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Abstract
How can we rank nodes in signed social networks? Relationships between nodes in a signed
network are represented as positive (trust) or negative (distrust) edges. Many social networks
have adopted signed networks to express trust between users. Consequently, ranking friends
or enemies in signed networks has received much attention from the data mining community.
The rankingproblem, however, is challengingbecause it is difficult to interpret negative edges.
Traditional random walk-based methods such as PageRank and random walk with restart
cannot provide effective rankings in signed networks since they assume only positive edges.
Although several methods have been proposed bymodifying traditional rankingmodels, they
also fail to account for proper rankings due to the lack of ability to consider complex edge
relations. In this paper, we propose Signed Random Walk with Restart (SRWR), a
novel model for personalized ranking in signed networks. We introduce a signed random
surfer so that she considers negative edges by changing her sign for walking. Our model
provides proper rankings considering signed edges based on the signed random walk. We
develop two methods for computing SRWR scores: SRWR- Iter and SRWR- Pre which
are iterative and preprocessing methods, respectively. SRWR- Iter naturally follows the
definition of SRWR, and iteratively updates SRWR scores until convergence. SRWR- Pre
enables fast ranking computation which is important for the performance of applications
of SRWR. Through extensive experiments, we demonstrate that SRWR achieves the best
accuracy for link prediction, predicts trolls 4× more accurately, and shows a satisfactory
performance for inferring missing signs of edges compared to other competitors. In terms
of efficiency, SRWR- Pre preprocesses a signed network 4.5× faster and requires 11× less
memory space than other preprocessingmethods; furthermore,SRWR- Pre computes SRWR
scores up to 14× faster than other methods in the query phase.
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1 Introduction

How can we obtain personalized rankings for users in signed social networks? Many social
networks have allowed users to express their trust or distrust to other users. For example, in
online social networks such as Slashdot [23], a user is explicitly able to mark other users as
friends or foes. The users are represented as nodes, and the expressions are represented as
positive and negative edges in graphs which are called signed networks [37]. Ranking nodes
in signed networks has received much interest from data mining community to reveal trust
and distrust between users [23] inducing many useful applications such as link prediction
[35], anomaly detection [23], sign prediction [26], and community detection [42] in signed
networks.

Traditional ranking models, however, do not provide satisfactory node rankings in signed
networks. Existing random walk-based ranking models such as PageRank [31] and Random
Walk with Restart [17,18,34,39,43,44] assume only positive edges; thus, they are inappro-
priate in the signed networks containing negative edges. Many researchers have proposed
heuristics on the classical methods to make them computable in signed networks [23,33].
However, those heuristic methods still have room to improve in terms of ranking quality since
they do not consider complex social relationships such as friend of enemy or enemy of friend
in their rankings as shown in Fig. 2. In addition, most existing ranking models in signed
networks focus only on a global node ranking, although personalized rankings are more
desirable for individuals in many contexts such as recommendation. Also, the fast ranking
computation is important for the computational performance of applications in SRWR.

In this paper, we propose Signed Random Walk with Restart (SRWR), a novel
model for effective personalized node rankings in signed networks. The main idea of SRWR
is to introduce a sign into a random surfer in order to let the surfer consider negative edges
based on structural balance theory [5,26]. Consequently, our model considers complex edge
relationships and makes random walks interpretable in signed networks. We devise SRWR-
Iter, an iterative method which naturally follows the definition of SRWR, and iteratively
update SRWR scores until convergence. Furthermore,we propose SRWR- Pre, a preprocess-
ing method for computing SRWR scores quickly which is useful for various applications in
signed networks. Through extensive experiments,we demonstrate that our proposed approach
offers improved performance for personalized rankings compared to alternative methods in
signed social networks. Our main contributions are as follows:

– Novel ranking modelWe propose Signed Random Walk with Restart (SRWR),
a novel model for personalized rankings in signed networks (Definition 1). We show
that our model is a generalized version of RWR working on both signed and unsigned
networks (Property 2).

– Algorithm We propose SRWR- Iter and SRWR- Pre for computing SRWR scores.
SRWR- Iter is an iterative algorithm which naturally follows the definition of SRWR
(Algorithm 2). SRWR- Pre is a preprocessing method which employs a node reordering
technique and block elimination to accelerate SRWR computation speed (Algorithms 3
and 4).

– Experiment We show that SRWR achieves higher accuracy for link prediction (Fig. 7),
predicts trolls 4× more accurately (Fig. 9), and provides a good performance for sign
prediction compared to other ranking models (Fig. 10). In terms of efficiency, SRWR-
Pre preprocesses signed networks up to 4.5× faster, and requires 11× less memory
space than baseline preprocessing methods. Furthermore, SRWR- Pre computes SRWR
scores up to 14× faster than other methods including SRWR- Iter (Fig. 13).
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Table 1 Table of symbols Symbol Definition

G = (V,E) Signed input graph

V Set of nodes in G

E Set of signed edges in G

n Number of nodes in G

n1 Number of spokes in G

n2 Number of hubs in G

m Number of edges in G

s Seed node (= query node, source node)

c Restart probability

ε Error tolerance
←−
N u Set of in-neighbors to nodes u
−→
N u Set of out-neighbors from nodes u

A (n × n) signed adjacency matrix of G

|A| (n × n) absolute adjacency matrix of G

D (n × n) out-degree matrix of |A|, Di i = ∑
j |A|i j

Ã (n × n) semi-row-normalized matrix of A

Ã+ (n × n) positive semi-row-normalized matrix of A

Ã− (n × n) negative semi-row-normalized matrix of A

|Ã| (n × n) absolute row-normalized matrix of |A|
q (n × 1) starting vector (= sth unit vector)

r+ (n × 1) positive score vector

r− (n × 1) negative score vector

r (n × 1) trustworthiness score vector, e.g., r = r+ − r−
p (n × 1) p = r+ + r−

|H| (n × n) |H| = I − (1 − c)|Ã|�
T (n × n) T = I − (1 − c)(γ Ã�+ − βÃ�−)

|H|i j ,Ti j (ni × n j ) (i, j)th partition of |H| or T
S|H|, ST (n2 × n2) Schur complement of |H|11 or T11

qi , pi , r
−
i (ni × 1) i th partition of q, p or r−

Boldface capital letters, such as A, represent matrices. Boldface small
letters, such as r, represent vectors

The code of our method and datasets used in this paper are available at http://datalab.snu.
ac.kr/srwrpre. The rest of this paper is organized as follows. We first introduce the formal
definition of the personalized ranking problem in signed networks at Sect. 2. Thenwe provide
a reviewof relatedworks in Sect. 3. In Sect. 4,we describe our proposedmodel and algorithms
for computing personalized rankings. After presenting experimental results in Sect. 5, we
conclude in Sect. 6. Table 1 lists the symbols used in this paper.
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Fig. 1 Example of the personalized node ranking problem in Problem 1. Given a signed network and a seed
node (in this example, node A is the seed node), our goal is to compute the trustworthiness score vector r
w.r.t. the seed node. Our proposed model SRWR (see Definition 1 in Sect. 4) aims to compute r based on the
positive and negative score vectors r+ and r−, i.e., r = r+ − r−

2 Problem definition

We define the personalized ranking problem in signed networks as follows:

Problem 1 (Personalized Node Ranking in Signed Networks)

– Input: a signed network G = (V,E) and a seed node s where V is the set of nodes, and
E is the set of signed edges.

– Output: a trustworthiness score vector r ∈ R
n of all other nodes for seed node s to rank

those nodes w.r.t. seed node s. ��
In signed social networks, users are represented as nodes, and trust or distrust relations
between users are represented as positive or negative edges. When a user u considers that
a user v is trustworthy, a positive edge u → v is formed. On the contrary, a negative edge
u → v is formed when u distrusts v. Given those signed edges between nodes and a seed
node s, the personalized ranking problem is to rank all other nodes w.r.t. seed node s in the
order of trustworthiness scores represented by r where ru indicates how much seed node s
should trust node u as depicted in Fig. 1. If the score ru is high, then s is likely to trust u.
Otherwise, s is likely to distrust u.

3 Related work

In this section, we review related works, which are categorized into four parts: (1) ranking
in unsigned networks, (2) ranking in signed networks, (3) applications in signed networks,
and (4) fast personalized ranking methods.

Ranking in unsigned networks There are various global ranking measures based on link
structure and random walk, e.g., PageRank (PR) [31], HITS [21], and SALSA [25]. Further-
more, personalized ranking methods are explored in terms of node-to-node relevance such as
Random Walk with Restart (RWR) [40], Personalized PageRank (PPR) [13], Personalized
SALSA (PSALSA) [2]. Among these measures, RWR has received much interests and has
been applied to many applications [1,10,15,20]. Note that these methods are not applicable
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to signed graphs because they assume only positive edges; on the contrary, our model works
on signed networks as well as on unsigned networks.

Ranking in signed networks Many researchers have made great efforts to design global
node rankings in signed networks. Kunegis et al. [23] presented Signed spectral Ranking (SR)
that heuristically computes PageRank scores based on a signed adjacency matrix. Wu et al.
[41] proposed Troll-Trust model (TR-TR) which is a variant of PageRank. In the algorithm,
the trustworthiness of an individual user is modeled as a probability that represents the
underlying ranking values. Shahriari et al. [33] suggested Modified PageRank (MPR), which
computes PageRank in a positive subgraph and a negative subgraph separately, and subtracts
negative PageRank scores from positive ones. Although the idea of MPR is easily applicable
to other personalized ranking models such as RWR by computing ranking scores on the
positive and negative subgraphs, this results in many disconnections between nodes. Note
that all thosemodels mainly focus on global node rankings, and they do not consider complex
relationships between negative and positive edges such as friend of enemy or enemy of friend;
in contrast, our model SRWR provides an effective personalized ranking with considering
complicated relationships between nodes based on a social theory such as structural balance
theory [5].

Applications in signed networks Numerous applications in signed social networks such
as link prediction, troll detection, and sign prediction have been studied in many literatures.
Song et al. [35] proposed GAUC (Generalized AUC) to measure the quality of link prediction
in signed networks where the link prediction task is to predict nodes which will be positively
or negatively linked by a node in the future. They devised a matrix factorization-based
method GAUC-OPT which approximately maximizes GAUC for link prediction. Kunegis
et al. [23] analyzed the Slashdot dataset from the perspective of troll detection, and proposed
Negative Rank (NR) as a variant of PageRank for detecting trolls who behave abnormally
in the social network. Leskovec et al. [26] proposed LOGIT which is specially designed for
sign prediction classifying the sign between two arbitrary nodes. They exploited a logistic
classifier trained by node and edge features such as node degrees and common neighbors
between those two nodes. Guha et al. [12] also studied sign prediction and devised TRUST
measuring trustworthiness between two source and target nodes by propagating trust and
distrust from the source node to the target node. Note that our model SRWR shows better
performance in link prediction, troll detection, and sign prediction tasks compared to those
methods as demonstrated in Sect. 5.

Fast personalized ranking methodsMany researchers have emphasized the importance
of fast computation for personalized rankings such as RWR to reduce their computational
cost and boost the performance of applications based on ranking in terms of efficiency.
Tong et al. [40] proposed an approximate method which exploits a low-rank approximation
based on matrix decomposition in the preprocessing phase, and computes an RWR query
from the decomposed matrices in the query phase. Fujiwara et al. utilized LU factorization
[9] with degree ordering to speed up the RWR computation. Shin et al. [34] proposed a
block elimination approach based on node reordering to accelerate RWR computation speed.
Although those approaches significantly increase the performance of ranking in terms of
running time, they only focus on ranking in unsigned networks. In our previous work [16],
we designed a random surfer model for ranking nodes in signed networks, and developed an
iterative method for computing trust and distrust scores. However, the iterative method is not
appropriate for real-time applications since the method is not fast in large signed networks
as shown in Fig. 13c. In this work, we also aim to develop an efficient preprocessing method
to accelerate the query speed of SRWR in signed networks. We will demonstrate that our
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Fig. 2 Examples of traditional random walks and signed random walks. Each case represents (1) friend’s
friend, (2) friend’s enemy, (3) enemy’s friend, or (4) enemy’s enemy from the top. A random surfer has either
a positive (blue) or a negative (red) sign on each node in (b). When the signed surfer traverses a negative edge,
she changes her sign from positive to negative or vice versa (color figure online)

preprocessing method SRWR- Pre is the fastest for computing SRWR scores among other
baselines as presented in Fig. 13c.

4 Proposedmethods

We propose Signed Random Walk with Restart (SRWR), a novel ranking model for
signed networks in Sect. 4.1. Then we first develop an iterative algorithm SRWR- Iter for
computing SRWR scores w.r.t. a seed node in Sect. 4.2, and then propose a preprocessing
algorithm SRWR- Pre to accelerate SRWR computation speed in Sect. 4.3.

4.1 Signed randomwalk with restart model

As discussed in Sect. 1, complicated relationships of signed edges are the main obstacles for
providing effective rankings in signed networks. Most existing works on signed networks
have not focused on personalized rankings. In this work, our goal is to design a novel ranking
model which resolves those problems in signed networks. The main ideas of our model are
as follows:

– We introduce a signed random surfer. The sign of the surfer is either positive or negative,
which means favorable or adversarial to a node, respectively.

– When the random surfer encounters a negative edge, she changes her sign from positive
to negative, or vice versa. Otherwise, she keeps her sign.

– We introduce balance attenuation factors into the surfer to consider the uncertainty for
friendship of enemies.

There are four cases according to the signs of edges as shown in Fig. 2: (1) friend’s
friend, (2) friend’s enemy, (3) enemy’s friend, and (4) enemy’s enemy. Suppose a random
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surfer starts at node s toward node t . A traditional surfer just moves along the edges without
considering signs as seen in Fig. 2a since there is no way to consider the signs on the edges.
Hence, classical models cannot distinguish those edge relationships during her walks. For
instance, the model considers that node s and node t are friends for the second case (friend’s
enemy), even though node t are more likely to be an enemy w.r.t. node s.

On the contrary, our model in Fig. 2b has a signed random surfer who considers those
complex edge relationships. If the random surfer starting at node s with a positive sign
encounters a negative edge, she flips her sign from positive to negative, or vice versa. Our
model distinguishes whether node t is the friend of node s or not according to her sign at
node t . As shown in Fig. 2b, the results for all cases from our model are consistent with
structural balance theory [5]. Thus, introducing a signed random surfer enables our model to
discriminate those edge relationships.

Trust or distrust relationships between a specific node s and other nodes are revealed as the
surfer is allowed to move around a signed network starting from node s. If the positive surfer
visits a certain node u many times, then node u is trustable for node s. On the other hand, if
the negative surfer visits node u many times, then node s is not likely to trust node u. Thus,
rankings are obtained by revealing a degree of trust or distrust between people based on the
signed randomwalks. Here, we formally define ourmodel on signed networks inDefinition 1.
Note that Definition 1 involves the concept of restart which provides personalized rankings
w.r.t. a user.

Definition 1 (Signed Random Walk with Restart) A signed random surfer has a sign, which
is either positive or negative. At the beginning, the surfer starts with + sign from a seed node
s because she trusts s. Suppose the surfer is currently at node u, and c is the restart probability
of the surfer. Then, she takes one of the following actions:

– Action 1: Signed Random Walk The surfer randomly moves to one of the neighbors
from node u with probability 1− c. The surfer flips her sign if she encounters a negative
edge. Otherwise, she keeps her sign.

– Action 2: Restart The surfer goes back to the seed node s with probability c. Her sign
should become + at the seed node s because she trusts s. ��
We measure two probabilities on each node through Signed Random Walk with

Restart (SRWR) starting from the seed node s. The two probabilities are represented as
follows:

– r+
u = P(u,+): the probability that the positive surfer visits node u after SRWR from
seed node s.

– r−
u = P(u,−): the probability that the negative surfer visits node u after SRWR from
seed node s.

Note that r+
u (or r−

u ) corresponds to a ratio of how many times the positive (or negative)
surfer visits node u during SRWR. If the positive surfer visits node u much more than the
negative one, then s is likely to trust u. Otherwise, s is likely to distrust u. In other words, s
would consider u as a positive node if r+

u is greater than r−
u . On the contrary, s would treat

u as a negative one if r−
u is greater than r+

u . Based on this intuition, we define the relative
trustworthiness score ru = r+

u − r−
u between s and u. For all nodes, r+ is a positive score

vector and r− is a negative score vector of SRWR. Then, the trustworthiness score vector
for SRWR is represented as r = r+ − r−, the output of Problem 1. Many researchers have
dealt with trust and distrust between nodes through such representation for trustworthiness
[12,23,29,33]. Particularly, the interpretation of the resulting values from ru = r+

u − r−
u is

consistent with what Kunegis et al. said as follows:
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Fig. 3 Examples of how to interpret positive and negative scores of our model between nodes s and u. The
bars on node u depict how many the signed surfer visits that node, indicating positive and negative scores
between s and u. a and c represent trustful and distrustful cases between those nodes: s is likely to trust u in
(a), and s is likely to distrust u in (c). However, if the those scores are similar as in (b), it is difficult for node
s to decide whether to trust node u or not. Hence, s is likely to be neutral about node u in (b)

– “The resulting popularity (based on trustworthiness) measure admits both positive and
negative values, and represents a measure of popularity in the network, with positive edges
corresponding to a positive endorsement and negative edges to negative endorsements.
This interpretation is consistent with the semantics of the ‘friend’ and ‘foe’ relationships
[23].”

Note that from the viewpoint of measure theory, the relative trustworthiness ru is also
an acceptable measure as signed measure [38] if we consider r+

u and r−
u as nonnegative

measures (i.e., r+
u ≥ 0 and r−

u ≥ 0). We discuss this in detail in Appendix A.6.
Discussion on positive and negative SRWR scoresWe explain how to interpret positive

and negative SRWR scores using an example in Fig. 3. Suppose the signed surfer starts at
node s, and performs SRWR to measure the trustworthiness between nodes s and u. Note that
the trustworthiness score depends on which signed surfer stays at node u more frequently.
Then, there would be three cases depending on the link structure between s and u as shown
in Fig. 3. For the case in Fig. 3a, s is likely to trust u since the positive surfer visits u much
more than the negative surfer through paths from s to u (i.e., the positive score is larger than
the negative one at u). For the opposite case in Fig. 3c, s is likely to distrust u because the
negative surfer frequently visits u. However, if those scores on u are similar as shown in
Fig. 3b, then it is hard for s to determine whether to trust u or not. In this case s is likely to
be neutral about node u. Thus, the trustworthiness score ru of the trustful case is high (and
positive in SRWR), and that of the distrustful case is low (and negative in SRWR). For the
neutral case, the score would be in the middle (and around zero between−1 and 1 in SRWR).

Connection to balance theory According to balance theory [5,8], Fig. 3a, c is the
balanced networks because the graphs are divided into two sets of users with mutual antag-
onism between the sets. For example, the set of nodes {v1, v2, s} and the other set of nodes
{w1, w2, u} in Fig. 3c are connected with negative edges, and nodes in each set are positively
connected. In the balanced networks, each node has either a positive score or a negative one.
Because the signed surfer changes her sign walking negative edges linking the two groups,
the positive surfer stays and walks only in one group and the negative surfer stays and walks
only in the other group. However, Fig. 3b is an unbalanced network because it cannot be
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Fig. 4 Examples of how r+u and r−u are defined in SRWR

divided into two sets that are negatively connected each other. Hence, positive and negative
surfers visits the same node, i.e., each node has both positive and negative scores. In this case,
the trustworthiness score on a node is determined by which signed surfer visits the node more
frequently, which is represented by the difference between positive and negative scores.

4.1.1 Formulation for signed randomwalk with restart

We formulate the probability vectors, r+ and r−, following Signed Random Walk with
Restart. First, we explain how to define r+ and r− using the example shown in Fig. 4.
In the example, we label a (sign, transition probability) pair on each edge. For instance, the
transition probability for the positive edge from node i to node u is 1/3 because node i
has 3 outgoing edges. This edge is denoted by (+, 1/3). Other pairs of signs and transition
probabilities are also similarly defined. In order that the random surfer has a positive sign on
node u at time t + 1, a positive surfer on one of u’s neighbor at time t must move to node u
through a positive edge, or a negative surfer must move through a negative edge according
to the signed random walk action in Definition 1. Considering the restart action of the surfer
with the probability c, r+

u (t + 1) in Fig. 4a is represented as follows:

r+
u (t + 1) = (1 − c)

(
r+

i (t)

3
+ r−

j (t)

2
+ r−

k (t)

2

)

+ c1(u = s)

where 1(u = s) is 1 if u is the seed node s and 0 otherwise. In Fig. 4b, r−
u (t + 1) is defined

similarly as follows:

r−
u (t + 1) = (1 − c)

(
r−

i (t)

3
+ r+

j (t)

2
+ r+

k (t)

2

)

Note that we do not add the restarting score c1(u = s) to r−
u (t + 1) in this case because

the surfer’s sign must become positive when she goes back to the seed node s. The recursive
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equations of our model are defined as follows:

r+
u = (1 − c)

⎛

⎜
⎝

∑

v∈←−
N +

u

r+
v

|−→N v|
+

∑

v∈←−
N −

u

r−
v

|−→N v|

⎞

⎟
⎠ + c1(u = s)

r−
u = (1 − c)

⎛

⎜
⎝

∑

v∈←−
N −

u

r+
v

|−→N v|
+

∑

v∈←−
N +

u

r−
v

|−→N v|

⎞

⎟
⎠

(1)

where
←−
N i is the set of in-neighbors of node i , and

−→
N i is the set of out-neighbors of node

i . Superscripts of
←−
N i or

−→
N i indicate signs of edges between node i and its neighbors (e.g.,←−

N +
i indicates the set of positively connected in-neighbors of node i). We need to introduce

several symbols related to an adjacency matrix A to vectorize Eq. (1).

Definition 2 (Signed adjacency matrix) The signed adjacency matrixA of G is a matrix such
that Auv is positive or negative when there is a positive or a negative edge from node u to
node v, respectively, and zero otherwise. ��
Definition 3 (Semi-row-normalized matrix) Let |A| be the absolute adjacency matrix of A,
and D be the out-degree diagonal matrix of |A| (i.e., Di i = ∑

j |A|i j ). Then semi-row-

normalized matrix of A is Ã = D−1A. ��
Definition 4 (Positive or negative semi-row-normalized matrix) The positive semi-row-
normalized matrix Ã+ contains only positive values in the semi-row-normalized matrix Ã.
The negative semi-row-normalized matrix Ã− contains absolute values of negative elements
in Ã. In other words, Ã = Ã+ − Ã−, and |Ã| = Ã+ + Ã−. ��

Based on Definitions 3 and 4, Eq. (1) is represented as follows:

r+ = (1 − c)
(
Ã�+r+ + Ã�−r−)

+ cq

r− = (1 − c)
(
Ã�−r+ + Ã�+r−) (2)

where q is a vector whose sth element is 1 and all other elements are 0.

4.1.2 Balance attenuation factors

The signed surfer measures positive and negative scores of nodes w.r.t. a seed node in terms
of trust and distrust according to edge relationships as discussed in Sect. 4.1. Our model in
Definition 1 strongly supports the four cases between nodes in Fig. 2b where those cases
represent strong balance theory [5,14]. However, recent works [27] have argued that the
strong balance theory is unsatisfactory for fully supporting real-world signed networks, since
unbalanced relationships frequently appear. Thus, this limitation would be naturally inherent
in our model. To alleviate this limitation, many researchers have studied weak balance theory
[6,27] which generalizes the strong balance theory by allowing several unbalanced cases such
as “the enemy of my enemy is my enemy.” Similarly, we adopt the generalization strategy of
the weak balance theory to make our model flexible on unbalanced networks through dealing
with both balanced and unbalanced cases.
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Fig. 5 Examples of balance attenuation factors. a and b represent the uncertainty for “the enemy of my enemy
is my friend” with probability β, and c and d represent the uncertainty for “the friend of my enemy is my
enemy” with probability γ

We consider that the relationship of enemies of a seed user is uncertain since the user
cannot believe the information provided by her enemies. We reflect the uncertainty of the
relationship of those enemies into our ranking model by introducing stochastic parameters,
β and γ , called balance attenuation factors. Note that we assume that the positive and
negative relationship of friends of the seed user is reliable since the user trusts her friends. β
is a parameter for the uncertainty of “the enemy of my enemy is my friend,” and γ is for “the
friend of my enemy is my enemy.” We first explain β using the fourth case (enemy’s enemy)
in Fig. 2b. Suppose a surfer with a positive sign starts at node s toward node t and encounters
two consecutive negative edges. Based on strong balance theory, her sign becomes negative
at the intermediate node m and positive at node t in Fig. 5a. However, some people might
think that the enemy of my enemy is my enemy as shown in Fig. 5b. In this case, her sign
will be negative at nodes m and t . To consider this uncertainty, we introduce a parameter β

so that if the negative surfer at node m encounters a negative edge, her sign becomes positive
with probability β or negative with 1−β at node t . The other parameter γ is also interpreted
similarly to β. When the negative surfer at node m encounters a positive edge, her sign will
be negative with probability γ or positive with 1 − γ at node t as in Fig. 5c, d. SRWR with
the balance attenuation factors is represented as follows:

r+ = (1 − c)
(
Ã�+r+ + βÃ�−r− + (1 − γ )Ã�+r−)

+ cq

r− = (1 − c)
(
Ã�−r+ + γ Ã�+r− + (1 − β)Ã�−r−) (3)

Discussion on other balance attenuation factors Note that other parameters for the
uncertainties of “enemy of friend” and “friend of friend” could be easily adopted into our
model. However, we do not reflect those parameters on our model with the following reasons:

– As described in this subsection, we assume that the positive and negative relationship of
friends of a seed user is reliable and stable. If the seed user’s friends distrust a user, then
she is unlikely to believe the user since the user trusts her friends.

– Introducing the additional parameters could improve the performance of applications
in signed networks, but it increases the complexity of our model considering too many
uncertain cases. We consider that introducing β and γ achieves a good trade-off between
the model complexity and the performance of each application as shown in Sect. 5.
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Algorithm 1: Normalization phase of SRWR- Iter
Input: signed adjacency matrix: A
Output: positive semi-row-normalized matrix: Ã+, and negative semi-row-normalized matrix: Ã−
1: compute out-degree matrix D of |A|, Di i = ∑

j |A|i j

2: compute semi-row-normalized matrix, Ã = D−1A.
3: split Ã into Ã+ and Ã− such that Ã = Ã+ − Ã−
4: return Ã+ and Ã−

Discussion on the initial sign In Definition 1, we initialize the signed surfer as positive
when she restarts at a seed node s. One might consider that our model is easily extendable to
probabilistically initializing the signed surfer as negative for the restart action. Let p denote
the probability of being the positive surfer for the restart action. Then, the extended version
is established by changing cq to (c × p)q in the first equation and adding (c × (1− p))q into
the second equation of Eq. (3). However, we do not consider such case with the following
reason:

– If the negative surfer starts at s, the surfer becomes positive at nodes negatively connected
from s and negative at those positively connected from s. This implies that the surfer
recognizes the friends of s as enemies and the enemies of s as friends. Thus, it is hard
to interpret the scores measured by the negative initial surfer in terms of trustworthiness
for s based on balance theory.

4.2 SRWR-ITER: iterative algorithm for signed randomwalk with restart

Wepresent an iterative algorithm SRWR- Iter for computing SRWR scores based on Eq. (3).
Note that the solution of a linear system with recursive structure is typically and efficiently
obtained via an iterative manner such as power iteration and Jacobi method [36]. We also
adopt such iterative strategy to solve the recursive equations in Eq. (3). We describe how
SRWR- Iter obtains the trustworthiness SRWR score vector r given a signed network and a
seed node in Algorithms 1 and 2 . Moreover, we prove that the iterative approach in SRWR-
Iter converges, and returns a unique solution for the seed node in Theorem 1 of Sect. 4.2.1.

Normalization phase (Algorithm 1) Our proposed algorithm first computes the out-
degree diagonal matrix D of |A|, which is the absolute adjacency matrix of A (line 1). Then,
the algorithm computes the semi-row-normalized matrix Ã using D (line 2). We split Ã into
two matrices: the positive semi-row-normalized matrix (Ã+) and the negative semi-row-
normalized matrix (Ã−) (line 3) satisfying Ã = Ã+ − Ã−.

Iteration phase (Algorithm 2) Our algorithm computes the SRWR score vectors r+ and
r− for the seed node s with the balance attenuation factors (β and γ ) in the iteration phase.
We set q to sth unit vector, and initialize r+ to q and r− to 0 (lines 1 and 2 ). Our algorithm
iteratively computes Eq. (3) (lines 4 and 5 ). We concatenate r+ and r− vertically (line 6)
into h. We then compute the error δ between h and h′ which is the result in the previous
iteration (line 7). We update h into h′ for the next iteration (line 8). The iteration stops when
the error δ is smaller than a threshold ε (line 9). We finally return the trustworthiness score
vector r used for the personalized ranking w.r.t. s by computing r = r+ − r− (lines 10 and
11 ).

The space and time complexities of Algorithms 1 and 2 are analyzed in Lemma 5 of
Appendix A.3.
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Algorithm 2: Iteration phase of SRWR- Iter

Input: positive semi-row-normalized matrix: Ã+, and negative semi-row-normalized matrix: Ã−, and
seed node: s, restart probability: c, balance attenuation factors: β and γ , and error tolerance: ε.

Output: trustworthiness SRWR score vector: r
1: set the starting vector q from the seed node s
2: set r+ = q, r− = 0, and h′ = [r+; r−]
3: repeat
4: r+ ← (1 − c)(Ã�+r+ + βÃ�−r− + (1 − γ )Ã�+r−) + cq

5: r− ← (1 − c)(Ã�−r+ + γ Ã�+r− + (1 − β)Ã�−r−)

6: concatenate r+ and r− into h = [r+; r−]�
7: compute the error between h and h′, δ = ‖h − h′‖
8: update h′ ← h for the next iteration
9: until δ < ε

10: compute r = r+ − r−
11: return r

4.2.1 Theoretical analysis of iterative algorithm and signed randomwalk with restart

We theoretically analyze the iterative algorithm SRWR- Iter and the properties of Signed
Random Walk with Restart.

Convergence Analysis of SRWR-ITER We show that the iteration in Algorithm 2 con-
verges to the solution of a linear system as described in the following theorem.

Theorem 1 (Convergence of SRWR- Iter) Suppose h = [r+; r−]� and qs = [q; 0]�. Then
the iteration for h in Algorithm 2 converges to the solution h = c(I− (1− c)B̃�)−1qs where

B̃� =
[
Ã�+ βÃ�− + (1 − γ )Ã�+
Ã�− (1 − β)Ã�− + γ Ã�+

]

.

Proof Equation (3) is represented as follows:

[
r+
r−

]

= (1 − c)

[
Ã�+ βÃ�− + (1 − γ )Ã�+
Ã�− (1 − β)Ã�− + γ Ã�+

] [
r+
r−

]

+ c

[
q
0

]

⇔ h = (1 − c)B̃�h + cqs

where B̃� =
[
Ã�+ βÃ�− + (1 − γ )Ã�+
Ã�− (1 − β)Ã�− + γ Ã�+

]

, h =
[
r+
r−

]

, and qs =
[
q
0

]

. Thus, the iteration in

Algorithm 2 is written as in the following equation:

h(k) = (1 − c)B̃�h(k−1) + cqs

=
(
(1 − c)B̃�)2

h(k−2) +
(
(1 − c)B̃� + I

)
cqs

= · · ·

=
(
(1 − c)B̃�)k

h(0) +
⎛

⎝
k−1∑

j=0

(
(1 − c)B̃�) j

⎞

⎠ cqs (4)

The spectral radius ρ((1 − c)B̃�) = (1 − c) < 1 when 0 < c < 1 since B̃� is a column
stochasticmatrix and its largest eigenvalue is 1 [36]. Therefore, limk→∞((1−c)B̃�)kh(0) = 0
and limk→∞ h(k) converges as follows:
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lim
k→∞h(k) = 0 + lim

k→∞

⎛

⎝
k−1∑

j=0

(
(1 − c)B̃�) j

⎞

⎠ cqs = c
(
I − (1 − c)B̃�)−1

qs .

In the above equation,
∑∞

j=0((1− c)B̃�) j is a geometric series of the matrix (1− c)B̃�, and
the series converges to (I− (1− c)B̃�)−1 since the spectral radius of (1− c)B̃� is less than
one. Note that the inverse matrix is a nonnegative matrix whose entries are positive or zero
because the matrix is the sum of nonnegative matrices (i.e.,

∑∞
j=0((1 − c)B̃�) j ). Hence,

each entry of h is nonnegative (i.e., hu ≥ 0 for any node u). ��
Properties of SRWR We discuss the properties of our ranking model SRWR to answer the
following questions: (1) Is the signed random surfer able to visit all nodes in a network which
is strongly connected? and (2) Does SRWR work on unsigned networks as well? The first
question is answered in Property 1, and the second one is answered in Property 2.

Property 1 Suppose a signed network is strongly connected. Then, all entries of r+ + r− are
positive (i.e., r+ + r− > 0).

Proof Let r+ + r− be p. By summing the recursive equations on r+ and r− in Eq. (3), p is
represented as follows:

p = (1 − c)
(
Ã�+p + Ã�−p

)
+ cq ⇔ p = (1 − c)|Ã|�p + cq ⇔ p = Gp

where |Ã| = Ã+ + Ã− by Definition 3,G = (1− c)|Ã|� + cq1�, and 1�p = ∑
i pi = 1 by

Property 3. Note that the graph represented byG is also strongly connected since the graph of
|Ã| has the same topology with the original graph which is strongly connected. Moreover, the
graph represented byG has a self-loop at the seed node s due to cq1�. Thus,G is irreducible
and aperiodic. Hence, all entries of p = r+ + r− are positive according to Perron–Frobenius
theorem [24]. ��

Note that r+
u (or r−

u ) indicates that the stationary probability of the positive (or negative)
surfer visits node u after performing SRWR starting from a seed node. According to Prop-
erty 1, r+

u +r−
u for an arbitrary node u is always positive if a given signed network is strongly

connected. That is, the signed random surfer is able to visit node u with probability r+
u + r−

u
which is always greater than zero.

Next, we prove that our model SRWR is a generalized version of RWR working on both
unsigned and signed networks in the following property.

Property 2 The result of SRWR on networks containing only positive edges is the same as
that of RWR.

Proof Ã+ = Ã and Ã− = 0n×n because the adjacency matrix A only contains positive
edges. Also, r− = 0n×1 at the beginning time of Algorithm 2. Equation (3) is represented as
follows:

r+ = (1 − c)
(
Ã�r+ + β0n×n × 0n×1 + (1 − γ )Ã�0n×1

)
+ cq

r− = (1 − c)
(
0n×n × r+ + γ Ã�0n×1 + (1 − β)0n×n × 0n×1

)

Therefore, r− = 0n×1 and r+ = (1− c)Ã�r+ + cq. The equation of r+ is exactly the same
as that of RWR. ��
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4.3 SRWR-PRE: preprocessing algorithm for signed randomwalk with restart

We propose SRWR- Pre, a preprocessing algorithm to quickly compute SRWR scores. The
iterative approach SRWR- Iter in Algorithm 2 requires multiple matrix-vector multiplica-
tions to compute SRWR scores whenever seed node s changes; thus, the iterative method is
not fast enough when we require SRWR scores for any pair of nodes in large-scale signed
networks. Our goal is to directly compute SRWR scores from precomputed intermediate data
without iterations. We exploit the following ideas for our preprocessing method:

– The positive and negative SRWR score vectors r+ and r− are obtained by solving linear
systems (Sect. 4.3.1).

– The adjacency matrix of real-world graphs is permuted so that it contains a large but
easy-to-invert block diagonal matrix as shown in Fig. 6 (Sect. 4.3.2).

– The block elimination approach efficiently solves a linear system on a matrix if it has an
easy-to-invert submatrix (Sect. 4.3.3).

Our preprocessing method comprises two phases: preprocessing phase (Algorithm 3) and
query phase (Algorithm 4). The preprocessing phase preprocesses a given signed adjacency
matrix into several submatrices required in the query phase to compute SRWR scores w.r.t.
seed node s. Note that the preprocessing phase is performed once, and the query phase is
run for each seed node. The starting vector q in Eq. (3) is called an SRWR query, and r+
and r− are the results corresponding to the query q. The query vector q is determined by the
seed node s, and r+ and r− are distinct for each SRWR query. To exploit sparsity of graphs,
we save all matrices in a sparse matrix format such as compressed column storage [7] which
stores only nonzero entries and their locations.

4.3.1 Formulation of signed randomwalk with restart as linear systems

We first represent linear systems related to r+ and r−. Let p be the sum of r+ and r− (i.e.,
p = r+ + r−). Then, p is the solution of the following linear system:

|H|p = cq ⇔ p = c|H|−1q (5)

where |H| = I − (1 − c)|Ã|� and |Ã| = Ã+ + Ã−. The proof of Eq. (5) is presented in
Lemma 1. The linear system for r− is given by the following equation:

Tr− = (1 − c)Ã�−p ⇔ r− = (1 − c)
(
T−1(Ã�−p)

)
(6)

whereT = I−(1−c)(γ Ã�+ −βÃ�−), and γ and β are balance attenuation factors. Theorem 2
shows the proof of Eq. (6). Based on the aforementioned linear systems in Eqs. (5) and (6),
r− and r+ for a given seed node s are computed as follows:

1. Set a query vector q whose sth element is 1 and all other elements are 0.
2. Solve the linear system in Eq. (5) to obtain the solution p.
3. Compute r− by solving the linear system in Eq. (6).
4. Compute r+ = p − r−.

Lemma 1 Suppose that p = r+ + r−, |H| = I − (1− c)|Ã|� and |Ã| = Ã+ + Ã−. Then, p
is the solution of the following linear system:

|H|p = cq ⇔ p = c|H|−1q

123



586 J. Jung et al.

Proof According to the result in Property 1, the recursive equation for p is represented as
follows:

p = (1 − c)|Ã|�p + cq

where |Ã| = Ã+ + Ã− is the row-normalized matrix of |A|. The linear system for p is
represented by moving (1 − c)|Ã|�p to the left side as follows:

(
I − (1 − c)|Ã|�

)
p = cq ⇔ |H|p = cq

where |H| is I− (1− c)|Ã|�. Note that |H| is invertible when 0 < c < 1 because it is strictly
diagonally dominant [11]. Hence, p = c|H|−1q. ��

Theorem 2 The SRWR score vectors r+ and r− from Eq. (3) are represented as follows:

r+ = p − r−

r− = (1 − c)
(
T−1(Ã�−p)

)

where p = c|H|−1q, T = I − (1 − c)(γ Ã�+ − βÃ�−), and γ and β are balance attenuation
factors which are between 0 and 1 (i.e., 0 < γ, β < 1).

Proof Note that r− = (1−c)(Ã�−r+ +γ Ã�+r− +(1−β)Ã�−r−) by Eq. (3), and r+ = p−r−
according to Lemma 1. The equation for r− is represented by plugging r+ = p − r− as
follows:

r− = (1 − c)
(
Ã�−p − Ã�−r− + γ Ã�+r− + (1 − β)Ã�−r−)

⇔
r− = (1 − c)

(
γ Ã�+ − βÃ�−

)
r− + (1 − c)Ã�−p

We move (1 − c)(γ Ã�+ − βÃ�−)r− to the left side; then, the above equation is represented
as follows:

(
I − (1 − c)(γ Ã�+ − βÃ�−)

)
r− = (1 − c)Ã�−p ⇔ Tr− = (1 − c)Ã�−p

where T is I− (1− c)(γ Ã�+ − βÃ�−). Note that the matrix T is strictly diagonally dominant
when 0 < c < 1 and 0 < γ, β < 1; thus, T is invertible. Hence, r− = (1 − c)(T−1(Ã�−p)).
r+ is obtained by computing r+ = p − r−. ��

One naive approach (Inversion) for SRWR score vectors r+ and r− based on the linear
systems in Eqs. (5) and (6) is to precompute the inverse of the matrices |H| and T. However,
this approach is impractical for large-scale graphs since inverting a matrix requires O(n3)

time and O(n2) space where n is the dimensions of the matrix. Another approach (LU) is to
obtain the inverse of LU factors of |H| andT after reordering the matrices in the order of node
degrees as suggested in [9] (i.e., p = c(U−1

p (L−1
p q)); r− = (1−c)(U−1

r− (L−1
r− (Ã�−p)))where

|H|−1 = U−1
p L−1

p and T−1 = U−1
r− L−1

r− ). Although LU is more efficient than Inversion
in terms of time and space as shown in Fig. 13, LU still has a performance issue due to
O(n3) time and O(n2) space complexities. On the other hand, our preprocessing method
SRWR- Pre is faster and more memory efficient than Inversion and LU as we will see in
Sect. 5.7.
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Fig. 6 The result of node reordering on each signed network. a–c Are the original matrix |H| before node
reordering in the Wikipedia, the Slashdot, and the Epinions datasets, respectively. d–f Present |H| reordered
by the hub-and-spoke method. Note that T is also reordered equivalently to |H| since they have the same
sparsity pattern. |H|11 and T11 are block diagonal

4.3.2 Node reordering based on hub-and-spoke structure

SRWR- Pre permutes the matrices |H| and T using a reordering technique based on hub-
and-spoke structure. Previous works [34] have exploited the reordering technique to reduce
computational cost of graph operations in real-world graphs. We also adopt the node reorder-
ing based on hub-and-spoke structure to efficiently solve the linear systems in Eqs. (5) and
(6).

The hub-and-spoke structure indicates that most real-world graphs follow power-law
degree distribution with few hubs (very high-degree nodes) and majority of spokes (low-
degree nodes). The structure has been utilized to concentrate entries of an adjacency matrix
by reordering nodes as shown in Fig. 6. Any reordering method based on the hub-and-spoke
structure can be utilized for the purpose; in this paper, we use SlashBurn [19,28] as a hub-
and-spoke reordering method because it shows the best performance in concentrating entries
of an adjacency matrix (see the details in Appendix A.1).

We reorder nodes of the signed adjacency matrix A so that reordered matrix contains a
large but easy-to-invert submatrix such as block diagonal matrix as shown in Fig. 6. We then
compute |H| = I − (1 − c)(Ã�+ + Ã�−) and T = I − (1 − c)(γ Ã�+ − βÃ�−). Note that |H|
and T have the same sparsity pattern as the reordered adjacency matrix A� except for the
diagonal part. Hence, |H| and T are partitioned as follows:

123



588 J. Jung et al.

|H| =
[|H|11 |H|12
|H|21 |H|22

]

,T =
[
T11 T12

T21 T22

]

. (7)

Let n1 and n2 denote the number of spokes and hubs, respectively (see the details in
Appendix A.1). Then |H|11 andT11 are n1×n1 matrices, |H|12 andT12 are n1×n2 matrices,
|H|21 andT21 are n2×n1 matrices, and |H|22 andT22 are n2×n2 matrices. The linear systems
for |H| and T in Eqs. (5) and (6) are represented as follows:

|H|p = cq ⇔
[|H|11 |H|12
|H|21 |H|22

] [
p1
p2

]

= c

[
q1
q2

]

(8)

Tr− = (1 − c)t ⇔
[
T11 T12

T21 T22

] [
r−
1
r−
2

]

= (1 − c)

[
t1
t2

]

(9)

where t = Ã�−p is an n × 1 vector.

4.3.3 Block elimination for solving linear systems

The solutions of the partitioned linear systems inEqs. (8) and (9) are obtained by the following
equations:

p =
[
p1
p2

]

=
[

|H|−1
11 (cq1 − |H|12p2)

c(S−1
|H|(q2 − |H|21(|H|−1

11 (q1))))

]

(10)

r− =
[
r−
1
r−
2

]

=
[

T−1
11 ((1 − c)t1 − T12r

−
2 )

(1 − c)(S−1
T (t2 − T21(T

−1
11 (t1))))

]

(11)

where S|H| = |H|22 − |H|21|H|−1
11 |H|12 is the Schur complement of |H|11 and ST = T22 −

T21T
−1
11 T12 is the Schur complement ofT11. Equations (10) and (11) are derived by applying

block elimination described in Lemma 2 to the partitioned linear systems in Eqs. (8) and (9),
respectively. Note that the submatrices |H|11 and T11 are invertible when 0 < c < 1 and 0 <

γ, β < 1 since they are strictly diagonally dominant. If all matrices in Eqs. (10) and (11) are
precomputed, then the SRWR score vectors r+ and r− are efficiently and directly computed
from the precomputed matrices.

Lemma 2 (Block Elimination [4]) Suppose a linear system Ax = b is partitioned as follows:
[
A11 A12

A21 A22

] [
x1
x2

]

=
[
b1
b2

]

where A11 and A22 are square matrices. If the submatrix A11 is invertible, then the solution
x is represented as follows:

x =
[
x1
x2

]

=
[

A−1
11 (b1 − A12x2)

S−1(b2 − A21(A
−1
11 (b1)))

]

where S = A22 − A21A
−1
11 A12 is the Schur complement of A11. ��

Lemma 2 implies that a partitioned linear system is efficiently solved if it contains an
easy-to-invert submatrix and the dimension of the Schur complement is small. Note that
inverting H11 and T11 is trivial because they are block diagonal matrices as shown in Fig. 6.
Also, the dimension of S|H| and ST is n2 where n2 is the number of hubs and most real-world
graphs have a small number of hubs compared to the number of nodes (see Table 2).
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Algorithm 3: Preprocessing phase of SRWR- Pre
Input: signed adjacency matrix: A, restart probability: c, balance attenuation factors:

β and γ

Output: preprocessed matrices from |H| and T, negative semi-row-normalized matrix Ã−
1: reorder A using the hub-and-spoke reordering method [19,28]
2: compute Ã+ and Ã− from A using Algorithm 1
3: compute |H| and T, i.e., |H| = I − (1 − c)|Ã|� and T = I − (1 − c)(γ Ã�+ − βÃ�−)

4: partition |H| into |H|11, |H|12, |H|21, |H|22, and compute |H|−1
11

5: partition T into T11, T12, T21, T22, and compute T−1
11

6: compute the Schur complement of |H|11, i.e., S|H| = |H|22 − |H|21|H|−1
11 |H|12

7: compute the Schur complement of T11, i.e., ST = T22 − T21T
−1
11 T12

8: compute the inverse of LU factors of S|H|, i.e., S−1
|H| = U−1

|H|L
−1
|H|

9: compute the inverse of LU factors of ST, i.e., S
−1
T = U−1

T L−1
T

10: return preprocessed matrices from |H|: L−1
|H|, U

−1
|H|, |H|−1

11 , |H|12, and |H|21
preprocessed matrices from T: L−1

T , U−1
T , T−1

11 , T12, and T21

negative semi-row-normalized matrix Ã−

Algorithm 4: Query phase of SRWR- Pre
Input: seed node: s, preprocessed matrices from Algorithm 3
Output: trustworthiness SRWR score vector: r
1: create q whose sth entry is 1 and the others are 0, and partition q into q1 and q2
2: compute p2 = c(U−1

|H|(L
−1
|H|(q2 − |H|21(|H|−1

11 q1))))

3: compute p1 = |H|−1
11 (cq1 − |H|12p2)

4: create p by concatenating p1 and p2
5: compute t = Ã�−p, and partition it into t1 and t2
6: compute r−2 = (1 − c)(U−1

T (L−1
T (t2 − T21(T

−1
11 t1))))

7: compute r−1 = T−1
11 ((1 − c)t1 − T12r

−
2 ))

8: create r− by concatenating r−1 and r−2
9: compute r+ = p − r−
10: compute r = r+ − r−
11: return r

Preprocessing phase (Algorithm 3) Our preprocessing phase precomputes the matri-
ces exploited for computing SRWR scores in the query phase. Our algorithm first reorders
nodes of a given signed adjacency matrix A using the hub-and-spoke reordering method,
and performs semi-normalization on A to obtain Ã+ and Ã− using Algorithm 1 (lines 1–
refalg:method:pre:normalize). Then our algorithm computes |H| and T and partitions the
matrices as shown in Fig. 6 (lines 3–5). Our algorithm calculates the inverses of |H|11 and
T11, and computes the Schur complements of |H|11 and T11 (lines 4–7). When we compute
S−1

|H| and S
−1
T , we invert the LU factors of S|H| and ST (lines 8 and 9 ) because this approach

is faster and more memory efficient than directly inverting S|H| and ST as in [34].
Query phase (Algorithm 4) Our query phase computes SRWR score vectors r+ and r−

for a given seed node s using precomputed matrices from Algorithm 3. Our algorithm first
creates a starting vector q whose entry at the index of the seed node s is 1 and otherwise
0, and partitions q into q1 and q2 (line 1). We then compute p2 and p1 based on Eq. (10)
and concatenate the vectors to obtain p (lines 2∼4). Our algorithm calculates t = Ã�−p and
partitions t into t1 and t2 (line 5). We compute r−

2 and r−
1 based on Eq. (11), and concatenate
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Table 2 Dataset statistics Dataset n m m+ m− n2

Wikipedia1 7118 103, 617 81, 285 22, 332 1800

Slashdot2 79, 120 515, 561 392, 316 123, 245 10, 160

Epinions3 131, 828 841, 372 717, 667 123, 705 10, 164

n is the number of nodes, and m is the total number of edges. m+ is the
number of positive edges, m− is the number of negative edges, and n2
is the number of hubs
1 http://snap.stanford.edu/data/wiki-Vote.html
2 http://dai-labor.de/IRML/datasets
3 http://www.trustlet.org/wiki/Extended_Epinions_dataset

the vectors to obtain r− (lines 6–8). After computing r+ = p− r− to obtain r+ (line 9), we
obtain r = r+ − r− (line 10).

The space and time complexities of Algorithms 3 and 4 are analyzed in Lemmas 6–8 of
Appendix A.3.

5 Experiments

We evaluate the effectiveness of SRWR compared to existing ranking methods. Since there
is no ground-truth of personalized rankings for each node in real-world graphs, we exploit an
indirect way by examining the performance of applications such as link prediction, troll iden-
tification, and sign prediction tasks. We also investigate the performance of our approaches
in terms of time and space. Based on these settings, we aim to answer the following questions
from the experiments:

– Q1. Link prediction (Sect. 5.2) How effective is our proposed SRWRmodel for the link
prediction task in signed networks?

– Q2. User preference preservation (Sect. 5.3) Howwell does ourmodel SRWR preserve
users’ known preferences in personalized rankings in signed networks?

– Q3. Troll detection (Sect. 5.4) How well do personalized rankings of SRWR capture
trolls who are abnormal users compared to those of other models?

– Q4. Sign prediction (Sect. 5.5) How helpful are trustworthiness scores of SRWR for
predicting missing signs of edges in signed networks?

– Q5. Effects of balance attenuation factors (Sect. 5.6) How effective are the balance
attenuation factors of SRWR for applications in signed networks?

– Q6. Efficiency (Sect. 5.7) How fast and memory efficient is our preprocessing method
SRWR- Pre compared to other baselines?

5.1 Experimental settings

Machines The experiments on the effectiveness of SRWR in Sects. 5.2, 5.4, 5.5 and 5.6 are
conducted on a PCwith Intel(R) Core(TM) i5-4590 CPU@3.30GHz and 8GBmemory. The
experiments on the computational performance of SRWR- Pre in Sect. 5.7 are performed
on a workstation with a single Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz and 256GB
memory.
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Datasets The signed networks for our experiments are summarized in Table 2. We use all
datasets in the link prediction task, the sign prediction task and the experiments for evaluating
the computational performance of the proposed methods (Sects. 5.2, 5.5, and 5.7). We use
the Slashdot dataset in the troll identification task (Sect. 5.4) since there is a troll list only in
the dataset.

Methods To answer Q1–4, we compare our proposed model with Random Walk with
Restart (RWR) [13],ModifiedRandomWalkwithRestart (M-RWR) [33],ModifiedPersonal-
ized SALSA (M-PSALSA) [30], Personalized Signed spectral Rank (PSR) [23], Personalized
Negative Rank (PNR) [23], Troll-Trust Model (TR-TR) [41], TRUST [12], LOGIT [26], and
GAUC-OPT [35]. Note that RWR is computed on the absolute adjacency matrix of a signed
network. For Q5, we compare our model SRWR to H- SRWR which is a version of SRWR
without the balance attenuation parameters. For Q6, we compare our preprocessing method
SRWR- Pre to other baseline methods Inversion and LU mentioned in Sect. 4.3.1 including
our iterative method SRWR- Iter.

ParametersThere are three hyper-parameters in our rankingmodel, i.e., restart probability
c and balance attenuation parameters β and γ . We set c to 0.15 for all random walk-based
approaches including our model for simplicity. To choose β and γ , we perform a grid search
over a range 0 ≤ β, γ ≤ 1 by 0.1 (i.e., search (β, γ ) in P = {(0.1x, 0.1y)|0 ≤ x, y ≤
10 and x, y ∈ Z}). To select proper parameters, we randomly split a dataset into training,
validation, and test sets; and then,we compute personalized rankings based on the training set,
and choose the best parameter combination (β, γ ) on the validation set with a target metric
corresponding to each task. We report results on the test set with the validated parameters.
The detailed settings on how to split the dataset andwhichmetric is used are described in each
subsection of the corresponding task. The validated parameters of SRWR are summarized
as follows:

– Link prediction task (Sect. 5.2): In the Epinions and the Slashdot datasets, β = 0.5 and
γ = 0.8. In the Wikipedia dataset, β = 0.5 and γ = 0.5.

– Troll identification task (Sect. 5.4): In this task, the Slashdot dataset is used as mentioned
above, and in the dataset, β = 0.1 and γ = 1.0.

– Sign prediction task (Sect. 5.5): In the Epinions and the Slashdot datasets, β = 0.5 and
γ = 0.8. In the Wikipedia dataset, β = 0.2 and γ = 0.6.

5.2 Link prediction task

We evaluate the performance of personalized ranking models on link prediction in signed
networks. The link prediction task is defined as follows: given a signed network and a seed
node s, predict nodes which will be positively or negatively linked by the seed node in the
future. An ideal personalized ranking for this task should place nodes that the seed node s
potentially trusts (i.e., positive links) at the top, those that s potentially distrusts (i.e., negative
links) at bottom, and other unknown ones in themiddle. GAUC (GeneralizedAUC), proposed
by [35], has been used to evaluate the quality of personalized rankings for link prediction in
signed networks, and it measures such ideal ranking as 1.0. We also evaluate the ranking
quality in terms of AUC indicating how many positive nodes are ranked higher than negative
ones (see the details in Appendix A.5.1).

To perform this evaluation, we randomly select 1000 seed nodes, and choose 20% edges
of positive and negative edges from each seed node to form a validation set. Then, we
randomly select another 1000 seed nodes and choose 20% edges of positive and negative
edges from each seed node as a test set. We remove those selected edges and utilize the
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Fig. 7 The link prediction performance of ranking models in terms of GAUC and AUC. GAUC indicates how
well a model ranks nodes to be positively connected by a seed node at the top and those to be negatively linked
at the bottom. AUC indicates how many positive nodes are ranked higher than negative ones (see the details in
Appendix A.5.1). Our proposed model SRWR shows the best link prediction performance in terms of GAUC
and AUC for all the datasets

remaining edges as a training set to compute personalized rankings. For given a parameter
combination, we measure GAUC on the personalized ranking w.r.t. each seed node in the
validation set, and record the average GAUC over all the seed nodes. Then, we pick the best
parameter combination that provides the highest average GAUC in the validation set. With
the validated parameters, we report the average GAUC over all seed nodes in the test set.
We perform the same procedure for AUC. For nodes directly connected with a seed node s
in the training set, we exclude those nodes from a personalized ranking list w.r.t. s since we
need to recommend links which are unknown to s.

ResultsWe compare SRWR to other random walk-based models M-RWR, M-PSALSA,
PSR, RWR, and TR-TR on the link prediction task in signed networks. We also compare our
method to GAUC-OPT which is a matrix factorization-based link prediction method approx-
imately maximizing GAUC [35]. As demonstrated in Fig. 7, SRWR presents the best link
prediction performance in terms of GAUC and AUC among the evaluated models over all
the datasets. Compared to RWR which does not consider negative signs at all, our approach
SRWR shows the significant improvement in the link prediction accuracy. Particularly,GAUC
of all other methods considering signed edges is higher than that of RWR as shown in Fig. 7.
This indicates that it is important to consider the sign of edges when we compute person-
alized rankings for link prediction in signed networks. Furthermore, SRWR outperforms
other random walk-based models including GAUC-OPT which is specially designed for this
task, implying our signed surfer based on balance theory effectively estimates personalized
rankings for link prediction in signed networks.
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Table 3 The user preference preservation quality of ranking models in terms of GAUC (Appendix A.5.1)

Datasets (GAUC) SRWR (prop.) M-RWR M-PSALSA PSR RWR TR-TR GAUC-OPT

Epinions 1.000 0.999 0.902 0.730 0.708 0.650 0.824

Slashdot 1.000 0.982 0.800 0.728 0.705 0.625 0.708

Wikipedia 0.999 0.944 0.934 0.707 0.702 0.778 0.742

Note that 1.0 GAUC indicates that a method perfectly preserves a user’s known preferences in its personalized
ranking. Our proposed model SRWR shows the best performance in user preference preservation among all
tested methods

5.3 User preference preservation task

Since a personalized ranking includes known and unknown users for a seed user (or node),
how the ranking is consistent with the seed user’s known preferences is also considered as
one criterion for evaluating the quality of personalized rankings. In signed social networks,
we consider that the known preferences of a seed user s are well preserved in a personalized
ranking if positive users for s (i.e., they are positively connected by s) are at the top and
negative ones are at the bottom in the ranking. Hence, an ideal ranking for s (excluding s
from the ranking) should produce 1.0 GAUC with known positive and negative links from s
in terms of user preference preservation. To evaluate the preference preservation performance
of each method, we report the average GAUC over all test seed nodes without removing the
selected test edges from a training set.

As shown in Table 3, our ranking model SRWR demonstrates the best GAUC in user
preference preservation among all tested methods, indicating that SRWR almost perfectly
preserves users’ known preferences within their personalized rankings. The main reason for
the result is that our signed surfer occasionally restarts at a seed node s with a positive sign;
thus, the positive surfer frequently visits the positive neighbors of s, and the negative surfer
frequently visits the negative neighbors of s. Hence, the trustworthiness scores on the positive
neighbors are high, and those on the negative neighbors are low compared to those on nodes
that are not connected by s.

One might think a simple approach that arbitrarily places the positive neighbors at the top,
the negative ones at the bottom, and the other unknown nodes at the middle in a ranking list.
The simple approach will produce 1.0 GAUC for user preference preservation; however, this
cannot work on link prediction since we need to predict target nodes among unknown nodes
(i.e., they are not connected to a seed node). On the contrary, our model SRWR is effective
for not only user preference preservation but also signed link prediction as shown in Table 3
and Fig. 7.

5.4 Troll identification task

In this section, we investigate the quality of a personalized ranking generated by SRWR
in identifying trolls who behave abnormally or cause normal users to be irritated. The task
is defined as follows: given a signed network and a normal user, identify trolls using a
personalized ranking w.r.t. the user. In signed networks, we consider that a good personalized
ranking of the normal user needs to capture trolls at the bottom of the ranking since most
normal users are likely to dislike those trolls. Thus, we measure how well a personalized
ranking of each method captures trolls at the bottom of the ranking to examine the quality of
personalized node rankings.
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Fig. 8 MRR of SRWR. The
measure indicates how trolls are
ranked low in a personalized
ranking. The SRWR is the
highest MRR among all tested
models

Fig. 9 The performance of ranking models for the troll identification task through various measurements:
MAP@k (a), NDCG@k (b), Precision@k (c), and Recall@k (d). SRWR shows the best performance for all
the measurements compared to other competitors

As in the previous work [23], we also use the enemies of a user called No-More-Trolls in
the Slashdot dataset as trolls. The user is an administrative account created for the purpose
of collecting a troll list (i.e., the administrator is negatively connected to each troll). There
are 96 trolls in the list. We exclude the edges adjacent to No-More-Trolls from the Slashdot
dataset and use the remaining edges to estimate a personalized ranking as a training set. We
use the bottom-k of the ranking to search for those trolls. We randomly select 1000 seed
nodes as a validation set to search for hyper-parameters required by each method. We pick
the best parameter combination that provides the highest Mean Reciprocal Rank (MRR) in
the validation set. Then, for each user, we search for trolls within the bottom-k ranking, and
evaluate how those trolls are ranked low in the ranking, which is measured by MRR. We
also measure Mean Average Precision (MAP@k), Normalized Discount Cumulated Gain
(NDCG@k), Precision@k, and Recall@k to check the performance of each method in terms
of various metrics (see the details in Appendix A.5.2). Since there are no user-graded scores
for the troll list, we set those scores to 1 for NDCG.

Results Our proposed model SRWR significantly outperforms other ranking models for
the troll identification task as shown in Figs. 8 and 9 . According to Fig. 8, the rank of a
bottom ranked troll from our model is lower than that of other ranking models because MRR
of our model is the highest compared to other competitors.More trolls are captured within the
bottom-k ranking produced by our proposed model according to MAP@k shown in Fig. 9a.
Note that Fig. 9c, d indicates that SRWR achieves higher Precision@k and Recall@k for
capturing trolls than other methods. SRWR provides 4× better performance than PNR, the
second best one, in terms of Precision@k when k = 1. Many trolls tend to be ranked low in
our personalized ranking because SRWR achieves better MAP@k and NDCG@k than other
ranking models as presented in Fig. 9a, b.
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Table 4 Troll prediction results of ranking models w.r.t. a normal user “yagu”

SRWR (proposed) M-RWR M-PSALSA PSR TR-TR

Rank
Trust

Ranking
Distrust
Ranking

Trust
Ranking

Distrust
Ranking

Trust
Ranking

Distrust
Ranking

Trust
Ranking

Distrust
Ranking

Trust
Ranking

Distrust
Ranking

1 yagu� Klerck† yagu� dubba-d Work+Ac HanzoSa yagu� SmurfBu yagu� Jack+B.
2 Photon+ Adolf+H† Bruce+P derago Unknown Jerk+Ci† Uruk Dr.Seus dexterp inTheLo
3 Uruk GISGEOL CmdrTac msfodde afidel NineNin Photon+ Doctor Jamie+Z Mactrop
4 stukton Nimrang CleverN cramus heirony Rogerbo clump artoo ryanr DiceMe
5 TTMuskr Kafka C Uruk lakerdo bokmann SexyKel† TTMuskr Juggle KshGodd Einstei
6 clump Thinkit Photon+ p414din ezeri ScottKi stukton FreakyG TheIndi FinchWo
7 Bruce+P CmderTa† stukton an+unor As+Seen qurob RxScram RunFatB daoine Penus+T
8 RxScram SteakNS clump exfuga KillerD bendodg charlie jmpoast Berylli r glen
9 CmdrTac JonKatz TTMuskr kryptok potaz ArnoldY ssbg El Muer danhara Roland+
10 aphor Henry+V RxScram toomz byolinu jcr Idarubi Ghost+H Degrees sting3r
11 CleverN Miguel+ John+Ca Shazzma Stanist davesch spotted The+Hob charlie Tuvai
12 throx ringbar aphor Jetboy0 TripMas List+of Golias bananac sagei 1234567
13 chrisd fimbulv chrisd KrisCow andy+la yagu� Slider4 Sodade tadghin 1337 h4
14 CowboyN by+Fort TripMas %2BMaje bani linzeal Twid peattle capocci 1g%24ma
15 Blakey+ I+Am+Th† kfg frankyf SETIGuy jeffy12 Toast GISGEOL einstei %2B%2Bg
16 Hemos VAXGeek Hemos Lukano generic foobar1 Unknown Nimrang jebell 3p1ph4n
17 cgenman NineNin davesch J’raxis Bi()haz dealsit nanojat Adolf+H† pythorl 4d49434
18 TripMas dfenstr CowboyN funklor xeno UbuntuD lucasth Kafka C sphere 4e61747
19 kfg Quantum NewYork staynz7 HeyLaug greenrd pitboss SteakNS winneto ABeowul
20 topham SmurfBu dada21 ikkibr Eli+Got Concern harlows Thinkit Allen+V Absolut

� This indicates the querying normal user.
† This indicates a troll.

For each model, we show top-20 (trusted) and bottom-20 (distrusted) nodes based on the personalized ranking
for “yagu”. The users in the bottom-20 ranking are sorted in the ascending order of the ranking scores. Red-
colored users (†) are trolls, a blue-colored user (�) is a query user, and the black-colored (non-marked) are
normal users. Note that SRWR shows the best result: in SRWR, the query user is ranked 1st, and many trolls
are ranked at the bottom in the personalized ranking. M-PSALSA provides inferior results since they rank the
query user high at the bottom of the ranking, although the query user is the most trusted user for this task.
M-RWR, PSR and TR-TR are not satisfactory either: they do not capture many trolls at the bottom of their
rankings

Case study We investigate the top-20 and the bottom-20 of the personalized ranking for
a user called “yagu” in Table 4. We list the users in the bottom-20 ranking in the ascending
order of the ranking scores in Table 4. According to the result, more trolls are ranked low in
the personalized ranking from SRWR, indicating that ourmodel ismore sensitive in capturing
trolls than other models. Also, the query user is ranked low at the bottom of the ranking from
M-PSALSA, while the user is ranked high in the ranking from our model. The query user
should trust himself; thus, the user should be ranked at the top in a personalized ranking. This
implies our model is more desirable than other models for personalized rankings in signed
networks.

5.5 Sign prediction task

We evaluate ranking scores produced by each ranking model rather than the order between
nodes. Note that a ranking score between a seed node s and a target node t is based on the
trustworthiness between those nodes. Hence, it is also important to examine how well those
ranking scores reflect trust relationships between nodes. We measure the quality of those
ranking scores exploiting the sign prediction task which is defined as follows: given a signed
network and a seed node s where signs of edges connected from s are missed, predict those
signs using the personalized ranking scores of each method with respect to the seed node s.

To construct a validation set, we randomly select 1000 seed nodes and choose 20% edges
of positive and negative links from each seed node. We also randomly select another 1000
seed nodes, and choose 20% positive and negative edges from each seed node to form a
test set. Then, we remove each selected edge (s → t) and predict the edge’s sign based on
personalized ranking scores w.r.t. node s in the graph represented by the remaining edges.
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Fig. 10 The performance of SRWR on the sign prediction task in terms of macro- and micro-accuracies where
the macro-accuracy indicates the average seed-wise accuracy, and the micro-accuracy indicates the ratio of
the number of correct predictions to the total test edges. While the micro-accuracy of SRWR is the second
best, the macro-accuracy of SRWR is the best compared to its competitors

Our ranking score vector is r = r+ − r− whose values range from −1 to 1. If rt is greater
than or equal to 0, then we predict the sign of the edge (s → t) as positive. Otherwise, it is
considered as negative. We pick the best parameter combination having the highest micro-
accuracy (see the below) in the validation set. With the validated parameters, we measure the
following prediction accuracies of a test set, macro- and micro-accuracies which are defined
as follows:

macro-accuracy = 1

nQ

nQ∑

i=1

accuracy(i)

micro-accuracy = # of correct predictions

# of total test edges

where nQ is the number of test seed nodes, and accuracy(i) is the seed-wise accuracy of i th
test seed node (i.e., the ratio of the number of correct predictions to the number of test edges
on i th seed node).

Results We compare the performance of SRWR to that of other random walk-based
ranking models M-RWR,M-PSALSA, TR-TR, and PSR on the sign prediction task. We also
compare our model SRWR to TRUST [12] and LOGIT [26] which are specially designed
for predicting signs between two arbitrary nodes in signed networks. As shown in Fig. 10a,
SRWR shows the best macro-accuracy among all tested methods. Although SRWR obtains
higher micro-accuracy than LOGIT in the Epinions dataset, the micro-accuracy of LOGIT
is better than that of SRWR in other datasets as shown in Fig. 10b.

Another observation is that LOGIT has a large gap between macro- and micro-accuracies,
while SRWR has a small gap as shown in Fig. 10. A large gap implies that on average, the
deviation between micro-accuracy and seed-wise accuracy (i.e., accuracy(i)) is large, i.e.,
accuracy(i) for i th test seed node is likely to deviate substantially from the micro-accuracy.
To analyze such deviation, we look into seed-wise accuracies in terms of node degrees.
Since there are a few high-degree nodes and a lot of low-degree nodes in real-world graphs
according to power-law degree distribution [3], we split test seed nodes into two groups as
follows: high (top-20%) and low (bottom-80%) groups in the order of out-degrees of test
seed nodes. Then, we measure the average of seed-wise accuracies for each group (i.e., the
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Table 5 The difference between SRWR and LOGIT in terms of macro-accuracies of high- and low-degree
groups

Datasets Methods Overall Group High-Degree Group Low-Degree Group Standard Deviation

Epinions SRWR 0.8696 0.8876 0.8651 0.0159

LOGIT 0.7762 0.8760 0.7510 0.0883

Slashdot SRWR 0.7128 0.7133 0.7127 0.0004

LOGIT 0.6827 0.7943 0.6546 0.0987

Wikipedia SRWR 0.8004 0.8556 0.7865 0.0489

LOGIT 0.7937 0.8671 0.7752 0.0650

The overall group is the union of the high- and low-degree groups. We measure the average of seed-wise
accuracies for each group (i.e., themacro-accuracy of the group) and the standard deviation between accuracies
of those groups. LOGIT tends to predict a seed node’s test edges in the high-degree group better than SRWR,
while SRWR predicts better those in the low-degree group compared to LOGIT. Also, the result on the
standard deviation indicates that the disparity of SRWR between accuracies of those groups is smaller than
that of LOGIT

macro-accuracy of the group) and the standard deviation between the accuracies of those
groups.

According to Table 5, LOGIT tends to better predict test edges of a seed node in the
high-degree group than those in the low-degree one. In particular, on the Epinions and the
Slashdot datasets, the macro-accuracy of LOGIT in the low-degree group is rather lower
than that of LOGIT in the high-degree group. These results imply that LOGIT is biased
toward predicting test edges from a high-degree seed node. Note that the number of test
edges from a high-degree node is larger than that of test edges from a low-degree node since
20% test edges are randomly extracted from each selected test node. Thus, the total number of
correct predictions from LOGIT is large (i.e., the micro-accuracy becomes high). However,
the seed-wise accuracies of LOGIT are low in the low-degree group (i.e., the macro-accuracy
becomes low) as shown in Table 5, thereby increasing the gap of LOGIT between micro- and
macro-accuracies.

On the contrary, the gap of SRWR between micro- and macro-accuracies are relatively
smaller than that of LOGIT as shown in Fig. 10, along with the small standard deviation of
SRWR as shown in Table 5. Note that SRWR outperforms LOGIT in the low-degree group
over all the datasets as shown in Table 5. That is why the macro-accuracy of SRWR is higher
than that of LOGIT for the total test seed nodes as shown in Fig. 10. SRWR also shows
a satisfactory performance in the high-degree group, especially on the Epinions dataset,
although the performance of SRWR is not better than that of LOGIT on the Slashdot and
the Wikipedia datasets as shown in Table 5. Thus, the standard deviation of SRWR between
those groups is smaller than that of LOGIT. These experimental results indicate that SRWR
is competitive enough to be comparable to other models such as LOGIT in the sign prediction
task.

Note that LOGIT is a graph feature-based method which exploits local graph features,
within 1 hop from seed and target nodes, such as node degrees, common neighbors, and local
wedges for predicting the sign between the seed and target nodes. A high-degree node is
likely to have plentiful features, since the high-degree node has many connections to other
nodes. A low-degree node would not have such local features enough due to less connections;
hence, LOGIT has a limitation on increasing the predictive performance for test edges from
the low-degree node based only on local graph features. On the other hand, SRWR’s inference
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Fig. 11 Accuracy maps of SRWR according to β and γ where each color indicates a degree of accuracy. The
Epinions and the Slashdot datasets present similar tendencies, while the Wikipedia dataset shows a different
result from those of the two datasets

is based on the information more than 1 hop from the seed node because the signed random
surfer visits the target node via various length of paths from the seed node to the target node.
That is why SRWR works well on predicting test edges of low-degree nodes compared to
LOGIT.

Balance attenuation factors We adjust the balance attenuation factors of SRWR, and
evaluate the sign prediction task in terms of micro-accuracy to examine how well balance
theory explains signed networks. In this experiment, we use the top-100 highest degree nodes
as a test set for each network. The Epinions and the Slashdot datasets show similar results
where larger values of β and γ achieve high accuracy as shown in Fig. 11a, b . Unlike these
two datasets, the accuracy is high when β is small in the Wikipedia network as shown in
Fig. 11c. This implies that “an enemy of my enemy is my friend” would not be correct in
the network, which means balance theory does not apply well to the Wikipedia dataset. The
reason is that the Wikipedia network represents votes between users to elect administrators;
thus, the dataset is different from the Epinions and the Slashdot networks which are general
social networks.Note that the validated balance attenuation factors for the sign prediction task
in Sect. 5.1 are consistent with the tendency demonstrated in Fig. 11. Another observation
is that the ideal balance theory does not apply to real-world signed networks because the
accuracy is not the best over all datasets when β = 1 and γ = 1 (i.e., the ideal balance
theory).

5.6 Effectiveness of balance attenuation factors

We examine the effects of the balance attenuation factors of SRWR on the performance of the
link prediction, the troll identification, and the sign prediction tasks. In this experiment, we
use H- SRWR (β = 1 and γ = 1) and SRWRwith validated balance factors for each dataset
as mentioned in Sect. 5.1. H- SRWR indicates that we compute SRWR scores using Eq. (2)
which does not adopt balance attenuation factors. We measure GAUC for link prediction,
MRR for troll prediction, and micro-accuracy for sign prediction to compare SRWR and
H- SRWR.

Figure 12 indicates that introducing balance attenuation factors is helpful for improving
the performance of each application in signed networks. As shown in Fig. 12a, SRWR
obtains higher GAUC than H- SRWR in the link prediction task. Also, Fig. 12b presents that
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Fig. 12 Effect of the balance attenuation factors of SRWR. The performance of SRWR is better than that
of H- SRWR (i.e., SRWR without using balance attenuation factors) in terms of the link prediction, the troll
identification, and the sign prediction tasks

SRWR achieves better MRR than H- SRWR on the troll identification task. Moreover, the
accuracy of SRWR is higher than that of H- SRWR over all datasets for the sign prediction
task as presented in Fig. 12c. Although introducing balance attenuation factors increase
the complexity of our model and demand an additional step for searching those factors, it
makes our model flexible so that SRWR resolves the weakness inherent from the strong
balance theory as discussed in Sect. 4.1.2 through adjusting those factors, and improves the
performance of each application in signed social networks.

5.7 Performance of SRWR-PRE

We investigate the performance of our preprocessingmethod SRWR- Pre in terms of prepro-
cessing time, memory space for precomputed data, and query time.We compare SRWR- Pre
to other baseline preprocessing methods Inversion and LU as well as our iterative method
SRWR- Iter. Preprocessing and query time are measured in wallclock time, and wemeasure
the average query time for 1000 random seed nodes. We set β = 0.5, γ = 0.5, c = 0.05
for all tested methods. In SRWR- Pre, we set the hub selection ratio t = 0.001 for the hub-
and-spoke reordering method to make the number of hubs n2 small enough as in [34] We
also measure how much memory space each preprocessing method needs for the precom-
puted matrices to compare memory efficiency. We omit bars for SRWR- Iter in Fig. 13a, b
because SRWR- Iter does not involve a heavy preprocessing phase (i.e., the time cost for
the normalization phase of SRWR- Iter in Algorithm 1 is trivial, and the memory usage of
SRWR- Iter is equal to that of the input graph).

Figure 13a, b shows that SRWR- Pre provides better performance than LU and Inversion
in terms of preprocessing time and memory space for preprocessed data. SRWR- Pre is up
to 4.5× faster than the second best preprocessing method LU in terms of preprocessing time.
Also, SRWR- Pre requires up to 11× less memory space than LU. Particularly, our method
SRWR- Pre uses 2.6GB memory for the precomputed data in the Epinions dataset, while
LU and Inversion require 28GB and 180GB memory, respectively. These results imply that
SRWR- Pre is fast andmemory efficient compared to other preprocessing methods. SRWR-
Pre also shows the fastest query speed among other competitors including our iterative
method SRWR- Iter as presented in Fig. 13c. SRWR- Pre is up to 14× faster than SRWR-
Iter, and up to 15× faster than the second best preprocessing method LU in the Epinions
dataset. Note that SRWR- Pre computes SRWR scores for a given seed node in less than
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Fig. 13 Performance of SRWR- Pre: a and b show the comparison of the preprocessing time and the memory
space for preprocessed data among preprocessing methods; c compares the query time among all tested
methods. SRWR- Pre presents the best performance compared to other preprocessing methods in terms of
preprocessing time and memory efficiency. SRWR- Pre also computes SRWR scores more quickly than
SRWR- Iter and the baseline methods

Table 6 Total number of nonzeros (nnzt ) in precomputed matrices for each preprocessing method

Dataset A: nnzt in SRWR- Pre B: nnzt in LU C: nnzt in Inversion Ratio B/A Ratio C/A

Wikipedia 3,207,758 11,257,644 23,928,232 3.51 7.46

Slashdot 119,580,272 1,032,276,955 4,817,461,830 8.63 40.29

Epinions 165,006,379 1,825,755,902 11,755,245,476 11.06 71.24

Our method SRWR- Pre generates less nonzeros in precomputed matrices than other preprocessing methods

0.3 second over all signed networks. Inversion is the slowest among the tested methods over
all datasets. The main reason is that Inversion produces a very large number of nonzeros in
precomputed matrices (e.g., Inversion produces about 11 billion nonzeros in the Epinions
dataset as presented in Table 6). These results indicate that SRWR- Pre is appropriate to serve
given queries in real-time on the datasets with lowmemory usage compared to othermethods.

Discussion In this work, we propose two methods for SRWR: SRWR- Iter and SRWR-
Pre which are iterative and preprocessing methods computing SRWR scores, respectively.
SRWR- Iter does not require heavy precomputed data to compute SRWR scores. However,
SRWR- Iter shows slow query speed as presented in Fig. 13c because SRWR- Iter should
perform matrix vector multiplications many times for a given seed node. On the other hand,
SRWR- Pre is faster up to 14× than SRWR- Iter in term of query speed since SRWR-
Pre directly computes SRWR scores from precomputed data. However, in SRWR- Pre,
the values of the parameters c, β, and γ of SRWR are fixed through the preprocessing
phase (Algorithm 3); thus, SRWR- Pre cannot change the parameters in the query phase
(Algorithm 4). To obtain SRWR scores with the different values of the parameters, we need
to perform the preprocessing phase with the parameters again. On the contrary, SRWR-
Iter easily handles the change of the parameters in the query phase (Algorithm 2) without
additional operations such as preprocessing. One appropriate usage for our methods is that
a user uses SRWR- Iter to find proper parameters for a specific application; and then, the
user exploits SRWR- Pre with the discovered parameters to accelerate the query speed in
the application.
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6 Conclusion

We propose Signed Random Walk with Restart, a novel model which provides per-
sonalized trust or distrust rankings in signed networks. In our model, we introduce a signed
random surfer so that she considers negative edges by changing her sign for surfing on signed
networks. Consequently, our model provides personalized trust or distrust rankings reflecting
signed edges. Our model is a generalized version of Random Walk with Restart working on
both signed and unsigned networks. We also devise SRWR- Iter and SRWR- Pre, iterative
and preprocessing methods to compute SRWR scores, respectively. We experimentally show
that SRWR achieves the best accuracy for link prediction, predicts trolls 4×more accurately,
and shows a satisfactory performance for inferring missing signs of edges compared to other
methods. SRWR- Pre preprocesses a signed network up to 4.5× faster, and requires 11×
less memory space than other preprocessing methods; SRWR- Pre computes SRWR scores
up to 14× faster than other methods. Future research directions include developing a learning
algorithm which automatically learns the balance attenuation factors of our model from a
given input graph.
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A Appendix

A.1 Details of the hub-and-spoke reorderingmethod

SlashBurn [19,28] is a node reordering algorithm which concentrates nonzero entries of the
adjacency matrix of a given graph based on the hub-and-spoke structure. Let n be the number
of nodes in a graph, and t be the hub selection ratiowhose range is between 0 and 1where �tn�
indicates the number of nodes selected by SlashBurn as hubs. For each iteration, SlashBurn
disconnects �tn� high-degree nodes, called hub nodes, from the graph; then the graph is split
into the giant connected component (GCC) and the disconnected components. The nodes in
the disconnected components are called spokes, and each disconnected component forms a
block in |H|11 (or T11) in Fig. 6. Then, SlashBurn reorders nodes such that the hub nodes
get the highest ids, the spokes get the lowest ids, and the nodes in the GCC get the ids in
the middle. SlashBurn repeats this procedure on the GCC recursively until the size of GCC
becomes smaller than �tn�. After SlashBurn is done, the reordered adjacencymatrix contains
a large and sparse block diagonal matrix in the upper left area, as shown in Fig. 6. Figure 14
depicts the procedure of SlashBurn when �tn� = 1.

A.2 Properties and lemmas

A.2.1 Sum of positive and negative SRWR scores

Property 3 Consider the recursive equation p = (1 − c)|Ã|�p + cq where p = r+ + r−
and |Ã|� is a column stochastic matrix. Then 1�p = ∑

i pi = 1.
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Fig. 14 Node reordering based on hub-and-spoke method when �tn� = 1 where �tn� indicates the number
of selected hubs at each step, and t is the hub selection ratio (0 < t < 1). Red nodes are hubs; blue nodes are
spokes that belong to the disconnected components; green colored are nodes that belong to the giant connected
component. At Step 1 in (a), the method disconnects a hub node, and assigns node ids as shown in (b). The
hub node gets the highest id (14), the spoke nodes get the lowest ids (1–7), and the GCC gets the middle ids
(8–13). The next iteration starts on the GCC in (b), and the node ids are assigned as in (c)

Proof By multiplying both sides by 1�, the equation is represented as follows:

p = (1 − c)|Ã|�p + cq ⇔ 1�p = (1 − c)1�|Ã|�p + c1�q

Note that 1�|Ã|� = (|Ã|1)�, and |Ã| is a row stochastic matrix; thus, (|Ã|1)� = 1�. Hence,
the above equation is represented as follows:

1�p = (1 − c)1�|Ã|�p + c1�q ⇔ 1�p = (1 − c)1�p + c ⇔ 1�p = 1

��

A.2.2 Analysis on number of iterations of SRWR-ITER

Lemma 3 Suppose h = [r+; r−]�, and h(k) is the result of kth iteration in SRWR- Iter. Let
δ(k) denote the error ‖h(k) − h(k−1)‖1. Then δ(k) ≤ 2(1 − c)k , and the estimated number T
of iterations for convergence is log1−c

ε
2 where ε is an error tolerance, and c is the restart

probability.

Proof According to Eq. (4), δ(k) is represented as follows:

δ(k) = ‖h(k) − h(k−1)‖1 = (1 − c)‖B̃�(h(k−1) − h(k−2))‖1
≤ (1 − c)‖B̃�‖1‖h(k−1) − h(k−2)‖1
= (1 − c)‖h(k−1) − h(k−2)‖1 = (1 − c)δ(k−1)

Note that ‖B̃�‖1 = 1 since B̃� is column stochastic as described in Theorem 1. Hence, δ(k) ≤
(1 − c)δ(k−2) ≤ · · · ≤ (1 − c)kδ(1). Since δ(1) = ‖h(1) − h(0)‖1 ≤ ‖h(1)‖1 + ‖h(0)‖1 = 2,
δ(k) ≤ 2(1− c)k . Note that when δ(k) ≤ ε, the iteration of SRWR- Iter is terminated. Thus,
for k ≤ log1−c

ε
2 , the iteration is terminated, and the number T of iterations for convergence

is estimated at log1−c
ε
2 . ��
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A.2.3 Time complexity of sparse matrix multiplication

Lemma 4 (Sparse Matrix Multiplication [32]) Suppose that A and B are p × q and q × r
sparse matrices, respectively, andA has nnz(A) nonzeros. CalculatingC = AB using sparse
matrix multiplication requires O(nnz(A)r).

A.3 Complexity analysis of proposedmethods for SRWR

We analyze the complexity of our proposed methods SRWR- Iter and SRWR- Pre in terms
of time and space.The space and time complexities of SRWR- Iter are presented inLemma5,
and those of SRWR- Pre are in Lemmas 6, 7, and 8 , respectively.

A.3.1 Space and time complexities of SRWR-ITER

Lemma 5 (Space and Time Complexities of SRWR- Iter) Let n and m denote the number of
nodes and edges of a signed network, respectively. Then the space complexity of Algorithm 2
is O(n + m). The time complexity of Algorithm 2 is O(T (n + m)) where the number T of
iterations is log1−c

ε
2 , c is the restart probability, and ε is an error tolerance.

Proof The space complexity for Ã+ and Ã− is O(m) if we exploit a sparsematrix format such
as compressed column storage to save the matrices. We need O(n) for SRWR score vectors
r+ and r−. Thus, the space complexity is O(n + m). One iteration in Algorithm 2 takes
O(n + m) time due to sparse matrix vector multiplications and vector additions where the
time complexity of a sparse matrix vector multiplication is linear to the number of nonzeros
of a matrix [7]. Hence, the total time complexity is O(T (n + m)) where the number T of
iterations is log1−c

ε
2 which is proved in Lemma 3. ��

A.3.2 Space and time complexities of SRWR-PRE

Lemma 6 (Space Complexity of SRWR- Pre) The space complexity of the preprocessed
matrices from SRWR- Pre is O(n2

2 + m) where n2 is the number of hubs and m is the
number of edges in the graph.

Proof The space complexity of each preprocessed matrix is summarized in Table 7. Ã−,
|H|12, |H|21, T12, and T21 are sparse matrices, and constructed from the input graph; hence,
the space complexity is bounded by the number of edges (i.e., O(m)). Note that |H| and T
have the same sparsity pattern; hence, |H|11 and T11 identified by [19,28] have the same b
blocks. The i th block in |H|−1

11 (or T−1
11 ) contains n2

1i nonzeros; therefore, |H|−1
11 and T−1

11

require O(
∑b

i=1 n2
1i ) space, respectively. Since the dimension of L−1

|H|, U
−1
|H|, L

−1
T , and U−1

T

is n2, they require O(n2
2) space. ��

Note that the blocks in |H|11 (or T11) are discovered by the reordering method [19,28] as
briefly described in Appendix A.1. In real-world graphs,

∑b
i=1 n2

1i can be bounded by O(m)

as shown in [34]. Hence, we assume that the space complexity of |H|−1
11 and T−1

11 is O(m)

for simplicity.

Lemma 7 (Time Complexity of Preprocessing Phase in SRWR- Pre) The preprocessing
phase in Algorithm 3 takes O(T (m +n log n)+n3

2 +mn2) where T = � n2
tn � is the number of

iterations, and t is the hub selection ratio in the hub-and-spoke reordering method [19,28].
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Table 7 Space complexity of
each preprocessed matrix from
Algorithm 3

Matrix Space complexity

Ã−, |H|12, |H|21, T12, and T21 O(m)

|H|−1
11 , and T

−1
11 O(

∑b
i=1 n21i ) = O(m)

L−1
|H|, U

−1
|H|, L

−1
T , and U−1

T O(n22)

Note that m is the number of edges of the input graph; n2 is the number
of hubs, and n1i is the number of nodes in i th block where b blocks in
|H|11 (or T11) are identified by the hub-and-spoke reordering method

Proof We only consider the main factors of the time complexity of Algorithm 3 in this proof.
The hub-and-spoke reorderingmethod takes O(T (m+n log n)) time (line 1) where T is � n2

tn �
which is proved in [19,28]. Computing the Schur complement of |H|11 takes O(n2

2 + mn2)

because it takes O(mn2) to compute P1 = |H|−1
11 |H|12 and P2 = |H|21P1 by Lemma 4, and

O(n2
2) to compute |H|22−P2 (line 6). It takes O(n3

2) to compute the inverse of the LU factors
(line 8). Note that computing |H|−1

11 (line 4) requires O(
∑b

i=1 n3
1i ) time where it takes n3

1i to
obtain the inverse of i th block. In real-world networks, the size n1i of each block is much
smaller than the number n2 of hubs; thus, we assume that

∑b
i=1 n3

1i � n3
2 [34]. Hence, the

time complexity of preprocessing |H| is O(T (m + n log n) + n3
2 + mn2). Note that the time

complexity of preprocessing T is included into that of preprocessing |H| since T and |H|
have the same sparsity pattern. ��
Lemma 8 (TimeComplexity ofQuery Phase in SRWR- Pre) The query phase in Algorithm 4
takes O(n2

2 + n + m) time.

Proof We only consider the main factors of the time complexity of Algorithm 4 in this
proof. It takes O(n2

2 + m) to compute p2 since it takes O(n2 + m) to compute q̃2 =
q2 − |H|21(|H|−1

11 q1), and O(n2
2) to compute U−1

|H|(L
−1
|H|q̃2) (line 2). It takes O(n) time to

concatenate the partitioned vectors (lines 4 and 8) and compute r+ and r (lines 9 and 10 ).
Hence, the total time complexity of the query phase is O(n2

2 + n + m). ��

A.4 Detailed limitations of existing randomwalk-based rankingmodels in signed
networks

In this section, we describe the detailed limitation of existing random walk-based ranking
models which are briefly described in Sect. 1.

– Random Walk with Restart (RWR): We perform RWR on a given signed network after
taking absolute edge weights to obtain r as follows:

r = (1 − c)|Ã|�r + cq

where |Ã| is the row-normalized matrix of the absolute adjacency matrix in the signed
network. RWR does not properly consider negative edges for r.

– Modified Random Walk with Restart (M-RWR) [33]: M-RWR applies RWR separately
on both a positive subgraph and a negative subgraph; thus, it obtains r+ on the positive
subgraph and r− on the negative subgraph, and then, computes r = r+−r−. The detailed
equations for M-RWR are as follows:
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r+ = (1 − c)B̃�+r+ + cq and r− = (1 − c)B̃�−r− + cq

where B̃+ is the row-normalized matrix of the adjacency matrix containing only positive
edges, and B̃− is that of the absolute adjacency matrix containing only negative edges.
The main limitation ofM-RWR is that it does not consider relationships between positive
and negative edges due to the separation as shown in the above equations.

– Modified Personalized SALSA (M-PSALSA) [30]: Andrew et al. made amodification on
SALSA1 by introducing the random jump into it, called Personalized SALSA (PSALSA).
As similar to M-RWR, we apply PSALSA separately on both positive and negative
subgraphs and consider authorities on the positive subgraph as r+, and those scores on
the negative subgraph as r−. M-PSALSA also has the same limitation with M-RWR.

– Personalized Signed Spectral Rank (PSR) [23]: Kunegis et al. proposed PSR which is a
variant of PageRank by constructing the following matrix similar to Google matrix:

MP S R = (1 − c)D−1A� + ces1�

where A is the signed adjacency matrix, D is the diagonal out-degree matrix, and es is
the sth unit vector. Then, PSR computes the left eigenvector of MP S R , which induces a
relative trustworthy score vector r including positive and negative values. Although PSR
is able to produce r, the equation for PSR is heuristic because MP S R is not a column
stochastic matrix. Also, how the random surfer based on the equation interprets negative
edges is veiled.

A.5 Detailed description of evaluationmetrics

We describe the details of metrics used in the link prediction and the troll identification tasks.
The metrics for the sign prediction task is described in Sect. 5.5.

A.5.1 Link prediction

– GAUC (Generalized AUC): Song et al. [35] proposed GAUCwhich measures the quality
of link prediction in signed networks. An ideal personalized ranking w.r.t. a seed node
s needs to rank nodes with positive links to s at the top, those with negative links at
the bottom, and other unknown status nodes in the middle of the ranking. For a seed
node s, suppose that Ps is the set of positive nodes potentially connected by s, Ns is that
of negative nodes, and Os is that of the other nodes. Then, GAUC of the personalized
ranking w.r.t. s is defined as follows:

GAUCs = η

|Ps |(|Os | + |Ns |)

⎛

⎝
∑

p∈Ps

∑

i∈Os∪Ns

I(rp > ri )

⎞

⎠

+ 1 − η

|Ns |(|Os | + |Ps |)

⎛

⎝
∑

i∈Os∪Ps

∑

n∈Ns

I(ri < rn)

⎞

⎠

where η = |Ps ||Ps |+|Ns | is the relative ratio of the number of positive edges and that of

1 SALSA [25] is a normalized version of HITS [22].
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negative edges, and I(·) is an indicator function that returns 1 if a given predicate is true,
or 0 otherwise. GAUCwill be 1.0 for the perfect ranking list and 0.5 for a random ranking
list [35].

– AUC (Area Under the Curve): AUC of the personalized ranking scores r w.r.t. seed node
s in signed networks is defined as follows [35]:

AUCs = 1

|Ps ||Ns |
∑

p∈Ps

∑

n∈Ns

I(rp > rn)

where Ps is the set of positive nodes potentially connected by s, and Ns is the set of
negative nodes. I(·) is an indicator function that returns 1 if a given predicate is true,
or 0 otherwise. With an ideal ranking list, AUC should be 1 representing each positive
sample is ranked higher than all the negative samples. For a random ranking, AUC will
be 0.5. However, AUC is not a satisfactory metric for the link prediction task in signed
networks because AUC is designed for two classes (positive and negative), while the
link prediction in signed networks should consider three classes (positive, unknown, and
negative) as described in the above.

A.5.2 Troll identification

Suppose that we have a personalized rankingR in the ascending order of the trustworthiness
scores w.r.t. a seed node (i.e., a node with a low score is ranked high) to have the same effect
of searching trolls in the bottom of the original ranking in the descending order of those
scores.

– MAP@k (Mean Average Precision): MAP@k is the mean of average precisions, AP@k,
for multiple queries. Suppose that there are l trolls to be captured. Then, AP@k is defined
as follows:

AP@k = 1

min(l, k)

(
∑

t∈T
Precision@t

)

where Precision@t is the precision at the cutoff t . Note that T = {t |I(R[t]) = 1 for 1 ≤
t ≤ k} where R[t] denotes the user ranked at position t in the ranking R, and I(R[t]) is
1 if R[t] is a troll. For N queries, MAP@k is defined as follows:

MAP@k = 1

N

(
N∑

i=1

AP@k

)

– NDCG@k (Normalized Discount Cumulative Gain): NDCG is the normalized value of
Discount Cumulative Gain (DCG), which is defined as follows:

DCG@k = rel1 +
k∑

i=2

reli
log2(i)

, and NDCG@k = DCG@k

IDCG@k

where reli is the user-graded relevance score for the i th ranked item. Then, NDCG@k is
obtained by normalizing using Ideal DCG(IDCG) which is the DCG for the ideal order
of ranking.

– Precision@k and Recall@k: Precision@k (Recall@k) is the precision (recall) at the
cutoff k in a ranking. Precision@k is the ratio of identified trolls in top-k ranking, and
Recall@k is the ratio of identified trolls in the total trolls.
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– MRR (Mean Reciprocal Rank): MRR@k is the mean of the reciprocal rank (RR) for
each the top-k query response. RR is the multiplicative inverse of the rank of the first
correct answer. Hence, for N multiple queries, MRR@k is defined as follows:

MRR@k = 1

N

N∑

i=1

1

ranki

where ranki is the rank position of the first relevant item in the top-k ranking. If there
is no relevant item in the ranking for the i th query, the inverse of the rank, ranki

−1,
becomes zero.

A.6 Discussion on relative trustworthiness scores of SRWR

In Sect. 4.1, we define the relative trustworthiness r = r+ − r− where r+ is for positive
SRWR scores, and r− is for negative SRWR ones. We show that r+ and r− are measures,
and r is a signed measure using definitions from measure theory [38]. We first introduce the
definition of measure as follows:

Definition 5 (Measure [38]) A measure μ on a (finite) set 	 with σ -algebra A is a function
μ : A → R≥0 such that

1. (Nonnegativity) μ(E) ≥ 0 ∀E ∈ A,
2. (Null empty set) μ(∅) = 0,
3. (Countable additivity) μ(

⋃∞
i=1 Ei ) = ∑∞

i=1 Ei for any sequence of pairwise disjoint
sets, E1, E2, . . . ∈ A

where σ -algebra A on 	 is a collection A ⊆ 2	 s.t. it is nonempty, and closed under
complements (i.e., E ∈ A ⇒ Ec ∈ A) and countable unions (i.e., E1, E2, · · · ∈ A ⇒⋃∞

i=1 Ei ∈ A). The pair of (	,A) is called measurable space. ��
In probability theory, σ -algebra A describes all possible events to be measured as prob-

ability. Note that r+ and r− are joint probabilities of nodes and signs, i.e., r+
u = P(N =

u, S = +) and r−
u = P(N = u, S = −) where N is a random variable of nodes, and S

is a random variable of the surfer’s sign. Note that N takes an item from σ -algebra A. The
following property shows that r+ and r− are (nonnegative) measures.

Property 4 Suppose	 is the setV of nodes, andσ -algebraAon	 is2	. Letμ+ = P(N , S =
+) and μ− = P(N , S = −). Then, both μ+ and μ− are (nonnegative) measures according
to Definition 5.

Proof For any E ∈ A, μ+(E) ≥ 0 and μ+(∅) = 0 are obviously true since P(N , S = +) is
a probability; hence, P(E, S = +) ≥ 0 and P(∅, S = +) = 0. Let (En)n∈N be a sequence
of pairwise disjoint sets where En ∈ A. Since the sets in the sequence are mutually disjoint,
the following holds:

P

(
⋃

n∈N
En, S = +

)

=
∑

n∈N
P(En, S = +)

Therefore,μ+ = P(N , S = +) is a measure by Definition 5. Similarly,μ− = P(N , S = −)

is also a measure. ��
Next, we introduce the definition of signed measure, a generalized version of measure by

allowing it to have negative values.
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Definition 6 (Signed Measure [38]) Given a set 	 and σ -algebra A, a signed measure on
(	,A) is a function μ : A → R such that

1. (Real value) μ(E) takes a real value in R,
2. (Null empty set) μ(∅) = 0,
3. (Countable additivity) μ(

⋃∞
i=1 Ei ) = ∑∞

i=1 Ei for any sequence of pairwise disjoint
sets, E1, E2, · · · ∈ A ��
Note that Shannon entropy and electric charge are representative examples of signedmea-

sure. Then, the following lemma indicates the difference between two nonnegative measures
is a signed measure.

Lemma 9 (Difference Between TwoNonnegativeMeasures [38]) Suppose we are given non-
negative measure μ+ and μ− on the same measurable space (	,A). Then, μ = μ+ − μ−
is a signed measure.

Proof Since μ+ and μ− are nonnegative, μ is located between −∞ and ∞. Also, μ(∅) =
μ+(∅) − μ−(∅) = 0. Moreover, μ is countable additive, i.e.,

μ

( ∞⋃

i=1

Ei

)

= μ+
( ∞⋃

i=1

Ei

)

− μ−
( ∞⋃

i=1

Ei

)

=
∞∑

i=1

(
μ+(Ei ) − μ−(Ei )

) =
∞∑

i=1

μ(Ei )

Hence, μ = μ+ − μ− is a signed measure according to Definition 6. ��
Lemma 9 implies that the relative trustworthiness r = r+ − r− is a signed measure. The

trustworthiness ru measures a degree of trustworthiness between seed node s and node u: if
ru > 0, seed node s is likely to trust node u as much as ru , while if ru < 0, s is likely to
distrust u as much as ru .
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