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ABSTRACT 
Many real-world data are naturally represented as a sparse reorder-
able matrix, whose rows and columns can be arbitrarily ordered 
(e.g., the adjacency matrix of a bipartite graph). Storing a sparse ma-

trix in conventional ways requires an amount of space linear in the 
number of non-zeros, and lossy compression of sparse matrices (e.g., 
Truncated SVD) typically requires an amount of space linear in the 
number of rows and columns. In this work, we propose NeuKron 
for compressing a sparse reorderable matrix into a constant-size 
space. NeuKron generalizes Kronecker products using a recurrent 
neural network with a constant number of parameters. NeuKron 
updates the parameters so that a given matrix is approximated by 
the product and reorders the rows and columns of the matrix to 
facilitate the approximation. The updates take time linear in the 
number of non-zeros in the input matrix, and the approximation 
of each entry can be retrieved in logarithmic time. We also extend 
NeuKron to compress sparse reorderable tensors (e.g. multi-layer 
graphs), which generalize matrices. Through experiments on ten 
real-world datasets, we show that NeuKron is (a) Compact: requir-

ing up to fve orders of magnitude less space than its best competitor 
with similar approximation errors, (b) Accurate: giving up to 10× 
smaller approximation error than its best competitors with similar 
size outputs, and (c) Scalable: successfully compressing a matrix 
with over 230 million non-zero entries. 

CCS CONCEPTS 
• Information systems → Data mining; Data compression. 
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1 INTRODUCTION 
We consider a matrix to be sparse if the number of non-zero entries 
is much smaller than that of all entries. Sparse matrices naturally 
represent many types of data from various domains, as follows: 
• E-commerce: User-item matrices represent how many times 

each user purchased each item [13, 28]. 
• Search Engines: Document-keyword matrices represent how 

many times each document contains each keyword [27]. User-

ad matrices indicate how many times each user clicked each ad 
given by search engines [31]. 

• Social Media: The adjacency matrices of social networks indicate 
friendship between users [8, 30]. User-group matrices indicate 
which user belongs to each group [41]. 

• Bibliography: Author-paper matrices represent who authored 
each paper [32]. The adjacency matrices of collaboration net-

works represent co-authorships between authors [41]. 
Despite their sparsity, many real-world matrices require consid-

erable space. Examples include user-ad matrices [37] and the adja-
cency matrices of web graphs [3] with billions of rows or columns; 
and keyword-document matrices [27] and the adjacency matrices 
of online social networks [8, 30] with tens of billions of non-zeros. 

Compression of such large sparse matrices becomes important 
as smartphones and IoT devices become popular. Such memory-

limited mobile devices are often required to process a large amount 
of data without sending them to clouds or servers, due to potential 
privacy risks [19]. Moreover, as the size of large-scale matrices 
grows rapidly, storing them is challenging also in desktops and 
servers [2, 8, 30], and for federate learning, compressing matrices 
is required to reduce communication costs [15]. As a result, a large 
number of lossy matrix-compression techniques [2, 9, 36] have been 
developed over the last few decades. 

To the best of our knowledge, existing lossy-compression meth-

ods for sparse matrices create outputs whose sizes are at least linear 
in the numbers of rows and columns of the input matrix. For exam-

ple, given an � -by-� matrix A and a positive integer � , truncated 
singular value decomposition (T-SVD) [11, 35] outputs two matrices 
of which the numbers of entries are � (�� ) and � (��). Recent 
methods [2, 9, 36] have the same limitations, while they provide a 
better trade-of between space and information loss than T-SVD. 

Can we compress a matrix into a constant-size space, which can 
even be smaller than the number of rows and columns? In this 
paper, we exploit the fact that many real-world sparse matrices 
are reorderable, i.e., the rows and columns of the matrices can 
be arbitrarily ordered.1 

All of the matrices discussed in the frst 
1 
A matrix is non-reorderable if the orders of rows and columns in it convey information. 

For example, images and multivariate time series are non-reorderable matrices since 
the orders of rows and columns in them indicate spatial and temporal adjacency. 
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paragraph, which are essentially bipartite graphs (nodes of one 
type correspond to rows, and nodes of the other type correspond to 
columns), are reorderable. For example, in the case of a user-item 
matrix built based on e-commerce data, which user (item) comes 
next to which user (item) does not matter. Our key idea is to order 
rows and columns to facilitate our model to learn and exploit 
meaningful patterns in the input matrix for compression. 

Specifcally, we present NeuKron, a constant-size lossy com-

pression method for sparse reorderable matrices. It consists of a 
machine-learning model and novel training schemes. The model 
generalizes the Kronecker power and enhances its expressive power 
using a recurrent neural network with a constant number of pa-
rameters. The training scheme, which is crucial for performance, is 
to reorder rows and columns in the input matrix to create patterns 
that the machine-learning model can exploit for better compres-

sion. Consider an � -by-� matrix with � non-zeros, where � ≤ � 
without loss of generality. The model and the training schemes are 
designed carefully so that each training epoch takes � (� +� log �)
time, and after training, the approximation of each entry can be re-
trieved in � (log �) time. Note that the time complexity of training 
depends only on the number of non-zeros instead of all entries. 

In addition, we extend NeuKron for lossy-compression of sparse 
reorderable tensors while maintaining its strengths. Tensors (i.e., 
multi-dimensional arrays) generalize matrices to higher dimensions, 
and in other words, matrices are 2-order tensors. Sparse tensors 
have been used widely for various purposes, including context-

aware recommender systems [17] and knowledge base completion 
[21]), and for lossy compression of them, tensor decomposition 
methods (e.g., CP [1, 5] and Tucker [1, 38]) have been developed. 

For evaluation, we perform extensive experiments using ten real-
world matrices (spec., bipartite graphs) and tensors. The results 
reveal the following advantages of NeuKron: 
• Compact: Its output is up to 5 orders of magnitude smaller 

than competitors’ with similar approximation error. 
• Accurate: It achieves up to 10.1× smaller approximation 
error than its best competitors that give similar-size outputs. 

• Scalable: Its running time is linear in the number of non-zero 
entries, and it successfully compresses matrices with over 230 
millions of non-zero entries on commodity GPUs. 

Reproducibility: The code and datasets are available at [20]. 
Remarks on non-reorderable matrices: While we focus on re-
orderable matrices in this paper, NeuKron can also be applied to 
non-reorderable matrices if the mapping between the original and 
new orders of rows and columns are stored additionally. We present 
a related experiment in Appendix C. 

2 RELATED WORKS 
In this section, we review lossy-compression methods for matrices 
and tensors. Those for lossy compression of sparse matrices or 
tensors of any size are compared in Table 1 and also in Section 6. 
Factorization-based matrix compression: Given a matrix A ∈ 
R� ×� 

, singular value decomposition (SVD) [12] decomposes A into 
, V ∈ R� ×� UΣV� 

where U ∈ R� ×� 
, � is a diagonal matrix with its 

singular values, and � is its rank. Truncated SVD (T-SVD) [11, 35] 
outputs the � (≤ �) largest singular values and the corresponding 
vectors of U and V from which the rank-� approximation of A best 
in terms of the Frobenius norm can be obtained [35]. Its outputs 

Table 1: Comparison of lossy-compression methods for 
sparse matrices and tensors. For simplicity, we treat the ten-
sor order and all hyperparameters as constants. Comparisons 
are relative, and we provide details in [20]. 

Space & Training Inference Number Training 
Methods Accuracy Complexity Complexity of Hyper- Time 

Trade-of (per iteration) (per entry) parameters (total) 

NeuKron 

T-SVD [11, 39] 

Strong 

Weak 

∝ #non-zeros ∝ log(�max)* 
∝ #non-zeros constant 

4** 

1 

Long 

Short 
CMD [36], CUR [9] Moderate ∝ #non-zeros constant 2 Moderate 

ACCAMS [2] Moderate ∝ #all-entries constant 2 Moderate 
bACCAMS [2] Moderate ∝ #all-entries constant 4 Long 
KronFit [25, 26] 

CP [5], Tucker [38] 

Weak 

Weak 

∝ #non-zeros ∝ log(�max)* 
∝ #non-zeros constant 

4 

1 

Long 

Moderate 

* Here �max = max(�1, · · · , �� ) is the maximum dimensionality (i.e., mode length). 
** The learning rate, the optimizer, the weight parameter for the criterion of switching, 
and the size of hidden dimensions in LSTM. 

have � (� (� + � )) real values, and typically most of them are 
non-zero. For further compression, CUR decomposition [9] aims to 
yield sparse outputs. Specifcally, a sparse matrix A is decomposed 
into CUR (i.e., A ≈ CUR), where C ∈ R� ×� 

and R ∈ R� ×� 
are 

constructed by sampling � columns and rows from A, respectively. 
The matrix U ∈ R� ×� 

is dense but small, and it is determined by 
C and R so that the approximation error is minimized. Compact 
matrix decomposition (CMD) [36] keeps only unique columns and 
rows in C and R for further efciency. 
Co-clustering-based matrix compression: ACCAMS and bAC-

CAMS [2] use an additive combination of small co-clusters to ap-
proximate a given matrix. While the numbers of parameters of them 
are linear in the numbers of rows and columns, they produce inter-

mediate results whose size is linear in the number of (potentially 
zero) known entries. Thus, they are computationally and memory 
inefcient when most entries are known but zero. 
Kronecker product-based matrix compression: The adjacency 
matrix of a Kronecker graph [24] is a Kronecker power of a fxed 
seed matrix (e.g., 2-by-2 matrix). KronFit [25, 26] searches for a seed 
matrix whose Kronecker power approximates the adjacency matrix 
of a given graph. While KronFit is designed for adjacency matrices, 
it can be easily extended to matrices of any size, and the output seed 
matrix can be considered as a constant-size lossy compression of 
a given matrix. However, the approximation error is considerable, 
even when the seed matrix is large, due to the infexibility of the 
Kronecker product, as shown in Section 6.2. 
Tensor compression: CP decomposition (CP) [5] and Tucker de-
composition (Tucker) [38] generalize the aforementioned T-SVD 
to higher-order tensors. They approximate a given tensor using 
the sums and products (e.g., outer product and �-mode product) 
of much smaller low-rank tensors and matrices, which can be 
considered as a lossy compression of the given tensor. Efcient 
CP and Tucker methods for sparse tensors have been developed 
[1]. For lossless compression of sparse tensors, compressed sparse 
fber (CSF) [33, 34] is available. 
Other related works: Unipartite-graph summarization algorithms 
[22, 23, 29] can be used for compressing adjacency matrices of uni-

partite graphs, while they cannot be directly applied to weighted 
and/or non-symmetric matrices, which we aim to compress. Ma-

trix sketching methods replace a given large matrix with a more 
compact matrix that follows the properties of the input matrix, for 
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example, by leaving only important columns (rows) of the input 
matrix [9, 10]. These methods, however, cannot be applied to our 
problem because the entries of the input matrix cannot be estimated 
directly from their outputs. 

3 NOTATIONS AND PROBLEM DEFINITION 
In this section, we introduce basic concepts and give a formal prob-
lem defnition. See Table 2 for common notations. 

3.1 Notations and Concepts 
Sparse reorderable matrix and tensor: A matrix A ∈ R� ×� 

is 
a 2-dimensional array with � rows and � columns, and real entries. 

· · ·×�� 
A �-order tensor X ∈ R�1 × 

is a �-dimensional array of size 
�1 × · · · × �� with real entries. We use �� � or �(�, �) to denote 
the (�, �)-th entry of A, and we use ��1,· · · ,�� to denote the (�1, · · · , 
�� )-th entry of X. We consider a matrix or a tensor to be sparse 
if the number of non-zero entries is much smaller than that of all 
entries.

2 
We call a matrix reorderable if its rows and columns can 

be arbitrarily ordered. We provide some examples of reorderable 
matrices where the orders of rows and columns do not convey 
any information and some examples of non-reorderable ones (see 
Footnote 1) in Section 1. Similarly, we call a tensor reorderable if 
the indices in each mode can be arbitrarily ordered. 
Approximation error: The Frobenius norm is a function ∥·∥� : 
R� ×� → R defned as the square root of the square sum of all en-

tries in the given matrix. Similarly, the Frobenius norm of a tensor 
is defned as the square root of the square sum of all entries in the 
given tensor. The approximation error of a matrix Ã 

� that approx-
imates A is defned as ∥A − Ã 

� ∥2 
� . Similarly, the approximation 

error of X̃
� that approximates X is defned as ∥X − X̃

� ∥2 
� . 

Kronecker product and power: Given two matrices A ∈ R� ×� 

and B ∈ R� ×� 
, the Kronecker product A ⊗ B ∈ R� � ×�� 

is a large 
matrix formed by multiplying B by each element of A, i.e., 

 B  B�11 · · · �1�  
:

. A . . ⊗ B =  . . . .   . . .  �� 1B · · · �� � B  
We denote the �-th Kronecker power of A as A⊗� 

, where A⊗� = 
A⊗(� −1) ⊗ A and A⊗1 = A. 

3.2 Problem Defnition 
The constant-size lossy matrix compression problem that we ad-
dress in this paper is defned in Problem 1. It should be noted that 
the given constant � can be even smaller than � and � . The prob-
lem of constant-size lossy compression of a sparse reorderable tensor 
can be defned by simply replacing the matrix A with a tensor X 
and ∥A − Ã 

� ∥2 
with ∥X − X̃

� ∥2 .
� � 

2
The ratio is at most 0.0046 in the datasets considered in the paper. 

Table 2: Frequently-used notations 

Symbol Defnition 

A ∈ R� ×� 
an � -by-� sparse matrix 

�� � or A(�, � ) (� , � )-th entry of A 
A�,:, A:,� �-th row of A, �-th column of A 

�X  R 1 ×···×�∈ � 
tensor 

� order of X 
��1,· · · ,�� (�1, · · · , �  )-th entry of X�  

nnz(A), nnz(X) number of non-zero entries in A and X 
∥A∥  , ∥X∥�  Frobenius norm of A and X�  

⊗ Kronecker product 
A⊗� , ⊗� X �-th Kronecker power of A and X 

� a NeuKron model which compresses A and X 
Ã , X̃
� � approximated matrix and tensor of A and X by � 
� a parameter for the scale of model outputs 
ℎ hidden dimension in LSTM 
[�] a set of integers from 1 to � (i.e., {1, 2, · · · , �}) 

Problem 1. (Constant-size Lossy Compression of a Sparse 
Reorderable Matrix) 

• Given: (1) a sparse and reorderable matrix A ∈ R� ×� 
, 

(2) a constant � = � (1), 
• Find: a model � 
• to Minimize: the approximation error ∥A − Ã 

� ∥2 
, where 

� 
Ã
� is the matrix approximated from �. 

• Subject to: the number of parameters in � is at most � . 

4 PROPOSED METHOD 
In this section, we present NeuKron, a constant-space lossy com-

pression method for sparse reorderable matrices and tensors. We 
frst describe its neural network model and then the training strate-
gies for it. After that, we analyze the computational complexity of 
NeuKron. For ease of explanation, we assume that the input is a 
matrix through the section, and then we describe the extensions 
for tensors in Section 5. 

4.1 Model 
4.1.1 Overview. When designing a neural network model � for 
NeuKron, we aim to achieve the following goals: 

• G1. Constant Size: The number of parameters of the model 
should be constant, regardless of the size of the input matrix. 

• G2. Exploitation of Sparsity: It should be possible to ft the 
model to the input by accessing only non-zero entries. 

• G3. Fast Approximation: From the trained model, it should 
be possible to approximate each entry of the input matrix in 
sublinear time (preferably, in constant or logarithmic time). 

For G1, given a matrix A to be compressed, we encode the posi-

tion (�, �) of each entry �� � as a sequence and use an auto-regressive 
sequence model, specifcally LSTM [14], which has a constant num-

ber of parameters, to process the sequence. For our purpose, LSTM 
performs similarly with GRU [7] and outperforms the decoder layer 
of Transformer [40], as shown empirically in [20]. For an entry 
�� � , the sequence encoding the position (�, �) is fed into LSTM, 
and the outputs of LSTM are combined for its approximation �̃� � in 
logarithmic time, achieving G3 (see Theorem 1 in Section 4.3). More-

over, regarding G2, the outputs of LSTM are combined so that the 
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≈ × ×
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Input Matrix (4x8)

Target Position

Reconstruct

(a) Encoding Examples (b) Model for Square Matrices (c) Model for Matrices of Any Size 

Figure 1: The overall approximation process of NeuKron. It encodes the input position into a sequence by recursively dividing 
the input matrix. The sequence is fed into LSTM, and the outputs of LSTM are aggregated based on the Kronecker product. 

sparsity can be exploited for efcient computation of the objective 
and its gradient (see Section 4.2.2). The details of encoding inputs 
and combining outputs are described in the following subsections. 
Regarding G3, it should be noticed that many factorization-based 
methods approximate each entry even in constant time (see Table 1). 

4.1.2 Encoding inputs (lines 1-3 of Algorithm 1). For simplicity, 
= 2� we assume an input matrix A ∈ R� ×� 

where � = � (see 
Section 4.1.4 for generalization to matrices of any size). Algorithm 
1 depicts how NeuKron approximates such A. 

For each entry �� � of A, NeuKron encodes its position (�, �) in 
a sequence of length � = log

2
� by recursively subdividing A in 

a top-down manner. NeuKron frst chooses the partition where 
�� � lies when A is divided into 2 × 2 partitions of the same size 
(i.e., 2� −1 × 2� −1

). Each division gives four partitions at top left 
(TL), top right (TR), bottom left (BL), and bottom right (BR). Then, 
NeuKron repeats the process on the chosen partition until only 
the target entry �� � is left. The sequence of the positions of the 
chosen partition is used to encode �� � . In our implementation, each 
entry of the sequence, which is a position, is converted into a tuple 
in {1, 2} × {1, 2}. Specifcally, the �-th entry of the sequence that 
encodes the position (�, �) is (� (�, �), � ( �, �)) where � 

� (�, �) := (
� 
(� − 1) 

mod 2) + 1. (1)

2
� −� 

Example 1 (Encoding in Sqare Matrices). Suppose we encode 
the position (3, 4) of the square matrix in Figure 1(a), where � = 3. The 
position (3, 4) is located in the top-left partition of the input matrix, 
and it is located in the bottom-right part of the chosen partition. Lastly, 
the position (3, 4) is located at the top-right one of the lastly chosen 
partition. Thus, the position (3, 4) is encoded in the sequence TL→BR 
→TR, which becomes (1, 1)→ (2, 2)→ (1, 2) based on � (Eq. (1)). 

Each tuple in the sequence, except for the last one, goes through 
an embedding layer (line 2) to be converted into a corresponding 
embedded vector of size ℎ, where ℎ is a hyperparameter. Then, the 
vector is fed into LSTM (line 3). 

4.1.3 Handling outputs (lines 4-6 of Algorithm 1). Below, we present 
how NeuKron produces an approximation. See Figure 1(b) for a 
pictorial description. We again assume an input matrix A ∈ R� ×� 

where � = � = 2� for ease of explanation. Given the position (�, �)
of a target entry �� � , NeuKron creates K1 ∈ R2×2

, · · · , K� ∈ R2×2
. 

Specifcally, given the sequence of tuples that encode (�, �) (see 
Section 4.1.2 for encoding), for each � ∈ [� − 1], the �-th LSTM cell 
receives the embedding of the �-th tuple, and then the hidden state 

of the cell goes through the linear layer and the Softplus activation 
to produce K�+1 (line 5). The entries of K1 are separate learnable 
parameters. The approximation �̃� � is computed from the (�, �)-th 
entry of their Kronecker product K1 ⊗ · · · ⊗ K� as follows (line 6): 

√ Ö� 
�̃� � := � · K� (� (�, �), � ( �, �))/∥K� ∥� , (2)

�=1 

where 
Î� 

=1 K� (� (�, �), � ( �, �)) is the (�, �)-th entry of the Kronecker 
�

product, and � is a learnable parameter. It should be noticed that 
the entire Kronecker product does not have to be computed. By 
combining the outputs of LSTM using Eq.(2), G2 in Section 4.1.1 
can be achieved. Specifcally, using Eq.(2) enables the exploitation 
of the sparsity of the input matrix A for linear-time training, as 
described in detail in Section 4.2.2 (see Lemma 1). 

4.1.4 Handling matrices of any size. Below, we describe how the 
above processes of NeuKron are generalize to compress a matrix of 
any size. For a given matrix � ∈ R� ×� 

, we consider integers �row 

and �
col such that 2�row ≥ � and 2�col ≥ � . Then, � ∈ R� ×� 

is ex-
tended to the 2�row 

-by-2
�col 

matrix with additional rows and columns 
flled with zeros. Specifcally, NeuKron sets �row to ⌈log

2 � ⌉ and 
set �

col to ⌈log
2 �⌉ so that the number of new entries is minimized. 

Without loss of generality, we assume � ≤ � and thus �row ≤ �col. 
If �row =�col, the extended square matrix is considered as the input 
and processed as described in Sections 4.1.2 and 4.1.3. Otherwise 
(i.e., if �row < �col), to encode the position (�, �) of a target entry �� � , 
NeuKron frst recursively divides A into 2 × 2 partitions, �row times, 
to obtain a partition has a size of 1×2

�col −�row 
, and then it recursively 

divides the partition into two partitions of the same size (i.e., 1 × 2), 
�
col − �row times. Each division gives two partitions at left (L) and 
right (R). Specifcally, the �-th entry of the sequence that encodes 
the position (�, �) is (�row (�, �), �col ( �, �)), where ∀� ∈ {row, col},

(j k )⎧ (� − 1)/2�� −� 
mod 2 + 1, if � ≤ �� ,

�� (�, �) = (3)

0, otherwise. ⎨
⎩ 

Example 2 (Encoding in Rectangular Matrices). Suppose 
we encode the position (2, 3) of the non-square matrix in Figure 1(a), 
where (�row, �col) = (2, 3). The position (2, 3) is located in the top-left 
partition and in the bottom-right partition, respectively, in the frst 
two divisions. In the last division, the position (2, 3) is located in the 
left one. Thus, the position (2, 3) is encoded in the sequence TL → BR 
→ L, which becomes (1, 1) → (2, 2) → (0, 1) based on �� (Eq. (3)). 

As in Section 4.1.3, NeuKron produces an approximation of �� � 
using the (�, �)-th entry of the modifed Kronecker product in Eq. (2) 
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Algorithm 1: Approximation process of NeuKron for an 
� -by-� (= 2� ) matrix A 

= 2� Input: (a) a position: (�, � ) ∈ [� ] × [� ] where � 
(b) parameters of Embedding, LSTM, and the linear layer (W, b) 
(c) scale parameter � and the frst matrix of Kronecker products K1 

Output: an approximation �̃� � of �� � , which is the (�, � )-th entry of 
the input matrix A ∈ R� ×� 

1 for � ← 1 to � do ( )
2 x� ← Embedding � (�, � ), � ( �, � ) ⊲ Sect. 4.1.2 
3 y2, · · · , y� ← LSTM(x1, x2, · · · , x� −1 )
4 for � ← 2 to � do 
5 K� ← Softplus(Wy� + b) ⊲ Sect. 4.1.3 ( )
6 return �̃� � ←

√ 
� · Î 

�
� 
=1 K� � (�, � ), � ( �, � ) /∥K� ∥� 

K1 ⊗ · · · ⊗ K�col . The only diference is that K�row+1, · · · , K�col are 
matrices of size 1×2, and for them, a separate embedding and linear 
layers are used, as described in Figure 1(c). 

4.1.5 Comparison with Kronecker Graphs. Our model � general-

izes the Kronecker graph model [25, 26] in two ways: 

• While the Kronecker graph model uses the power of a single seed 
matrix, � uses the Kronecker product of potentially diferent 
matrices (i.e., K1, · · · , K� ) for approximation. 

• In �, the matrices K1, · · · , K� may vary depending on the position 
of the target entry to be approximated. Specifcally, �̃� � is com-

⊗ K(�2 (� ),�2 ( � ) ) 
puted using the (�, �)-th entry of K(�1 (� ),�1 ( � ) ) ⊗

1 2 

· · · ⊗ K(�� (� ),�� ( � ) ) ⌊(� − 1)/2� −� ⌋., where �� (�) = 
� 

This generalization leads to a signifcantly better trade-of between 
parameter size and approximation error in practice, as shown in 
Section 6.2. Notably, there are also two diferences: 

• While the Kronecker graph model is trained under a log-likelihood 
objective, Θ uses the squared Frobenius norm and normalizes 
the matrices to apply the tricks in Eq. (5) and Eq. (6). 

• As specifed in Eq. (2), each matrix (i.e., K1, · · · , K� ) is normalized 
and mapped onto the unit hypersphere. 

4.2 Training Strategies 
In this subsection, we propose novel training schemes for NeuKron’s 
model �. We frst present how to ft � to a given sparse reorder-
able matrix while exploiting its sparsity. Then, we present how to 
reorder the rows and columns of the input matrix so that � can be 
better ft to it. These two steps are alternated until convergence, as 
described in Algorithm 2. Below, we assume a matrix A ∈ R� ×� 

where (�, �) = (2�row , 2�col ). As described in Section 4.1.4, a matrix 
of any size can be extended by zero-padding to satisfy this condition. 
We also assume � ≤ � , without loss of generality. 

4.2.1 Update of row/column orders. It is crucial to properly order 
the rows and columns of a given reorderable matrix for NeuKron’s 
model � better ft the matrix. This is because proper ordering 
reveals patterns (e.g., self-similarity and co-clusters), which � can 
exploit for accurate compression. 
Overall process: For initialization, any co-clustering algorithms 
can be used. In our implementation, the matrix reordering scheme 
in [16] is used (see Section 6.3 for the efect of initialization). After 
initialization, NeuKron repeats (a) sampling two rows (or columns), 
(b) measuring the change in the approximation error (i.e., ∥A − 

Algorithm 2: Overall training process of NeuKron 

Input: (a) a sparse reorderable matrix A 
(b) a number �� of permutation updates 

Output: a NeuKron model � 
1 Initialize � 
2 while not converged do 
3 for � ← 1 to �� do 
4 A ← UpdateRowOrder(A) ⊲ Sect. 4.2.1 
5 A ← UpdateColOrder(A) ⊲ Sect. 4.2.1 
6 � ← UpdateModel(A, �) ⊲ Sect. 4.2.2 
7 return � 

Ã 
� ∥2 

), and (c) determining whether to swap the sampled rows (or 
�

columns) or not probabilistically using the following criterion: 

� < exp(−� · Δ), (4) 

where � ∼� (0, 1), Δ is the change in the approximation error, and 
� > 0 is a hyperparameter that controls the probability of accepting 
swaps that increase the approximation error. 
Similarity-aware sampling: Below, we describe how NeuKron 
samples candidate pairs of rows (or columns) to be potentially 
swapped. Compared to a naive uniform sampling, the proposed 
sampling method has two advantages: (a) efective: it samples 
pairs based on the similarity of rows (or columns) so that swapping 
the pairs is likely to reduce the approximation error, and (b) easy-
to-parallelize: it samples disjoint pairs, which can be processed in 
parallel. The main idea is to select candidate pairs so that swapping 
pairs is likely to make similar rows (or columns) close to each other 
and thus to make them encoded in similar sequences in Section 4.1.2. 
Below, we describe the sampling method step by step for sampling 
row pairs. Column pairs are sampled similarly. 

• Estimating similarity: In order to quickly estimate the similar-

ity, min-hashing [4] is used. Specifcally, for a uniform random 
bijective function ℎ

col : [�] → [�] for the columns, the shingle 
min�� � ≠0 (ℎcol ( �)) of each �-th row is computed. It can be shown 
that two rows have the same shingle with probability propor-

tional to the Jaccard similarity of the column indices of their 
non-zeros [4]. 

• Locating similar rows/cols nearby: We match rows with the 
same shingle disjointly, and for each matched rows, we sample 
pairs of rows to be swapped so that they are located in nearby 
positions, which we defne as positions whose binary representa-

tions difer in only 1 bit. Let � (�, �) be the position whose binary 
representation difers with that of � only in the �-th bit. Specif-

ically, if two rows in the �1-th and �2-th positions are matched, 
we sample (�1,� (�2, �)) and (�2,� (�1, �)) so that �1 and �2 become 
nearby after swaps. The position � ∈ [�

col
] is sampled probabilis-

tically (see Appendix B for details). 
• Pairing unmatched rows: The rows remaining unmatched are 

randomly matched, and for each matched rows, we sample pairs 
as described above. 

We describe the entire process of reordering for rows in Algorithm 3. 

4.2.2 Update of model parameters. The objective function of op-
timization is ∥A − Ã 

� ∥2 
, as in Problem 1. Naively computing it 

� 
takes Ω(�� log �) time since all � � entries are approximated 
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and approximating each entry takes Θ(log �) time (see Theorem 1 
in Section 4.3). 

For its efcient computation, we reformulate the error as 
� � ∑∑ ∑ 

∥A − Ã 
� ∥2 = (�� � − �̃� � )2 = (�� � − �̃� � )2 

(5)� 
�=1 � =1 �� � ≠0 

� � ∑ ∑ ∑∑ 
+ �̃� � 

2 = ((�� � − �̃� � )2 − �̃� � 
2 ) + �̃� � 

2 . 
�� � =0 �� � ≠0 �=1 �=1 

In our model �, the last term, (i.e., the sum of squares) can be 
immediately computed from a learnable parameter � ∈ R+ 

(which 
is used in Eq. (2)), as formalized in Lemma 1. 

Lemma 1. For approximation by Eq. (2), Eq. (6) always holds. 

2
�row 

2
�
col∑ ∑ 
�̃2 = ����� (6)� � 

�=1 � =1 

Proof. To prove this lemma, we use an induction. For (�row, �col) = 
(1, 1) and (�row, �col) = (0, 1), the statement holds trivially. Sup-

pose the statement holds when (�row, �col) = (0, �2). For (�row, �col) = 
(0, �2 + 1), the statement also holds since 

2
�row 

2∑�2+1 2
�row 

2
�
2∑ �K1 (1, 1)2 ∑ ∑ �̃

� � 
2 

�̃2 = � � ∥K1 ∥2 �K1 (1, 1)2/∥K1 ∥2 
�=1 �=1 � �=1 � =1 � 

2
�row 

2∑�2+1∑ �K1 (1, 2)2 �̃
� � 
2 

+ 
∥K1 ∥2 �K1 (1, 2)2/∥K1 ∥2 

� �=1 � =2
�
2 +1 � 

�K1 (1, 2)2 
= ��2 (�K1 (1, 1)2 

) = ��2 = ��2+1+ · � 
∥K1 ∥2 ∥K1 ∥2 

� � 

Similarly, if the statement holds for (�row, �col) = (�1, �2) and 
�1 ≤ �2, the statement also holds for (�row, �col) = (�1 + 1, �2 + 1). By 
induction, the statement holds for all 0 ≤ �row ≤ �

col
. □ 

This property follows from our careful design of Eq. (2), which 
is based on the Kronecker product. While � can be set so that 
the square sum of entries of Ã 

� is equal to that of A, making it 
learnable leads to better compression since this gives more degrees 
of freedom to the model (see Section 6.3). As a result, the error 
becomes 

Í 
�� � ≠0 ((�� � − �̃� � )2 − �̃

� � 
2 ) + ����� , and thus the error and 

its gradient can be computed in time proportional to the number 
of non-zeros, without having to approximate zero entries in A 
explicitly (see Theorem 2 in Section 4.3). It should be noticed that we 
do use the loss function that encourages the model to ft all entries 
including zeros, and we speed up its computation without changing 
it. Gradient descent is used for updating the model parameters. 
Implementation in practice: Since candidate pairs are disjoint, 
processing them, including computing Eq. (4), is performed in par-
allel in our implementation. Shingles are also computed in parallel. 

4.3 Theoretical Analysis 
We analyze the time and space complexity of NeuKron. We as-
sume that (a) � ≤ � for the input matrix A ∈ R� ×� 

and (b) the 
dimension ℎ of LSTM is a constant (i.e., � (1)), which is a user-

defned hyperparameter. NeuKron requires logarithmic time for 
approximation (Theorem 1), as confrmed empirically in Section 2 

of [20]. For training, it requires time proportional to the number of 
non-zero entries of A, denoted by nnz(A) (Theorem 2). 

Theorem 1 (Approximation Time for Each Entry). The ap-
proximation of each entry by NeuKron takes Θ(log �) time. 

Proof. First, we need to encode the position of the given entry. 
Since we need the subdivision Θ(log �) times, the time complexity 
of the encoding step is Θ(log �). The computational cost to ap-
proximate an entry only depends on the length of the input of the 
LSTM, so the time complexity for inference is Θ(log �). □ 

Theorem 2 (Training Time). Each training epoch in NeuKron 
takes � (nnz(A) · log �) time. 

Proof. The time complexity for inference is � (log �) for each 
input. Thus, computing the approximation error takes � (nnz(A) · 
log �) with Eq. (5) (see Lemma 1). The time complexity for comput-

ing the gradients is also � (nnz(A) · log �), since the gradient of 
each component in the model, such as matrix multiplication and tak-
ing a non-linearity, does not require a greater time complexity. For 
optimizing the orders of rows and columns, computing the shingle 
values for rows and columns takes � (nnz(A)) time since we need 
to look up all non-zero entries. Matching the rows and the columns 
as pairs requires � (� + �) time. Only the entries of the output 
that correspond to non-zero entries are changed due to swaps and 
inference of a single element takes � (log �) time. Thus, checking 
the criterion in Eq. (4) takes � (nnz(A) · log �) time. Therefore, the 
overall training time per epoch is � (nnz(A) · log �). □ 

While NeuKron requires space proportional to the number of 
non-zero entries in the input matrix during training (Theorem 4), 
it gives a constant-size compression. (Theorem 3). Refer to Appen-

dix D for the proofs of Theorems 3 and 4. 

Theorem 3 (Space Complexity of Outputs). The number of 
model parameters of NeuKron is Θ(1). 

Theorem 4 (Space Complexity during Training). NeuKron 
requires � (nnz(A) + �) space during training. 

5 EXTENSION TO TENSORS 
We extend NeuKron to sparse reorderable tensors. Theoretical 
analyses are available at Section 3 of [20]. 

5.1 Model 
· · ·

For a given �-order tensor X ∈ R�1 × ×�� 
(we assume �1 ≤ · · · ≤�   

�� without loss of generality), we frst compute �� = log
2 �� for 

each � ∈ [�] and extend X to the tensor of size 2�1 × · · · × 2�� 
with 

additional entries flled with zeros. As in Section 4.1.4, for encoding, 
NeuKron frst recursively divides the extended tensor into 2� 

partitions �1 times to obtain a partition has a size of 1 × 2�2 −�1 ×· · ·× 
2
�� −�1

. Then, it recursively divides the partition as it handles a (� − 
1)-order tensor. As a result, the �-th entry of the encoded sequence 
for the position (�1, · · · �� ) is (�1 (�1, �), · · · �� (�� , �)), where �� is 
identical to Eq. (3). We provide an example of NeuKron on a 3-
order tensor in Figure 2. After encoding, NeuKron produces an 
approximation using the Kronecker product K1 ⊗ · · · ⊗ K�� from 
� linear layers for handling tensors of � diferent sizes. 
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Linear
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Figure 2: Example of NeuKron on an 3-order tensor X. 

5.2 Training Strategies 
The main diference in training strategies lies in computing shingles. 
For a �-order tensor, � random bijective functions are used, thus 
each mode index has � − 1 shingles from those functions except for 
the function of the same mode. In our extension, we match positions 
�1 and �2 as a pair only if the � − 1 shingles of �1 and those of index 
� are all the same, and the orders of indices are randomly initialized. 
All other procedures are identical to the original NeuKron. 

6 EXPERIMENTS 
We conducted experiments to answer the following questions: 

Q1. Compression Performance: Does NeuKron perform more 
compact and accurate compression than its best competitors? 

Q2. Ablation Study: How efective are NeuKron’s training 
strategies for compression performance? 

Q3. Scalability and Speed: Does NeuKron scale linearly with 
the number of non-zero entries of input data? 

Q4. Approximation Analysis: How does the approximation 
error of NeuKron vary depending on entry values? 

Q5. Efects of Data Properties: How do the skewness, order, 
and dimension of the input afect the approximation error? 

The answers for Q3, Q4, and Q5 are provided in Appendix A. 

6.1 Experiment Specifcations 
Machine: We ran experiments for NeuKron on a machine with 
4 RTX 2080Ti GPUs and 128GB RAM. For competitors, which do 
not require GPUs, we ran experiments on a desktop with a 3.8GHz 
AMD Ryzen 3900X CPU and 128GB RAM. Note that outputs and 
compression ratios do not depend on machine specifcations. 
Datasets: We used six real-world matrices and four real-world 
tensors listed in Table 3. All the datasets are weighted (i.e., non-

binary matrices and tensors) except for the email and threads 
datasets. Detailed semantics and structural properties of the datasets 
are provided in Table 3 and Table 7 of [20], respectively. 
Competitors: For matrices, we compared NeuKron with Kron-

Fit [25], T-SVD (truncated SVD), CMD [36], ACCAMS [2], CUR [9], 
and bCCAMS [2]. In order to compress matrices of any size, we 
extended KronFit so that it (a) fts a non-square seed matrix, (b) 
permutes rows and columns separately, and (c) aims to minimize 
the approximation error in Problem 1. We did not consider methods 
designed for unipartite and/or unweighted graphs (e.g., [22, 23, 29]) 
as competitors since they are not applicable to most of the datasets. 
For tensors, we compared NeuKron with CP [1] and Tucker [18] 
decompositions and CSF [33], which is lossless. The competitors 
are described in Section 2, and see [20] for implementation details. 
Experimental Setup: We trained NeuKron and its competitors 
under the following stopping condition with the patience of 100 

Table 3: Real-world datasets used in the paper. All datasets 
are publicly available, and links to them are available in [20]. 

Type Name Size # of non-zeros 

Matrix 

email 
nyc 
tky 

kasandr 
threads 
twitch 

1, 005 × 25, 919 
1, 083 × 38, 333 
2, 293 × 61, 858 

414, 520 × 503, 702 
176, 445 × 595, 778 

790, 100 × 15, 524, 309 

92, 159 
91, 024 

211, 955 
903, 366 

1, 457, 727 
234, 422, 289 

Tensor 

nips 
4-gram 
3-gram 
enron 

2, 482 × 2, 862 × 14, 036 
48� × 54� × 55� × 58� 

88� × 100� × 110� 
5, 699 × 6, 066 × 244� 

3, 101, 609 
7, 495, 550 
9, 778, 281 

31, 312, 375 

epochs: Emin −Ecurr < 10−5
, where Emin is the lowest approximation Emin

error so far, and Ecurr is the current approximation error. For all 
experiments, we set �� in Algorithm 2 to 2, and set � in Eq. (4) 
to 10, after a preliminary study (see Section 6 of [20]). NeuKron 
was trained by Adam optimizer whose learning rate was set to 
10
−3 

for the email and threads datasets, and 10−2 
for the others. 

Unless otherwise stated, we set the hidden dimension ℎ to 30 in the 
email, nyc, and tky datasets and to 60 in the kasandr, nips, and 
threads datasets. For the other datasets, we set ℎ to 90. We ran all 
experiments 5 times with diferent random seeds and reported the 
average error. The setups for the competitors are depicted in [20]. 

6.2 Q1. Compression Performance 
We compared the (a) size in bytes3 

and (b) approximation error of 
the compressed output obtained by the considered algorithms. We 
varied the hidden dimension ℎ of NeuKron from 5 to 30 for the 
email, nyc, and tky datasets and from 10 to 60 for the kasandr, 
nips and threads datasets. For the others, we varied ℎ from 15 to 
90. Similarly, we varied the hyperparameters of each competitor as 
to reveal its trade-of between the size and error (refer to [20]). 

For all datasets, NeuKron achieved the best trade-of be-
tween the approximation error and the compressed size. As 
seen in Figure 3, the size was up to fve orders of magnitude 
smaller in NeuKron than in the competitors when their errors 
were similar. The error was also up to 10.1× smaller in NeuKron 
than in the competitors when the outputs were of similar size. Note 
that the errors of KronFit do not always decrease as the number of 
parameters increases, as previously reported in [25]. 
Performance on non-reorderable data: NeuKron can also be 
applied to non-reorderable data if the mapping between the original 
and new orders of rows and columns are stored additionally. Even 
when we assume that the datasets are non-reorderable and consider 
the extra cost, NeuKron gives by far the best trade-of between 
size and approximation error, as shown in Figure 9. 

6.3 Q2. Ablation Study 
On the four smallest matrices and the two smallest tensors, we 
demonstrate the efectiveness of the components of NeuKron il-
lustrated in Section 4 by comparing it with the following variants: 

(a) NeuKron: the proposed method with all components. 
(b) NeuKron-H (N-H): a variant that uniformly samples pairs 

of rows and columns without using min-hashing. 
(c) NeuKron-I (N-I): a variant that randomly initializes the 

orders of rows and columns without using the scheme in 
[16]. 

3
In our implementation, each foating-point number took 4 bytes. 
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Figure 3: NeuKron provides concise and accurate compressions. The outputs of NeuKron are up to fve orders of magnitude 
smaller than those of the competitors when the approximation errors in them are similar. When the sizes of the outputs are 
similar, the approximation error was up to 10.1× smaller in the outputs of NeuKron than those in the competitors. ACCAMS, 
bACCAMS, CUR, and CMD ran out of memory in some datasets, and their results do not appear in the corresponding plots. 
Note that the errors of KronFit do not always decrease as the number of parameters increases, as previously reported in [25]. 
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Figure 4: Efectiveness of the components of NeuKron. We 
report the approximation errors of variants relative to that 
of NeuKron. Results of NeuKron-I on tensors are omitted 
since, for tensors, NeuKron also randomly initializes orders. 
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Figure 5: Training time of NeuKron and the competitors. 
Note that NeuKron requires much longer training time than 
many competitors, while it provides the best trade-of be-
tween space and accuracy (Figure 3). See Appendix A.1 for 
detailed hyperparameter settings for each method. 

(d) NeuKron-F (N-F): a variant that fixes � to the sum of the 
squares of all entries in the input. 

(e) NeuKron-A (N-A): a variant without any auto-regressive 
architecture. It only uses two learnable matrices Ksquare ∈ 

R2×2 
and Krect ∈ R1×2

, as in KronFit, to compute K⊗�row 
square ⊗ 

K⊗(�col −�row )
rect for approximation. Similarly, it uses � learnable 

tensors to approximate � -order tensors. 

As seen in Figure 4, NeuKron outperformed NeuKron-A and 
NeuKron-H, which indicates that the auto-regressive architecture 
(i.e., LSTM) and the min-hashing technique are crucial to enhance 
the performance of NeuKron. Moreover, making � learnable was 
efective especially on the email, nips, and 4-gram datasets. For 

the order initialization, NeuKron-I showed comparable or slightly 
poor performance than NeuKron, implying that how the rows and 
columns are initialized can afect the compression quality. 
Extra Results: For details results regarding Q3-Q5, refer to Ap-

pendix A. A training time comparison is available in Figure 5. 

7 CONCLUSION 
We focus on compressing sparse reorderable matrices and tensors 
into a constant-size space. Our contributions are three-fold: 

• Compact yet Accurate Method: We proposed NeuKron, which 
lossily compresses matrices and fxed-order tensors of any size 
with a constant number of parameters. NeuKron provided an 
output that is up to fve orders of magnitude smaller than the 
outputs of the best competitors when the approximation errors 
in them are similar (Figure 3). 

• Theoretical Analysis: We carefully designed NeuKron so that, 
for sparse reorderable matrices and fxed-order tensors of any 
size (a) the number of parameters is constant, (b) each entry is 
approximated in a logarithmic time, and (c) the model is ftted to 
an input in time proportional to the number of non-zero entries 
in it. We proved these desirable properties (Theorems 1-3). 

• Extensive Experiments: Through extensive experiments on 
10 real-world datasets, we demonstrated the efectiveness and 
scalability of NeuKron (Figures 3 and 6). Especially, we showed 
that NeuKron successfully compressed a matrix with up to 230 
millions of non-zero entries. 

Reproducibility: The code and datasets used are available at [20]. 
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Figure 6: The training process of NeuKron is scalable. Both 
model and order optimizations scale near-linearly with the 
number of non-zeros in the input. 

A ADDITIONAL EXPERIMENTAL RESULTS 

A.1 Q3. Scalability and Speed 
In order to evaluate the scalability of NeuKron, we generated multi-

ple matrices of various sizes from the threads and twitch datasets 
by tracking their evolutions over time. In them, we measured the 
training time per epoch for model and order optimizations in addi-
tion to the total training time per epoch. The hidden dimension ℎ 
was fxed to 60. As shown in Figure 6, the individual and overall 
training processes of NeuKron scaled linearly with the number 
of non-zeros, which is consistent with the theoretical results in 
Section 4.3. We further confrmed the linear scalability of NeuKron 
on tensor datasets and in hidden dimensions in Section 8 of [20]. 

We compared the training time of NeuKron and the competitors 
in Figure 5. We followed the hyperparameter settings in Section 6.2. 
For NeuKron, we reported the result with the smallest hidden di-
mensions that we considered. For all competitors except for KronFit, 
we reported their results when their approximation errors are clos-
est to that of NeuKron. For KronFit, we reported its result when 
its output size is closest to that of NeuKron. Since our optimiza-

tion problem is a mixed discrete-continuous optimization problem, 
which is notoriously difcult, the convergence of NeuKron takes 
much longer than that of factorization-based methods. While the 
convergence took long, the approximation error dropped rapidly 
in early iterations in most cases. The detailed training curves are 
given in Figure 2 of [20]. 

A.2 Q4. Approximation Analysis 
We analyzed how the approximation error by NeuKron varies 
depending on the ground-truth value of approximated entries. In 
each dataset, we grouped the approximated entries by log-binning 
of their ground-truth values, and for each group, we computed the 
root mean squared error (RMSE) of the approximation errors. As 
seen in Figure 7, RMSE tended to increase with respect to ground-

truth entry values. We also checked at most 1, 000 largest singular 
values of matrices obtained by NeuKron and the two strongest 

competitors. For each method, we used the hyperparameter settings 
that led to the least approximation error in Figures 3 and 9. As seen 
in Figure 8, the singular values obtained by NeuKron were closest 
to the singular values of the input matrices. 
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Figure 7: Analysis of approximation errors of NeuKron. 
The errors tend to increase with respect to the ground truth 
values of approximated entries. The �-axis is in the log scale. 
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Figure 8: NeuKron preserves singular values well. The sin-
gular values of the matrix obtained by NeuKron are closest 
to the ground-truth ones. We used the smallest datasets for 
this experiment since computing singular values requires 
approximating all entries, including zeros. 

A.3 Q5. Efects of Data Properties 
We investigated the efects of properties of an input tensor X on 
the performance of NeuKron. For this experiment, we syntheti-

cally generated tensors using the multi-dimensional extension R-

MAT [6]. Specifcally, we frst split each mode of a tensor into two 
partitions and then chose either the frst partition with probability 
� or the second one with probability 1 − � . This process is repeated 
until the target position is determined. As a default setting, we set 
(a) � to 0.8, (b) the order � to 3, (c) the sum of all tensor entries 
to 106

, and (d) the number of entries to 230
. We measured ftness, 

which is defned as 1 − ∥X − X̃
� ∥� /∥X∥� (the higher, the better). 

The ftness is widely used to compare the errors of approximations 
to diferent tensors. 

We varied the skewness � from 0.65 to 0.85. Note that increasing 
� makes the distribution of non-zero entries more skewed with 
distinct patterns, and decreasing � makes the distribtuion more 
uniform without patterns. As seen in Figure 10(a), the ftness in-

creased as � increased, implying that NeuKron provides better 
performance on skewed tensors with distinct patterns. Next, we 
changed the order � from 2 to 6, but no signifcant efect of � was 
observed, as shown in Figure 10(b). Lastly, we analyzed the efect of 
dimension (i.e., the number of indices in each mode) by changing 
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Figure 9: NeuKron signifcantly outperforms the competitors even if we assume that matrices and tensors are non-reorderable 
and separately store the permutations of indices for all modes. Note that the outputs of NeuKron require up to two orders of 
magnitude smaller space than those of the competitors with similar approximation error. 

Algorithm 3: UpdateRowOrder 

Input: (a) a reorderable matrix A, (b) a hyperparameter � in Eq. (4) 
Output: updated matrix A 

1 Sample � ∈ N ∪ {0} so that P(� = � ) = 1/2�+1 

2 � ← min(�, �row − 1) ; � ← ∅; � ← ∅ 
3 Generate a random hash bijective functions ℎ

col 

4 foreach � ∈ {� ∈ [�] : (� − 1) AND 2� = 0} do 
5 � ∼ � (0, 1)
6 if � < 1/2 then � ← � ∪ {� }
7 else � ← � ∪ {� + 2� }
8 foreach � ∈ � do 
9 �row (� ) ← min�� � ≠0 (ℎcol ( � ) ) 

10 while ∃(�1, �2 ) s.t. �row (�1 ) = �row (�2 ) do 
11 � ← � ∪ { (�1, (�2 − 1) XOR 2� + 1), (�2, (�1 − 1) XOR 2� + 1) } 
12 � ← � \ {�1, �2 }
13 � ← � ∪ { (� − 1) XOR 2� + 1 : � ∈ �}
14 while � ≠ ∅ do 
15 Randomly sample (�1, �2 ) from � 
16 � ← � ∪ { (�1, �2 ) }; � ← � \ {�1, �2 }
17 �accept ← ∅ 
18 foreach (�1, �2 ) ∈ � do 
19 � ∼ � (0, 1)
20 Δ ← change in the approximation error 
21 if � ≥ ��� (−� · Δ) then �accept ← �accept ∪ { (�1, �2 ) } 
22 foreach (�1, �2 ) ∈ �accept do 
23 A�1,: , A�2,: ← A�2,: , A�1,: 
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Figure 10: Efects of data properties on NeuKron. (a) The ft-
ness increases as the skewness � increases. (b) The order of 
tensors does not signifcantly afect the ftness. (c) As tensors 
become bigger, the ftness decreases. 

the dimension of tensors while fxing the number of non-zeros. As 
seen in Figure 10(c), the ftness of NeuKron decreased as tensors 
became bigger and thus more entries were approximated by a fxed 
number of parameters. 

B PSEUDOCODE FOR ORDERING ROWS 
The pseudocode of UpdateRowOrder described in Section 4.2.1, 
is given in Algorithm 3, where binary representations start from 0, 
while row indices start from 1. 

C EFFECTIVENESS OF NEUKRON ON 
NON-REORDERABLE DATA 

NeuKron can also be applied to non-reorderable matrices and ten-

sors if the mapping between the original and new orders of mode 
indices are stored additionally. Even with this additional space re-
quirement, NeuKron still yielded the best trade-of between the 
approximation error and the compressed size, as seen in Figure 9, 
where we assume that the input matrices and tensors are not re-
orderable. Remark that KronFit also needs space for storing orders 
when it is applied to non-reorderable matrices. 

D PROOF OF THEOREMS 
Proof of Theorem 3: In NeuKron, the number of the parameters 
for LSTM is Θ(ℎ2). The embedding layer before the LSTM and the

linear layers after LSTM require Θ(ℎ) of parameters. The number 
of parameters for K1 in Algorithm 1 is 4, which is the number 
of entries. We consider Θ(ℎ) = Θ(1) as ℎ is a constant; thus, the 
number of parameters is Θ(1). 
Proof of Theorem 4: Storing the input matrix in a sparse for-
mat requires � (nnz(A)) space. Changing the orders of rows and 
columns requires � (� +� ) space for saving random hash functions, 
shingles, and changes of losses. If we assume that the batch size 
and the number of parameters of LSTM are constants, its memory 
usage during inference and backpropagation is � (log �) since the 
input length is � (log �). Thus, the overall space complexity during 
training is � (nnz(A) + �). 
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