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Abstract

Given a real-world graph, how can we measure relevance scores for ranking and link predic-

tion? Random walk with restart (RWR) provides an excellent measure for this and has been

applied to various applications such as friend recommendation, community detection, anom-

aly detection, etc. However, RWR suffers from two problems: 1) using the same restart

probability for all the nodes limits the expressiveness of random walk, and 2) the restart

probability needs to be manually chosen for each application without theoretical justification.

We have two main contributions in this paper. First, we propose RANDOM WALK WITH EXTENDED

RESTART (RWER), a random walk based measure which improves the expressiveness of

random walks by using a distinct restart probability for each node. The improved expressive-

ness leads to superior accuracy for ranking and link prediction. Second, we propose SURE

(Supervised Restart for RWER), an algorithm for learning the restart probabilities of RWER

from a given graph. SURE eliminates the need to heuristically and manually select the restart

parameter for RWER. Extensive experiments show that our proposed method provides the

best performance for ranking and link prediction tasks.

1 Introduction

How can we measure effective node-to-node proximities for graph mining applications such

as ranking and link prediction? Measuring relevance (i.e., proximity or similarity) scores

between nodes is a fundamental tool for many graph mining applications [1, 2, 3, 4, 5].

Among various relevance measures, Random Walk with Restart (RWR) [6] provides useful

node-to-node relevance scores by considering global network structure [7] and intricate edge

relationships [8]. RWR has been successfully exploited in a wide range of data mining applica-

tions such as ranking [9, 10, 11], link prediction [1, 2, 3, 12, 5], community detection [13, 14],

anomaly detection [15], etc.

However, RWR has two challenges for providing more effective relevance scores. First,

RWR assumes a fixed restart probability on all nodes, i.e., a random surfer jumps back to the

query node with the same probability regardless of where the surfer is located. This assumption
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prevents the surfer from considering the query node’s preferences for other nodes, thereby

limiting the expressiveness of random walk for measuring good relevance scores. Second,

RWR requires users to heuristically select the restart probability parameter without strong the-

oretical justification to choose the parameter.

In this paper, we propose a novel relevance measure RANDOM WALK WITH EXTENDED RESTART

(RWER), an extended version of RWR, which reflects a query node’s preferences on relevance

scores by allowing a distinct restart probability for each node. We also propose a supervised

learning method SURE (Supervised Restart for RWER) that automatically finds optimal restart

probabilities in RWER from a given graph. Extensive experiments show that our method pro-

vides the best link prediction accuracy. Table 1 summarizes strength of SURE compared to

existing methods. Our main contributions are summarized as follows:

• Model. We propose RANDOM WALK WITH EXTENDED RESTART (RWER), a new random walk

model to improve the expressiveness of RWR. RWER allows each node to have a distinct

restart probability so that the random surfer has a finer control on preferences for each

node.

• Learning. We propose SURE, an algorithm for learning the restart probabilities in RWER

from data. SURE automatically determines the best restart probabilities.

• Experiment. We empirically demonstrate that our proposed method improves accuracy in

all dataset.

The source code of our method and datasets used in this paper are available at https://

github.com/datalabsnu/sure. The rest of this paper is organized as follows. Section 2 presents a

preliminary on RWR and defines the problem. Our proposed methods are described in Section

3. After presenting experimental results in Section 4, we provide a review on related works in

Section 5. Lastly, we conclude in Section 6.

2 Preliminaries

In this section, we describe the preliminaries on Random Walk with Restart. Then, we formally

define the problem handled in this paper. We use Aij or A(i, j) to denote the entry at the inter-

section of the i-th row and j-th column of matrix A. The i-th element of the vector x is denoted

by xi. Table 2 lists the symbols used in this paper.

2.1 Random walk with restart

Random walk with restart (also known as Personalized PageRank, PPR with a single seed

node) [9] measures each node’s proximity (relevance) w.r.t. a given query node s in a graph.

RWR assumes a random surfer who starts at node s. The surfer moves to one of its neighboring

nodes with probability 1 − c or restarts at node s with probability c. When the surfer moves

from u to one of its neighbors, each neighbor v is selected with a probability proportional to

Table 1. Comparison of our proposed SURE and existing methods with respect to various aspects in ranking and link prediction tasks. SURE outperforms all learning

methods in terms of accuracy, speed, scalability, and memory usage.

Method Supervised? Accuracy Speed Scalability Memory Usage

QUINT [12] Yes High Low Low High

SRW [5] Yes High Low Low Low

RWR [6] No Low High High Low

SuRe Yes Higher High High Low

https://doi.org/10.1371/journal.pone.0213857.t001
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the weight in the edge (u, v). The relevance score between seed node s and node u is the sta-

tionary probability that the surfer is at node u. If the score is large, we consider that nodes s
and u are highly related.

Limitations. RWR cannot consider a query node’s preferences for estimating relevance

scores between the query node and other nodes. For example, suppose we compute relevance

scores from the query node A to other nodes in a political blog network in Fig 1 where blue

colored nodes (A, B, and C) are liberal blogs, red colored ones (G and H) are conservative,

black ones (D, E, F, and I) are not labeled, and an edge between nodes indicates a hyperlink

between the corresponding blogs. Based on the topology of the graph, we consider that nodes

E and F tend to be moderate, node D is likely to be liberal, and node I is likely to be conserva-

tive. Since the query node A is a liberal blog, node A will prefer other liberal nodes to conserva-

tive nodes. However, a conservative node G is ranked higher than nodes related to liberal blogs

such as nodes C and D in the ranking result of RWR as shown in the left table of Fig 1. The rea-

son is that preferences are not considered in RWR, and the random surfer jumps back to the

query node A with a fixed restart probability c wherever the surfer is. On the other hand,

RWER reflects the query node’s preferences on relevance scores by allowing a distinct restart

probability for each node as shown in the right table of Fig 1.

Another practical problem is that it is non-trivial to set an appropriate value of the restart

probability c for different applications since we need to manually choose c so that the restart

probability provides optimal relevance scores for each application. RWR scores are highly

affected by the restart probability; the ranking results of each restart probability (c = 0.15 and

c = 0.5) are quite different as seen in the left table of Fig 1. In contrast, our learning method

SURE automatically determines the optimal restart probabilities for all nodes based on the

query node’s preferences as well as relationships between nodes. The ranking result by our

proposed RWER and SURE is more desirable for the query node A (liberal) than those of RWR

because many liberal blog nodes are ranked high in the ranking result as shown in the right

table of Fig 1. The detailed descriptions of our proposed approaches RWER and SURE are pre-

sented in Section 3.

Table 2. Table of symbols.

Symbol Definition

G input graph

n number of nodes in G

m number of edges in G

s query node (= seed node)

c restart probability

c (n × 1) restart probability vector

r (n × 1) relevance vector

o (n × 1) origin vector

A (n × n) adjacency matrix of G
~A (n × n) row-normalized matrix of G

A(i,:) (1 × n) i-th row of a matrix A

A(:, j) (n × 1) j-th column of a matrix A

Jij (n × n) single-entry matrix whose (i, j) entry is 1

q (n × 1) starting vector

P, N set of positive and negative nodes

� Hadamard product

https://doi.org/10.1371/journal.pone.0213857.t002
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2.2 Problem definition

We are given a graph G with n nodes and m edges, a query node s, and side information from

the query node. The side information contains a set of positive nodes P = {x1, . . ., xk} that s pre-

fers, and a set of negative nodes N = {y1, . . ., yl} that s dislikes. Our task is to learn restart proba-

bilities for all nodes such that relevance scores of the positive nodes are greater than those of

the negative ones.

3 Proposed method

In this section, we first describe RANDOM WALK WITH EXTENDED RESTART (RWER), our proposed

model for extended restart probabilities. We then propose SURE, an efficient algorithm for

learning the restart probabilities.

3.1 Overview of Random Walk with Extended Restart

RWER is a novel relevance model reflecting a query node’s preferences on relevance scores.

The main idea of RWER is that we introduce a restart probability vector each of whose entry

corresponds to a restart probability at a node, so that the restart probabilities are related to the

preferences for the nodes.

In RWER, a restart probability of each node is interpreted as the degree of boredom of a

node w.r.t. the query node. That is, if the restart probability on a node is large, then the surfer

runs away from the current node to the query node (i.e., the surfer becomes bored at the node).

On the other hand, if the restart probability of the node is small, then surfer desires to move

around the node’s neighbors (i.e., the surfer has an interest in the node and its neighbors).

Fig 1. Example of RWR and our proposed approaches RWER & SURE on a political blog network. RWR uses the fixed restart probability 0.15 or 0.5 while our

proposed RWER uses distinct restart probabilities on nodes.

https://doi.org/10.1371/journal.pone.0213857.g001
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As depicted in Fig 1, each node has its own restart probability in our model RWER. The

restart probabilities are determined by our supervised learning method SURE (Section 3.5)

from the query (liberal) node A, the positive (liberal) nodes B and C, and the negative (conser-

vative) nodes G and H. Note that a ranking list where many liberal nodes are ranked high is

desirable for the query node A since A is liberal. As shown in Fig 1, using distinct restart proba-

bilities for each node by RWER provides more satisfactory rankings for the query node than

using a single restart probability for all nodes by RWR. The restart probabilities of liberal

nodes are smaller than those of conservative nodes, which implies that the random surfer pre-

fers searching around the liberal nodes such as B and C while the surfer is likely to run away

from the conservative nodes such as G and H.

One might think that it is enough to simply assign small restart probabilities to positive

nodes and large restart probabilities to negative nodes for a desirable ranking. However, the

restart probabilities should be determined also for unlabeled nodes, and the probabilities

should reflect intricate relationships between nodes as well as the query node’s preferences.

For example, the restart probability of node F in Fig 1 is relatively moderate because node F is

located between a liberal node A and a conservative node G. Also, the restart probability of

node D is small since node D is close to other liberal nodes B and C. Similarly, the restart prob-

ability of node I is large since node I is closely related to other conservative nodes G and H.

3.2 Formulation of Random Walk with Extended Restart

We formulate RWER in this section. We first explain the formulation using the example

shown in Fig 2, and present general equations. In the example, the surfer goes to one of its

neighbors or jumps back to the query node. To obtain the RWER probability ru at time t + 1,

we should take into account the scores of the three nodes which are i, j and k at time t. Suppose

the surfer is at the node i at time t. The surfer can go to an out-neighbor through one of the

two outgoing edges with probability 1 − ci. Note that every node has a distinct restart probabil-

ity and node i has a restart probability ci in this case. Without the restart action, rðtþ1Þ
u in Fig 2 is

defined as follows:

rðtþ1Þ
u  ð1 � ciÞ

rðtÞi
2
þ ð1 � cjÞ

rðtÞj
3
þ ð1 � ckÞr

ðtÞ
k

Also, the surfer on any node v jumps back to the query node with probability cv. The above

equation is rewritten as follows considering the restart action of the random surfer:

rðtþ1Þ
u  ð1 � ciÞ

rðtÞi
2
þ ð1 � cjÞ

rðtÞj
3
þ ð1 � ckÞr

ðtÞ
k

þ
�
c1r
ðtÞ
1 þ � � � þ cvrðtÞv þ � � � þ cnrðtÞn

�
1ðu ¼ sÞ

where 1(u = s) is 1 if u is the query node s; otherwise, it is 0. Note that the restart term is differ-

ent from that of the traditional random walk with restart.

Based on the aforementioned example, the recursive equation of our model is defined as

follows:

ru ¼
X

v2INu

ð1 � cvÞ
rv

jOUTvj

 !

þ
X

v

cvrv

 !

1ðu ¼ sÞ ð1Þ

where INi is the set of in-neighbors of node i, and OUTi is the set of out-neighbors of node i.
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Eq (1) is expressed in the form of a matrix equation as follows:

r ¼ ~A>ðI � diagðcÞÞrþ ðc>rÞq ð2Þ

where ~A is a row-normalized matrix of the adjacency matrix A, c is a restart vector whose i-th

entry is ci, diag(c) is a matrix whose diag(c)ii = ci and other entries are 0, and q is a vector

whose s-th element is 1 and all other elements are 0. The random surfer can return to a set

of nodes S = {s1, s2, . . ., sm}. In this case, q(si) = 1/|S|, for i = 1, . . ., m. Notice that if c is a vector

all of whose elements are the same, then the RWER is equal to RWR (or PPR). The following

lemma shows that Eq (2) can be represented as a closed form equation.

Lemma 1 The closed form w.r.t. r in Eq (2) is represented as follows:

r ¼ ðI � BÞ� 1q ð3Þ

where B is ~A>ðI � diagðcÞÞ þ qðc � 1Þ>, ~A is a row-normalized matrix, and 1 is an all-ones
vector.

Fig 2. Example of a network. Each node has its own restart probability.

https://doi.org/10.1371/journal.pone.0213857.g002
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Proof 1 Note that c>r is a scalar; thus, (c>r)q = q(c>r) = (qc>)r. Hence, Eq (2) is represented
as follows:

r ¼ ~A>ðI � diagðcÞÞrþ ðqc>Þr

¼ ~A>ðI � diagðcÞÞrþ ðqc>Þr � qþ q

Since r is a probability vector and 1>r = 1, the above equation is written in the following equa-
tion:

r ¼ ~A>ðI � diagðcÞÞrþ ðqc>Þr � qð1>rÞ þ q

¼ ~A>ðI � diagðcÞÞrþ ðqðc � 1Þ
>
Þrþ q

¼
�

~A>ðI � diagðcÞÞ þ qðc � 1Þ
>
�
rþ q

¼ Brþ q

where B is ~A>ðI � diagðcÞÞ þ qðc � 1Þ>. Finally, r is represented in the following closed form:

r ¼ ðI � BÞ� 1q

Note that I − B is invertible (see the following Lemma 2).
Lemma 2 Suppose B is ~A>ðI � diagðcÞÞ þ qðc � 1Þ>. Then, M = I − B is invertible.
Proof 2 Let C be I − diag(c), and X be I � ~A>C. Then, M = I − B is represented as follows:

M ¼ I � ~A>C � qðc � 1Þ>

¼ Xþ qð1 � cÞ>

Note that ð~A>CÞij � 0, 1� i, j� n and the largest eigenvalue lmaxð
~A>CÞ � 1 since ~A is stochas-

tic and C is sub-stochastic. In other words, X ¼ I � ~A>C is M-matrix [16]; thus, X−1 exists and
all entries of X−1 are nonnegative. By Sherman-Morrison lemma [17], (X + q(1 − c)>)−1 is repre-
sented as follows:

ðXþ qð1 � cÞ>Þ� 1
¼ X� 1 �

X� 1qð1 � cÞ>X� 1

1þ ð1 � cÞ>X� 1q

Since all entries of X−1, 1 − c and q are nonnegative, (1 − c)> X−1 q� 0; thus, 1 + (1 − c)> X−1

q� 1. Hence, the right side of the above equation exists, i.e., (X + q(1 − c)>)−1 = M−1 exists.
I − B> is also invertible, which is proved similarly to the proof of I − B.

Note that if c is given, the RWER vector r can be calculated using the closed form in Lemma

1. However, the computation using the closed form requires O(n3) time and O(n2) memory

space due to the matrix inversion where n is the number of nodes; thus, this approach is

impractical when we need to compute RWER scores in large-scale graphs. In order to avoid the

heavy computational cost, we exploit an efficient iterative algorithm described in Section 3.3.

3.3 Algorithm for Random Walk with Extended Restart

We present an iterative algorithm for computing RWER scores efficiently. Our algorithm is

based on power iteration and comprises two phases: a normalization phase (Algorithm 1) and

an iteration phase (Algorithm 2).

Normalization phase (Algorithm 1). Our proposed algorithm first computes the out-

degree diagonal matrix D of A (line 1). Then, the algorithm computes the row normalized

matrix ~A using D (line 2).

Supervised and extended restart in random walks for ranking and link prediction in networks
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Iteration phase (Algorithm 2). Our algorithm computes the RWER score vector r for the

seed node s in the iteration phase. As described in Section 3.2, the vector q denotes a length-n
starting vector whose entry at the index of the seed node is 1 and otherwise 0 (line 1). Our algo-

rithm iteratively computes Eq (2) (line 3). We then compute the error δ between r0, the result

in the previous iteration, and r (line 4). Next, we update r0 into r for the next iteration (line 5).

The iteration stops when the error δ is smaller than a threshold � (line 6).

Theoretical analysis. We analyze the convergence of the iterative algorithm in Theorem 1

and the time complexity in Theorem 2. We assume that all the matrices considered are saved

in a sparse format, such as the compressed column storage [18], which stores only non-zero

entries, and that all the matrix operations exploit such sparsity by only considering non-zero

entries.

Algorithm 1 Normalization phase of RWER
Input: adjacency matrix A
Output: row-normalized matrix ~A
1: compute a degree diagonal matrix D of A (i.e., Dii = ∑j Aij)
2: compute a normalized matrix, ~A ¼ D� 1A.
3: return ~A

Algorithm 2 Iteration phase of RWER

Input: row-normalized matrix ~A, query node s, restart probability vec-
tor c, and error tolerance �

Output: RWER score vector r
1: set the starting vector q from the seed node s
2: repeat
3: r0  ~A>ðI � diagðcÞÞrþ ðc>rÞq
4: compute error, δ = kr0 − rk
5: update r  r0

6: until δ < �

7: return r

Theorem 1 (Convergence) Suppose the graph represented by ~A is irreducible and aperiodic.
Then, the power iteration algorithm (Algorithm 2) for RWER converges.

Proof 3 Eq (2) is represented as follows:

r ¼ ~A>ðI � diagðcÞÞrþ ðqc>Þr

¼
�

~A>ðI � diagðcÞÞ þ ðqc>Þ
�
r ¼ Gr

Note that G is a column stochastic matrix. Moreover, G is irreducible since ~A is irreducible, and
aperiodic due to the self-loop at node s by restart. Hence, r is the eigenvector corresponding to the
principal eigenvalue of G, and the power iteration for r converges [19].

Theorem 2 (Time Complexity) The time complexity of Algorithm 2 is O(Tm) where T is the
number of iterations, and m is the number of edges.

Proof 4We assume that the number of edges is greater than that of nodes for simplicity. The
iterative algorithm for computing RWER scores takes O(Tm) time since each iteration requires
the sparse matrix-vector multiplication which takes O(m) time.

Theorem 2 indicates that our method in Algorithm 2 presents the linear scalability w.r.t the

number of edges.

3.4 Cost function

Although our relevance measure RWER improves the expressiveness of RWR by introducing

a distinct restart probability for each node, it is difficult to manually investigate the optimal

Supervised and extended restart in random walks for ranking and link prediction in networks
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restart probabilities for all nodes in large graphs. In this section, we define the cost function for

finding the optimal restart probabilities.

As mentioned in Section 2.2, our goal is to set the optimal restart probabilities so that the

relevance scores of positive nodes outweigh those of negative nodes. We define the following

cost function:

arg min
c

FðcÞ ¼ lkc � ok2
þ
X

x2P;y2N

hðry � rxÞ ð4Þ

where λ is a regularization parameter that controls the importance of the regularization term,

o is a given origin vector, h is a loss function, and rx and ry are RWER scores of nodes x and y,

respectively. The cost function is obtained from the pairwise differences between the RWER

scores of positive and negative nodes. Given an increasing loss function h, F(c) is minimized

as the scores of positive nodes are maximized and those of negative nodes are minimized. The

origin vector o prevents the c vector becoming too small, and serves as a model regularizer

which helps avoid overfitting and thus improves accuracy, as we will see in Section 4.4. We

set o to a constant vector all of whose elements are set to a constant. We use the loss function

h(x) = (1 + exp(−x/b))−1 since the loss function maximizes AUC of binary classification when

b is small enough [20, 5]; in that case the loss function becomes a step function.

3.5 SuRe—Optimizing the cost function

Our goal is to minimize Eq (4) with respect to c. Note that the objective function F(c) is not

convex. Thus, we exploit the gradient descent method to find the local minimum of function

F(c). For the purpose, we first need to obtain the derivative of F(c) w.r.t. c:

@FðcÞ
@c

¼ 2lðc � oÞ þ
X

x2P;y2N

@hðry � rxÞ
@c

¼ 2lðc � oÞ þ
X

x2P;y2N

@hðdyxÞ
@dyx

ð
@ry
@c
�
@rx
@c
Þ

ð5Þ

where δyx is ry − rx. The derivative
@hðdyxÞ
@dyx

of the loss function is 1

b hðdyxÞð1 � hðdyxÞÞ.

In order to obtain the derivative
@rx
@c , we have to calculate the derivative of the relevance

score rx w.r.t. ci which is the i-th element of c. Let M be (I − B)−1; then, r = (I − B)−1 q = Mq,

M(:, s) = r, and M(x, s) = rx, from Theorem 1.

Since M is the inverse of I − B, according to [21], @M
@ci

becomes:

@M
@ci
¼ � M

@ðI � BÞ
@ci

M ¼ Mð� ~A>Jii þ JsiÞM

where Jij is a single-entry matrix whose (i, j)th entry is 1 and all other elements are 0. Based on

the above equation,
@Mðx;sÞ
@ci

is represented as follows:

@Mðx; sÞ
@ci

¼ Mðx; :Þð� ~A>ð:; iÞ þ esÞMði; sÞ

where es is a length n unit vector whose s-th entry is 1. Note that
@Mðx;sÞ
@ci

is calculated for 1� i�

n; then,
@rx
@c is written in the following equation:

@rx
@c
¼
@Mðx; sÞ
@c

¼ ð� ~A þ 1e>s ÞMðx; :Þ
>

� �
�Mð:; sÞ ð6Þ
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where � denotes Hadamard product, and 1 is an all-ones vector of length n. Similarly,
@ry
@c is cal-

culated by switching x to y. Using the Eq (6),
P

x2P;y2N
@hðdyxÞ
@dyx

@ry
@c �

@rx
@c

� �
in Eq (5) is represented

as follows:

ð� ~A þ 1e>s Þ
X

x2P;y2N

@hðdyxÞ
@dyx

M y; :ð Þ � M x; :ð ÞÞ
>

�
 !

�Mð:; sÞ

¼
�
ð� ~A þ 1e>s Þ~r

�
�r

ð7Þ

where r = M(:, s) is an RWER score vector, and ~r ¼
P

x2P;y2N
@hðdyxÞ
@dyx

M y; :ð Þ � M x; :ð ÞÞ
>

�
. Then,

@FðcÞ
@c in Eq (5) is represented as follows:

@FðcÞ
@c
¼ 2lðc � oÞ þ ð� ~A þ 1e>s Þ~r

� �
� r ð8Þ

Algorithm 3 SURE—Learning a restart vector c
Input: adjacency matrix A, query node s, positive set P, negative set
N, origin vector o, parameter b of loss function h, and the learning
rate η
Output: the learned restart vector c
1: randomly initialize c
2: while c does not converge do
3: compute r = M(:, s) based on Eq (2) (Algorithm 2)

4: compute ~r ¼
P

x2P;y2N
@hðdyxÞ
@dyx

M y; :ð Þ � M x; :ð ÞÞ
>

�
by a linear system solver

(Lemma 3)
5: compute @FðcÞ

@c by Eq (8)

6: update c c � Z @FðcÞ
@c

7: end while
8: return the learned restart vector c

Notice that we do not obtain M explicitly to compute M(:, s) in Eq (8) since M is the inverse

of I − B and inverting a large matrix is infeasible as mentioned in Section 3.2. Instead, we use

the iterative method described in Algorithm 2 to get r = M(:, s). However, the problem is that

we also require rows of M (i.e., M(x,:) in ~r), and Algorithm 2 only computes a column of M for

a given seed node. How can we calculate ~r without inverting M? ~r is computed iteratively by

the following lemma:

Lemma 3 From the result of Eq (7), ~r ¼
P

x2P;y2N
@hðdyxÞ
@dyx

M y; :ð Þ � M x; :ð ÞÞ
>

�
which is repre-

sented as ~r ¼ M>~p , ðI � B>Þ~r ¼ ~p where ~p ¼
P

x2P;y2N
@hðdyxÞ
@dyx
ðey � exÞ, ex is an n × 1 vector

whose x-th element is 1 and the others are 0, and δyx = ry − rx. Then, ~r is the solution of the linear
system ðI � B>Þ~r ¼ ~p which is solved by an iterative method for linear systems.

Proof 5 M(x,:)> is a column vector which is the transpose of the x-th row of the matrix M. In
other words, Mðx; :Þ ¼ e>x M, Mðx; :Þ> ¼ M>ex where ex is an n × 1 vector whose x-th element
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is 1 and the others are 0. Then, ~r is represented as follows:

~r ¼
X

x2P;y2N

@hðdyxÞ
@dyx

ðM y; :ð Þ � M x; :ð ÞÞ
>

¼
X

x2P;y2N

@hðdyxÞ
@dyx

ðM>ey � M>exÞ

¼ M>
X

x2P;y2N

@hðdyxÞ
@dyx

ðey � exÞ ¼ M>~p

where ~p ¼
P

x2P;y2N
@hðdyxÞ
@dyx
ðey � exÞ. Also, ~r is represented as the following linear system:

~r ¼ M>~p ¼ ðI � BÞ� >~p , ðI � B>Þ~r ¼ ~p

where B ¼ ~A>ðI � diagðcÞÞ þ qðc � 1Þ>.

Note that M−> = I − B> is non-symmetric and invertible (Lemma 2); thus, any iterative

method for a non-symmetric matrix can be used to solve for ~r. We use GMRES [22], an itera-

tive method for solving linear systems since it is the state-of-the-art method in terms of effi-

ciency and accuracy.

Optimization phase (Algorithm 3). SURE algorithm for solving the optimization problem

is summarized in Algorithm 3 and Fig 3. In the algorithm, we use a gradient-based method to

update the restart probability c based on Eq (8).

Fig 3. Flowchart of RWER (Algorithms 1 and 2) and SURE (Algorithm 3). SURE learns restart probability vector c, and RWER computes our

node relevance score vector r for a given seed node s.

https://doi.org/10.1371/journal.pone.0213857.g003
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3.6 Theoretical analysis

We analyze the time complexity of SURE (Algorithm 3).

Lemma 4 Let |P| and |N| denote the number of positive and negative nodes, respectively. The
computation of ~r ¼

P
x;y

@hðdyxÞ
@dyx
ðMðy; :Þ � Mðx; :ÞÞ> takes O(Tm + |P||N|) time where T is the

number of iterations until convergence, and m is the number of edges.
Proof 6 Note that solving a sparse linear system Ax = b with an iterative method such

as GMRES [22] requires O(T|A|) time where T is the number of iterations, and |A| is the
number of non-zeros of A. Hence, it takes O(T|I − B>|) = O(Tm) time to solve the linear system
ðI � B>Þ~r ¼ ~p by the iterative method where the number of non-zeros of I − B> is bounded by
O(m). In addition, setting ~p takes O(|P||N|) time. Thus, the overall time complexity for comput-
ing
P

x;y
@hðdyxÞ
@dyx
ðMðy; :Þ � Mðx; :ÞÞ> is O(Tm + |P||N|).

Based on Lemma 4, the time complexity of Algorithm 3 is presented in Theorem 3.

Theorem 3 (Time complexity of Algorithm 3) For a given graph with m non-zero elements,
the learning algorithm SURE takes O(T1(T2 m + |P||N|)) time where T1 is the number of times c

is updated with the gradient, and T2 is the number of inner iterations for computing r and ~r.

Proof 7 The computation of r takes O(T0m) time according to Theorem 3.2. The computation
of ~r ¼

P
x;y

@hðdyxÞ
@dyx
ðMðy; :Þ � Mðx; :ÞÞ> takes O(T@m + |P||N|) time according to Lemma 4.

Besides, the computation of @FðcÞ
@c takes additional O(m) time due to the sparse matrix-vector mul-

tiplication. Hence, SURE takes O(T1(T2m + |P||N|)) time where T1 is the number of iterations of
the gradient descent procedure in order that the restart vector converges and T2 = T0 + T@.

Theorem 3 implies that our learning method SURE in Algorithm 3 provides linear time and

space scalability w.r.t. the number m of edges. Notice that |P| and |N| are constants much

smaller than m.

3.7 Discussion on restart probabilities

The restart vector c can be considered as a function of attributes, ci ¼ HðwT
i aiÞ, where ai and

wi are an attribute vector and a weight vector of node i, respectively. We can incorporate rich

attributes into the attribute vector from a given graph. For instance, node attributes such as

each node’s degree and the number of common neighbors can be utilized. H(x) can be an

exponential function exp(x) or a logistic function 1/(1 + exp(−x/d)). In this setting, finding

good attributes is a key factor to show the best performances. However, using restart probabili-

ties, which are independent of attributes, shows better performances due to the lack of attri-

butes in our problem setting. Further works include learning the restart probabilities as a

function of attributes.

4 Experiment

We evaluate our proposed method with various baseline approaches. Since there is no ground-

truth of node-to-node relevance scores in real-world graphs, we instead evaluate the perfor-

mance of two representative applications based on relevance scores: ranking and link predic-

tion. Based on these settings, we aim to answer the following questions:

• Q1. Ranking performance (Section 4.2). Does our proposed method SURE provide the best

relevances scores for ranking compared to other methods?

• Q2. Link prediction performance (Section 4.3). How effective is SURE for link prediction

tasks?
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• Q3. Parameter sensitivity (Section 4.4). How do parameters used in SURE affect the accu-

racy of link prediction?

• Q4. Effects of number of labeled nodes. (Section 4.5). How does the number of labeled

nodes affect the performance of link prediction?

• Q5. Scalability (Section 4.6). How well does SURE scale up with the number of edges?

4.1 Experimental settings

Datasets. We experiment on various real-world network datasets. Datasets used in our

experiments are summarized in Table 3. We use Polblogs for the ranking task (Section 4.2),

HepPh and HepTh for the link prediction task (Section 4.3), and Wikipedia for the scalability

experiment (Section 4.6). The Wikipedia dataset is a hyperlink network. The HepPh and

HepTh datasets are collaboration networks where nodes are authors, and edges are collabora-

tion relationships time-stamped from May 15, 1992 to August 14, 1996 and from October 1,

1993 to December 10, 1999, respectively. The Polblogs dataset is a political network made up

of liberal and conservative blogs. Since only HepPh and HepTh have time information, we use

them in the link prediction task. All experiments are performed on a Linux machine with Intel

(R) Xeon E5-2630 v4 CPU @ 2.2GHz and 256GB memory.

Methods. We compare our proposed method SURE with the following methods:

• Simple RWER method (S-RWER): sets the restart probabilities such that positively labeled

nodes are given 0.1 and negatively labeled nodes are given 0.7.

• Common Neighbor (CN) [23]: |Nset(x) \ Nset(y)| where Nset is set of neighbors.

• Adamic-Adar (AA) [1]:
P

z2NsetðxÞ\NsetðyÞ
1

logjNsetðzÞj
.

• Jaccard’s Coefficient (JC) [24]:
NsetðxÞ[NsetðyÞ
NsetðxÞ\NsetðyÞ

• Random Walk with Restart (RWR) [6]: performs RWR on the network with no side infor-

mation used.

• Supervised Random Walks (SRW) [5]: learns a function that assigns weights to edges. We

use each node’s degree and the number of common neighbors as features.

• QUINT [12]: learns an adjacency matrix which represents edge’s weights and presence of

edges.

• Prioritization algorithm [25]: prioritizes proteins in protein-protein interaction graphs.

• SimRank [26]: measures similarity of nodes based on their relationships with other nodes.

Table 3. Dataset statistics. The query nodes are used for the ranking and the link prediction tasks.

Dataset #Nodes #Edges #Queries

Wikipedia1 3,023,165 102,382,410 -

HepPh1 34,546 421,534 135

HepTh1 27,770 352,768 121

Polblogs2 1,490 19,025 115

1 http://konect.uni-koblenz.de
2 http://www-personal.umich.edu/~mejn/netdata

https://doi.org/10.1371/journal.pone.0213857.t003
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Parameters. We set the origin vector o in SURE and restart probability c in RWR, SRW,

and QUINT to the ones that give the best performance. Also, in SURE, SRW, and QUINT, we

set λ = 1 among {0.01, 0.1, 1, 10}, and b = 10−2 among {10−1, 10−2, 10−3, 10−4} by grid search.

The selected parameters give the best performance for each method.

Evaluation metrics. To compare the methods, we use Mean Average Precision (MAP),

Area under the ROC curve (AUC), and Precision@20. MAP is the mean of average precisions

for multiple queries. AUC is the expectation that a uniformly drawn random positive is ranked

higher than a uniformly drawn random negative. Precision@20 is the precision at the top-20

position in a ranking result. The higher the values of the metrics are, the better the perfor-

mance is.

4.2 Ranking performance

We evaluate the ranking performance of our method SURE compared to that of other methods.

Experimental setup. We perform this experiments on the Polblogs dataset. In Polblogs

dataset, a node represents a blog, and an edge between nodes indicates a hyperlink between

blogs. In the dataset, each node has a label which is either liberal or conservative. Among nodes

connected from the query node (i.e., neighbors), we choose nodes having the same political

position to the query node as positive nodes, and nodes having the opposite propensity to the

query node as negative nodes. Note that the numbers of positive nodes and negative nodes do

not exceed their query node’s degree. We sample 115 nodes whose degrees are greater than 4

as query nodes to perform this experiment. We use all nodes except neighbors from a query

node as test nodes. In this experiment, we aim to boost ranks of nodes having the same politi-

cal position as the query node.

Case study. We analyze the ranking quality produced from each method in the Polblogs

dataset. Table 4 shows the top-10 ranking list for a query node obsidianwings, a liberal blog.

Red colored nodes are conservative, and the black colored ones are liberal. As shown in the

table, our ranking result from SURE is of a higher quality compared to those from RWR, SRW,

and QUINT since top-10 ranking result from SURE contains only liberal nodes while other

ranking results have several conservative nodes, considering that the query node is liberal.

Result. To evaluate ranking performances, we measure MAP, Precision@20, and AUC for

the ranking results produced from our method SURE and other methods.

In Polblogs, if the query node is liberal (conservative), then the positive class is liberal (con-

servative), and the negative one is conservative (liberal). As shown in Fig 4, our method SURE

Table 4. Ranking results of our proposed method SURE and other methods w.r.t. a query node obsidianwings, a liberal blog. Bold nodes are conservative blogs, and the

non-bold ones are liberal. Our ranking result from SURE contains only liberal nodes, indicating the best result, while other ranking results wrongly contain conservative

nodes.

Rank SuRe RWR SRW QUINT Prioriti-zation AA JC CN Sim-Rank

1 digbys freere digbys freere freere dalyth amptoo dalyth davids

2 billmo michel tbogg michel politi newlef thepoo thepoo religi

3 gadfly prolif libera prolif kausfi thepoo tagord madkan asmall

4 reach rightw billmo rightw gadfly madkan oddhou aintno liquid

5 jamesw digbys xnerg digbys jewish amptoo althip politi marksc

6 angryb little corren little prolif politi oxblo amptoo profgo

7 marks billmo hughhe billmo rightw southk aintno busybu uggabu

8 tbogg jamesw busybu jamesw jamesw aintno balloo tagord needle

9 wampu reachm pacifi reachm dailyh busybu pejman billmo stalini

10 steveg politi nielse hughhe asmall balloo strang libera amptoo

https://doi.org/10.1371/journal.pone.0213857.t004
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shows the best ranking performance compared to other methods in terms of MAP, Preci-

sion@20, and AUC. Also, SURE shows better performances over the simple RWER method

(S-RWER), which means SURE learns the restart probabilities effectively.

4.3 Link prediction performance

We examine the link prediction performance of our proposed method SURE compared to

other link prediction methods as well as RWR-based methods SRW and QUINT.

Experimental setup. In the link prediction task, we aim to predict future links from a

query node to other nodes based on relevance scores. We perform this experiments on the

HepPh and HepTh datasets which are time-stamped networks. We follow the setting of [5]

and focus on predicting links to nodes that are 2-hops away from the query node since most of

new edges are created closing a triangle. Fig 5 supports the triangle closing setting used in the

link prediction task. When an edge is newly added, we count the hop between two nodes to be

connected by the edge. Note that the majority of the connected nodes are 2 hops away in both

of the datasets.

The detailed experimental setting of the link prediction task is as follows:

• We consider time-stamp information in networks to construct training and test datasets as

in [5]. For each query node s, let ts,min and ts,max denote the minimum and maximum time-

stamp of 1-hop neighbors of node s, respectively. Suppose ts,min < ts,1 < ts,2 < ts,max. We

Fig 4. Ranking performance on Polblogs. Our method SURE provides the best ranking performance compared to

existing methods in terms of MAP and Precision@20. Note that the maximal values are 1 for each plot.

https://doi.org/10.1371/journal.pone.0213857.g004

Fig 5. Hop count plot in the datasets used in the link prediction task. Note that the majority of nodes are within 2

hops in both real-world networks.

https://doi.org/10.1371/journal.pone.0213857.g005
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select links (s, v) created between ts,2 and ts,max as test data where node v is 2-hop neighbors

from node s before the links are created. We choose the query node’s 1-hop neighbors cre-

ated between ts,1 and ts,2 as positive nodes. We sample the same number of negative nodes as

that of positive ones, which are 3-hops or more from node s. We exploit other links excepts

the test links as training data. We select ts,1 and ts,2 such that ts,1 = ts,min + 0.3L and ts,2 = ts,min

+ 0.7L, respectively, where L = ts,max − ts,min is the total time length.

We divide nodes into two groups; the first group consists of query nodes of non-low

degrees whose degrees are greater than or equal to 30, and the second group consists of 176

query nodes of low degrees whose degrees are less than 30. Figs 6, 7 and Table 5 show the link

prediction performances of the first group; Tables 6 and 7 show the link prediction perfor-

mances of the second group.

Result on query nodes of non-low degree. Figs 6, 7 and Table 5 show the link prediction

performances in terms of MAP, Precision@20, and AUC. Here, we select nodes whose degrees

are greater than 30 as query nodes. As shown in the results, our method SURE outperforms

other competitors including SRW and QUINT which are the state-of-the-art methods for link

prediction. In the HepTh dataset, compared to the best competitor SRW, SURE achieves 14.7%

improvement in terms of MAP, and 10.1% improvement in terms of Precision@20 (Fig 7). For

Fig 6. Link prediction performance on HepPh dataset, where the degree of each query node is greater than or

equal to 30. SURE shows the highest accuracies: 10.8% higher MAP, and 5.7% higher Precision@20 compared to the

best existing method.

https://doi.org/10.1371/journal.pone.0213857.g006

Fig 7. Link prediction performance on the HepTh dataset, where the degree of each query node is greater than or

equal to 30. SURE shows the highest accuracies: 14.7% higher MAP, and 10.1% higher Precision@20 compared to the

best existing method.

https://doi.org/10.1371/journal.pone.0213857.g007
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the AUC results, SURE gives the best performance as shown in Table 5. AUC is high because of

class imbalance (# of positive class� # of negative class) Note that SURE provides the best pre-

diction over all datasets. The results state that assigning a distinct restart probability to each

node and learning the restart probabilities (RWER and SURE) have a significant effect on link

prediction compared to using a fixed restart probability for all nodes (RWR). Furthermore, the

result indicates that learning restart probabilities (SURE) provides better link prediction accu-

racy than existing supervised learning methods that focus on learning edge weights (SRW) or

network topology (QUINT).

We perform a Welch’s t-test between the MAP results of SURE and the best baseline SRW

on HepPh. The p-value is 0.0038, which indicates the improvement over the baseline is

significant.

Result on query nodes of low degree. As shown in Tables 6 and 7, SURE, SRW, and RWR

show the best and comparable performances in general for low degree nodes. In the HepTh

dataset, SURE outperforms all other methods in all aspects. In the HepPh dataset, however,

other methods including SRW outperform SURE. We conjecture that this comes from small

training instances for low degree nodes, since they have a small number of neighbors.

Discussion. We discuss the above experimental results in terms of the number of model

parameters. As shown in Table 8, SRW has not enough parameters (i.e., number of user-

defined features in [5] < number of nodes n); thus, feature selection is important for the per-

formance of applications in SRW. On the other hand, QUINT has too many parameters; thus,

Table 5. AUC result, where the degree of each query node is greater than or equal to 30. We compare SURE with other baselines. SURE provides the best link prediction

accuracy.

Dataset SuRe S-RWER RWR SRW QUINT SimRank CN JC AA

HepPh 0.9551 0.9350 0.9359 0.9441 0.9361 0.4870 0.8913 0.8986 0.9057

HepTh 0.9603 0.9306 0.9400 0.9485 0.9420 0.4932 0.8913 0.8986 0.9057

https://doi.org/10.1371/journal.pone.0213857.t005

Table 6. Link prediction performance on the HepPh dataset, where the degree of each query node is less than 30. Bold and italic fonts indicate the best and the second

best methods, respectively.

Evaluation SuRe S-RWER RWR SRW QUINT SimRank CN JC AA

MAP 0.7109 0.6845 0.7080 0.7101 0.7045 0.0550 0.6886 0.2178 0.7329

AUC 0.9604 0.9589 0.9609 0.9614 0.9572 0.4870 0.9341 0.8197 0.9560

Pre@20 0.1286 0.1303 0.1321 0.1342 0.1268 0.0136 0.1198 0.0633 0.1284

https://doi.org/10.1371/journal.pone.0213857.t006

Table 7. Link prediction performance on the HepTh dataset, where the degree of each query node is less than 30. Bold and italic fonts indicate the best and the second

best methods, respectively.

Evaluation SuRe S-RWER RWR SRW QUINT SimRank CN JC AA

MAP 0.9428 0.9270 0.9421 0.9424 0.9342 0.0577 0.8959 0.5256 0.9188

AUC 0.9925 0.9813 0.9925 0.9920 0.9859 0.4932 0.9651 0.8226 0.9843

Pre@20 0.1980 0.1956 0.1967 0.1974 0.1945 0.0139 0.1850 0.1271 0.1885

https://doi.org/10.1371/journal.pone.0213857.t007

Table 8. Number of parameters for each supervised method.

Dataset SRW [5] SuRe (proposed) QUINT [12]

#parameters O(#features) O(n) O(n2)

https://doi.org/10.1371/journal.pone.0213857.t008
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it is infeasible to learn O(n2) parameters in large-scale graphs. We conjecture that this huge

number of parameters is the main reason of the poor performance of QUINT. Compared to

these methods, SURE has a moderate number of parameters, implying that 1) the expressive-

ness of SURE is better than that of SRW, and 2) SURE is not likely to overfit. This point explains

why SURE provides better performance of the ranking and link prediction tasks than SRW and

QUINT do as shown in Sections 4.2 and 4.3.

4.4 Effects of parameters

We investigate the parameter sensitivity of SURE w.r.t. the value of the origin vector o and λ.

The origin vector o serves as a model regularizer which helps avoid overfitting and improves

accuracy, as described in Section 3.4. We evaluate MAP of the link prediction task, and report

the results in Fig 8. Note that the performance of SURE is improved by introducing the origin

parameter o, compared to the case without o, which corresponds to the leftmost points in both

plots of Fig 8.

λ is a regularization parameter that controls the importance of the regularization term. We

evaluate MAP of the link prediction task in the HepPh and HepTh datasets varying the value

of λ. As shown in Fig 9, when λ is 1, the MAP score of SURE is the highest. By introducing the

regularization parameter λ, SURE avoids the overfitting problem and improves accuracy.

Fig 8. Sensitivity of parameter o of our method SURE in the HepPh and HepTh datasets. We report the link

prediction accuracy using MAP measure, changing the values of the elements in the origin vector o, where all the

elements of o are set to a same value. Note that the performance of SURE is improved by introducing the origin

parameter o, compared to not using o which corresponds to setting o = 0.

https://doi.org/10.1371/journal.pone.0213857.g008

Fig 9. Sensitivity of parameter λ of our method SURE in the HepPh and HepTh datasets. We report the MAP scores

in the link prediction task, varying the value of λ. Note that SURE avoids overfitting problem and shows improvement

by introducing the regularization parameter λ. When λ is 100 = 1, SURE exhibits the best link prediction performance

in both datasets.

https://doi.org/10.1371/journal.pone.0213857.g009
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4.5 Effect of number of labeled nodes

We evaluate the link prediction performance of SURE by varying the number of labeled nodes.

For a given seed node, we sample labeled nodes with a sampling rate. E.g., the average number

of the labeled nodes in the Hepth dataset is 69.58; when the sampling rate is 0.2, then the aver-

age number of labeled nodes becomes 13.91. As shown in Fig 10, when a seed node has many

labeled nodes, SURE shows better performance since it learns a better model with rich data.

4.6 Scalability

We examine the scalability of our proposed method SURE compared to other baselines. We

perform SURE to find the optimal restart probabilities and RWER to compute rankings with

various sizes of the Wikipedia dataset to investigate the scalability of SURE. For the dataset, we

extract the principal sub-matrices, which are the upper left part of the adjacency matrix, of dif-

ferent lengths to get graphs of different number of edges. Fig 11 shows that SURE scales near-

linearly with the number of edges; this result is consistent with Theorem 3. The slope of the fit-

ted line for SURE is 0.76, the smallest number: those for RWR, SRW, and QUINT are 0.83,

0.88, and 2.57, respectively.

The number of iterations of SURE is determined by tolerance or the learning rate we set. If

we set small tolerance, then the number of iterations will be large. Each SURE computation for

each query node take 39.4 iterations on average in the HepTh dataset. Note that SURE is the

fastest among the supervised methods. Although RWR, which is an unsupervised method, is

faster than SURE, RWR shows low accuracy as shown in Figs 7, 4 and 6.

5 Related works

The related works fall into two main categories: 1) relevance measures in graphs, 2) label pre-

diction and classification, and 3) ranking and link prediction based on relevance measures.

Relevance measures in graphs

There are various relevance measures in graphs based on link analysis and random walk, e.g.,

PageRank [27], HITS [4], SimRank [26], Random Walk Graph Kernel [28], and RWR (or Per-

sonalized PageRank) [6]. Among these measures, RWR has received much attention from the

data mining community since it provides a personalized ranking w.r.t. a node, and it has been

applied to many graph mining applications such as community detection [13], link prediction

[5, 12], ranking [9], and graph matching [29]. Also, fast and scalable methods [10, 11, 9] for

Fig 10. Link prediction performance of SURE varying the number of labeled nodes in the HepPh and HepTh

datasets. We sample labeled nodes with a sampling rate. Note that a higher sampling rate leads to more training

examples which in turn improve the performance.

https://doi.org/10.1371/journal.pone.0213857.g010
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computing RWR in large graphs have been proposed to boost the performance of those appli-

cations in terms of time.

Label prediction and classification

Considering the problem setting, our work is related to label propagation. Hwang and Kuang

[30] proposed the MINProp algorithm, a heterogeneous label propagation algorithm to dis-

cover disease genes. This algorithm is based on [31], whose algorithm spreads label informa-

tion. These problems assume the graphs are undirected, but our graphs in the experiments are

directed. Vanunu et al. [25] proposed a prioritization algorithm, which prioritize a set of genes

in protein-protein interaction networks. Sousa et al. [32] studied graph-based semi-supervised

learning algorithms and graph construction methods on labeled graphs. Ji et al. [33] proposed

a graph-based regularization framework to model the link structure in information networks.

They treated different types of objects and links separately because of different semantic mean-

ings. They also proposed a ranking-based classification algorithm [34], which integrates

Fig 11. Scalability of SURE compared to baselines in the Wikipedia dataset. SURE has the smallest slope 0.76 of the fitted line, while the slopes for RWR, SRW, and

QUINT are 0.83, 0.88, and 2.57, respectively. Note that SURE is the fastest among the supervised methods SRW and QUINT. Although SURE shows slower running

time compared to RWR which is an unsupervised method, SURE provides higher accuracy than RWR in most cases in both ranking and link prediction tasks as

shown in Figs 7, 4 and 6.

https://doi.org/10.1371/journal.pone.0213857.g011
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ranking and classification. Sen et al. [35] provided a brief description of some of most widely

used classification algorithms for classifying networked data.

Ranking and link prediction

Jung et al. [36] extended the concept of RWR to design a personalized ranking model in signed

networks. Our proposed algorithm is different from SRWR in that SRWR is for edge-labeled

graphs. Regarding the edge-labeled graphs, there are some works on knowledge graphs [37, 38,

39]. Lao et al. [37] extended the Path Ranking algorithm adjusting the weights associated with

random walks that follow different paths through the graph. Wang et al. [38] developed a fast

and easily-parallelized weight-learning algorithm for ProPPR, based on local partitioning

methods. Wei et al. [39] introduced a goal-directed random walk algorithm which directs ran-

dom walks by a specific inference target. Wang et al. [40] proposed an image annotation tech-

nique that generates candidate annotations and re-ranks them using RWR. Pan et al. [41]

exploited RWR to discover correlations across multimedia data. Sun et al. [15] used RWR

ranking results for detecting anomalies in bipartite networks. Gleich et al. [42] have empiri-

cally shown that random walk based models such as RWR is competitive with other cut based

approaches for detecting local communities in graphs. Liben-Nowell et al. [23] extensively

studied the link prediction problem in social networks based on relevance measures such as

PageRank, RWR, and Adamic-Adar [1]. Grover and Leskovec [43] proposed a representation

learning algorithm based on random walks. This work can be utilized in link prediction. Many

researchers have proposed supervised learning methods for link prediction. Backstrom et al.

[5] proposed Supervised Random Walk (SRW), a supervised learning method for link predic-

tion based on RWR. SRW learns parameters for adjusting edge weights. Li et al. [12] developed

QUINT, a learning method for finding a query-specific optimal network. QUINT modifies the

network topology including edge weights.

In many real-world scenarios, however, modifying the graph structure would not be

allowed. On the contrary, our SURE method controls the behavior of the random surfer with-

out modifying the graph structure, and provides better prediction accuracy than other compet-

itors as shown in Section 4.

6 Conclusion

We propose RANDOM WALK WITH EXTENDED RESTART (RWER), a novel relevance measure using

distinct restart probabilities for each node. We also propose SURE, a data-driven algorithm for

learning restart probabilities of RWER. Experiments show that our method brings the best per-

formance for ranking and link prediction tasks, outperforming the traditional RWR and recent

supervised learning methods. Future works include extending the proposed method for het-

erogeneous and edge labeled graphs.
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