW.

[33] Shaden Smith and George Karypis. 2015. Tensor-matrix products with a com-

pressed sparse tensor. In Proceedings of the 5th Workshop on Irregular Applications:
Architectures and Algorithms. 1–7.

[34] Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George Karypis.
2015. SPLATT: Efcient and parallel sparse tensor-matrix multiplication. In
IPDPS.

[35] Gilbert W Stewart. 1993. On the early history of the singular value decomposition.
SIAM review 35, 4 (1993), 551–566.

[36] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. 2007. Less is more:
Compact matrix decomposition for large sparse graphs. In SDM.

[37] Daniel Ting. 2018. Count-min: Optimal estimation and tight error bounds using
empirical error distributions. In KDD.

[38] Ledyard R Tucker. 1966. Some mathematical notes on three-mode factor analysis.
Psychometrika 31, 3 (1966), 279–311.

[39] Nick Vannieuwenhoven, Raf Vandebril, and Karl Meerbergen. 2012. A new
truncation strategy for the higher-order singular value decomposition. SIAM
Journal on Scientifc Computing 34, 2 (2012), A1027–A1052.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

[41] Jaewon Yang and Jure Leskovec. 2012. Defning and Evaluating Network Com-

munities Based on Ground-Truth. In ICDM.

79

https://github.com/kbrother/NeuKron

WWW ’23, April 30–May 04, 2023, Austin, TX, USA Taehyung Kwon, et al.

Order Optimization Model Optimization

Fig. 5 Scalability

Total Θ(# Non-zero Entries)

100

101

102

103

106 107 108

of Nonzero Entries

E
xe

cu
tio

n
T

im
e

(s
ec

)

100

101

102

103

106 107 108

of Nonzero Entries

E
xe

cu
tio

n
T

im
e

(s
ec

)

100

101

102

106 107 108

of Nonzero Entries

E
xe

cu
tio

n
T

im
e

(s
ec

)

(a) twitch

2-1

20

21

22

217 218 219 220 221

of Nonzero Entries

E
xe

cu
tio

n
T

im
e

(s
ec

)

2-1

20

21

22

217 218 219 220 221

of Nonzero Entries

E
xe

cu
tio

n
T

im
e

(s
ec

)

2-4

2-3

2-2

2-1

217 218 219 220 221

of Nonzero Entries

E
xe

cu
tio

n
T

im
e

(s
ec

)

(b) threads

Figure 6: The training process of NeuKron is scalable. Both
model and order optimizations scale near-linearly with the
number of non-zeros in the input.

A ADDITIONAL EXPERIMENTAL RESULTS

A.1 Q3. Scalability and Speed
In order to evaluate the scalability of NeuKron, we generated multi-

ple matrices of various sizes from the threads and twitch datasets
by tracking their evolutions over time. In them, we measured the
training time per epoch for model and order optimizations in addi-
tion to the total training time per epoch. The hidden dimension ℎ
was fxed to 60. As shown in Figure 6, the individual and overall
training processes of NeuKron scaled linearly with the number
of non-zeros, which is consistent with the theoretical results in
Section 4.3. We further confrmed the linear scalability of NeuKron
on tensor datasets and in hidden dimensions in Section 8 of [20].

We compared the training time of NeuKron and the competitors
in Figure 5. We followed the hyperparameter settings in Section 6.2.
For NeuKron, we reported the result with the smallest hidden di-
mensions that we considered. For all competitors except for KronFit,
we reported their results when their approximation errors are clos-
est to that of NeuKron. For KronFit, we reported its result when
its output size is closest to that of NeuKron. Since our optimiza-

tion problem is a mixed discrete-continuous optimization problem,
which is notoriously difcult, the convergence of NeuKron takes
much longer than that of factorization-based methods. While the
convergence took long, the approximation error dropped rapidly
in early iterations in most cases. The detailed training curves are
given in Figure 2 of [20].

A.2 Q4. Approximation Analysis
We analyzed how the approximation error by NeuKron varies
depending on the ground-truth value of approximated entries. In
each dataset, we grouped the approximated entries by log-binning
of their ground-truth values, and for each group, we computed the
root mean squared error (RMSE) of the approximation errors. As
seen in Figure 7, RMSE tended to increase with respect to ground-

truth entry values. We also checked at most 1, 000 largest singular
values of matrices obtained by NeuKron and the two strongest

competitors. For each method, we used the hyperparameter settings
that led to the least approximation error in Figures 3 and 9. As seen
in Figure 8, the singular values obtained by NeuKron were closest
to the singular values of the input matrices.

nips 3-gram 4-gram enron

Fig. q4 (Compression) - horizontal

nyc tky kasandr twitch email threads
v

0

200

400

600

[0
,2

0)

[2
0 ,2

1)

[2
1 ,2

2)

[2
2 ,2

3)

[2
3 ,2

4)

[2
4 ,2

5)

[2
5 ,2

6)

[2
6 ,2

7)

[2
7 ,2

8)

[2
8 ,2

9)

[2
9 ,2

10
)

[2
10

,∞
)

Ground-truth Entry Values

R
M

S
E

0

10000

20000

[0
,2

0)

[2
0 ,2

1)

[2
1 ,2

2)

[2
2 ,2

3)

[2
3 ,2

4)

[2
4 ,2

5)

[2
5 ,2

6)

[2
6 ,2

7)

[2
7 ,2

8)

[2
8 ,2

9)

[2
9 ,2

10
)

[2
10

,2
11

)

[2
11

,2
12

)

[2
12

,2
13

)

[2
13

,2
14

)

[2
14

,∞
)

Ground-truth Entry Values

R
M

S
E

(a) RMSE on sparse matrices (b) RMSE on sparse tensors

Figure 7: Analysis of approximation errors of NeuKron.
The errors tend to increase with respect to the ground truth
values of approximated entries. The �-axis is in the log scale.

Ground-truth NEUKRON (Proposed) ACCAMS KRONFIT

10-3

10-2

10-1

100

101

50 100 150 200

Order of Singular Values

S
in

gu
la

r
V

al
ue

s

101.7

102

102.3

102.6

50 100 150 200

Order of Singular Values

S
in

gu
la

r
V

al
ue

s

101

102

103

250 500 750 1000

Order of Singular Values

S
in

gu
la

r
V

al
ue

s

(a) email (b) nyc (c) tky

Figure 8: NeuKron preserves singular values well. The sin-
gular values of the matrix obtained by NeuKron are closest
to the ground-truth ones. We used the smallest datasets for
this experiment since computing singular values requires
approximating all entries, including zeros.

A.3 Q5. Efects of Data Properties
We investigated the efects of properties of an input tensor X on
the performance of NeuKron. For this experiment, we syntheti-

cally generated tensors using the multi-dimensional extension R-

MAT [6]. Specifcally, we frst split each mode of a tensor into two
partitions and then chose either the frst partition with probability
� or the second one with probability 1 − � . This process is repeated
until the target position is determined. As a default setting, we set
(a) � to 0.8, (b) the order � to 3, (c) the sum of all tensor entries
to 106

, and (d) the number of entries to 230
. We measured ftness,

which is defned as 1 − ∥X − X̃
� ∥� /∥X∥� (the higher, the better).

The ftness is widely used to compare the errors of approximations
to diferent tensors.

We varied the skewness � from 0.65 to 0.85. Note that increasing
� makes the distribution of non-zero entries more skewed with
distinct patterns, and decreasing � makes the distribtuion more
uniform without patterns. As seen in Figure 10(a), the ftness in-

creased as � increased, implying that NeuKron provides better
performance on skewed tensors with distinct patterns. Next, we
changed the order � from 2 to 6, but no signifcant efect of � was
observed, as shown in Figure 10(b). Lastly, we analyzed the efect of
dimension (i.e., the number of indices in each mode) by changing

80

NeuKron: Constant-Size Lossy Compression of Sparse Reorderable Matrices and Tensors WWW ’23, April 30–May 04, 2023, Austin, TX, USA

NEUKRON (Proposed, Storage for permutations is included) KRONFIT (Storage for permutations is included)

T-SVD CMD ACCAMS bACCAMS CP Tucker CSF CUR

Appendix, Fig. 1 (Compression) - horizontal

NEUKRON (Proposed) KRONFIT T-SVD CMD ACCAMS bACCAMS CP Tucker CSF CUR

81.1X3 1́010

4 1́010

5 1́010

108 109

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

2X5 1́04

6 1́04

7 1́04

8 1́04

9 1́04

105 106 107

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

17.4X
0 1́0

6
1 1́06

2 1́06

3 1́06

4 1́06

105 106 107 108

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

6.9X

5 1́06

1 1́07

105 106 107 108

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

(a) kasandr (b) twitch (c) email (d) nyc (e) tky

4.6X
1.2 1́06

1.3 1́06

1.4 1́06

106 107 108

Compressed Size (Bytes)A
pp

ro
xi

m
at

io
n

E
rr

or

(f) threads (g) nips (h) enron (i) 3-gram (j) 4-gram

Figure 9: NeuKron signifcantly outperforms the competitors even if we assume that matrices and tensors are non-reorderable
and separately store the permutations of indices for all modes. Note that the outputs of NeuKron require up to two orders of
magnitude smaller space than those of the competitors with similar approximation error.

Algorithm 3: UpdateRowOrder

Input: (a) a reorderable matrix A, (b) a hyperparameter � in Eq. (4)
Output: updated matrix A

1 Sample � ∈ N ∪ {0} so that P(� = �) = 1/2�+1

2 � ← min(�, �row − 1) ; � ← ∅; � ← ∅
3 Generate a random hash bijective functions ℎ

col

4 foreach � ∈ {� ∈ [�] : (� − 1) AND 2� = 0} do
5 � ∼ � (0, 1)
6 if � < 1/2 then � ← � ∪ {� }
7 else � ← � ∪ {� + 2� }
8 foreach � ∈ � do
9 �row (�) ← min�� � ≠0 (ℎcol (�))

10 while ∃(�1, �2) s.t. �row (�1) = �row (�2) do
11 � ← � ∪ { (�1, (�2 − 1) XOR 2� + 1), (�2, (�1 − 1) XOR 2� + 1) }
12 � ← � \ {�1, �2 }
13 � ← � ∪ { (� − 1) XOR 2� + 1 : � ∈ �}
14 while � ≠ ∅ do
15 Randomly sample (�1, �2) from �
16 � ← � ∪ { (�1, �2) }; � ← � \ {�1, �2 }
17 �accept ← ∅
18 foreach (�1, �2) ∈ � do
19 � ∼ � (0, 1)
20 Δ ← change in the approximation error
21 if � ≥ ��� (−� · Δ) then �accept ← �accept ∪ { (�1, �2) }
22 foreach (�1, �2) ∈ �accept do
23 A�1,: , A�2,: ← A�2,: , A�1,:

0.00

0.25

0.50

0.75

1.00

0.65 0.70 0.75 0.80 0.85

Skewness

F
itn
es
s

0.5

0.6

0.7

0.8

2 3 5 6

Order of Tensor

F
itn

es
s

0.00

0.25

0.50

0.75

29 210 211 212 213

Dimension of Tensor

F
itn

es
s

(a) Efect of Skewness (b) Efect of Order (c) Efect of Dim.

Figure 10: Efects of data properties on NeuKron. (a) The ft-
ness increases as the skewness � increases. (b) The order of
tensors does not signifcantly afect the ftness. (c) As tensors
become bigger, the ftness decreases.

the dimension of tensors while fxing the number of non-zeros. As
seen in Figure 10(c), the ftness of NeuKron decreased as tensors
became bigger and thus more entries were approximated by a fxed
number of parameters.

B PSEUDOCODE FOR ORDERING ROWS
The pseudocode of UpdateRowOrder described in Section 4.2.1,
is given in Algorithm 3, where binary representations start from 0,
while row indices start from 1.

C EFFECTIVENESS OF NEUKRON ON
NON-REORDERABLE DATA

NeuKron can also be applied to non-reorderable matrices and ten-

sors if the mapping between the original and new orders of mode
indices are stored additionally. Even with this additional space re-
quirement, NeuKron still yielded the best trade-of between the
approximation error and the compressed size, as seen in Figure 9,
where we assume that the input matrices and tensors are not re-
orderable. Remark that KronFit also needs space for storing orders
when it is applied to non-reorderable matrices.

D PROOF OF THEOREMS
Proof of Theorem 3: In NeuKron, the number of the parameters
for LSTM is Θ(ℎ2). The embedding layer before the LSTM and the

linear layers after LSTM require Θ(ℎ) of parameters. The number
of parameters for K1 in Algorithm 1 is 4, which is the number
of entries. We consider Θ(ℎ) = Θ(1) as ℎ is a constant; thus, the
number of parameters is Θ(1).
Proof of Theorem 4: Storing the input matrix in a sparse for-
mat requires � (nnz(A)) space. Changing the orders of rows and
columns requires � (� +�) space for saving random hash functions,
shingles, and changes of losses. If we assume that the batch size
and the number of parameters of LSTM are constants, its memory
usage during inference and backpropagation is � (log �) since the
input length is � (log �). Thus, the overall space complexity during
training is � (nnz(A) + �).

81

	Abstract
	1 Introduction
	2 Related Works
	3 Notations and problem definition
	3.1 Notations and Concepts
	3.2 Problem Definition

	4 Proposed Method
	4.1 Model
	4.2 Training Strategies
	4.3 Theoretical Analysis

	5 Extension to Tensors
	5.1 Model
	5.2 Training Strategies

	6 Experiments
	6.1 Experiment Specifications
	6.2 Q1. Compression Performance
	6.3 Q2. Ablation Study

	7 Conclusion
	Acknowledgments
	References
	A Additional Experimental Results
	A.1 Q3. Scalability and Speed
	A.2 Q4. Approximation Analysis
	A.3 Q5. Effects of Data Properties

	B Pseudocode for ordering rows
	C Effectiveness of NeuKron on non-reorderable data
	D Proof of Theorems

