
공학박사학위논문

실세계그래프특징을활용한랜덤워크

기반대규모그래프마이닝

RandomWalk-based Large Graph Mining

Exploiting Real-world Graph Properties

2020년 2월

서울대학교대학원

컴퓨터공학부

정진홍

실세계그래프특징을활용한랜덤워크

기반대규모그래프마이닝

RandomWalk-based Large Graph Mining

Exploiting Real-world Graph Properties

지도교수강유

이논문을공학박사학위논문으로제출함

2020년 1월

서울대학교대학원

컴퓨터공학부

정진홍

정진홍의박사학위논문을인준함

2019년 12월

위 원 장 문봉기 (인)

부 위 원 장 강 유 (인)

위 원 김형주 (인)

위 원 김상욱 (인)

위 원 이영기 (인)

Abstract

RandomWalk-based Large Graph

Mining Exploiting Real-world Graph

Properties

Jinhong Jung
Department of Computer Science & Engineering

College of Engineering
�e Graduate School

Seoul National University

Numerous real-world relationships are represented as graphs such as social networks,

hyperlink networks, and protein interaction networks. Analyzing those networks

is important to understand the real-life phenomena. Among various graph analy-

sis techniques, random walk has been widely used in many applications with satis-

factory results. However, various real-world graphs are large and complicated with

diverse labels. Traditional random walk based methods require heavy computational

cost, and disregards those labels for performing random walks; thus, its utilization

has been limited in such large and complicated graphs.

In this thesis, I handle the technical challenges of mining large real-world graphs

based on random walk. Real-world graphs have distinct structural properties which

become a basis to increase the performance of the random walk in terms of speed

and quality. Based upon this idea, I develop fast, scalable, and exact methods for node

i

ranking using random walk in large-scale plain networks. I also design accurate mod-

els using random walks for node ranking and relational reasoning in labeled graphs

such as signed networks and knowledge bases.

�rough extensive experiments on various real-world graphs, I demonstrate the

e�ectiveness of the methods and models proposed by this thesis. �e proposed meth-

ods process 100× larger graphs, and require up to 130× less memory with up to 9×

faster speed compared to other existing methods, successfully scaling to billion-scale

graphs. Also, the proposed models substantially improve the predictive performance

of a variety of tasks in labeled graphs such as signed networks and knowledge bases.

Keywords : Graph Mining, Random Walk in Graphs, Random Walk with Restart

Models, Real-world Graph Properties, Large-scale Graphs, Signed Networks, Edge-

Labeled Graphs

Student Number : 2015-31053

ii

Contents

Abstract . i

Contents . iii

List of Figures . viii

List of Tables . x

Chapter 1 Overview . 1

1.1 Motivation . 1

1.2 Research Statement . 4

1.2.1 Research Goals and Importance 4

1.2.2 Technical Challenges . 6

1.2.3 Main Approaches . 7

1.2.4 Contributions . 9

1.2.5 Overall Impact . 10

1.3 �esis Organization . 11

Chapter 2 Background . 12

2.1 De�nitions . 12

2.1.1 Notations on Graphs . 12

2.1.2 Random Walk with Restart 13

2.2 Related Works . 15

2.2.1 Previous Methods for RWR in Plain Graphs 15

iii

2.2.2 Ranking Models in Signed Networks 17

2.2.3 Relational Reasoning Models in Edge-labeled Graphs 19

Chapter 3 Fast and Scalable Ranking in Large-scale Plain Graphs . . 21

3.1 Introduction . 21

3.2 Preliminaries . 23

3.2.1 Iterative Methods for RWR 24

3.2.2 Preprocessing Methods for RWR 25

3.3 Proposed Method . 26

3.3.1 Overview . 26

3.3.2 BePI-B: Exploiting Graph Characteristics for Node Reorder-

ing and Block Elimination . 28

3.3.3 BePI-B: Incorporating an Iterative Method into Block Elimi-

nation . 32

3.3.4 BePI-S: Sparsifying the Schur Complement 34

3.3.5 BePI: Preconditioning a Linear System for the Iterative Method 36

3.4 �eoretical Results . 39

3.4.1 Time Complexity . 39

3.4.2 Space Complexity . 40

3.4.3 Accuracy Bound . 41

3.4.4 Lemmas and Proofs . 43

3.5 Experiments . 48

3.5.1 Experimental Se�ings . 49

3.5.2 Preprocessing Cost . 51

3.5.3 �ery Cost . 53

3.5.4 Scalability . 53

iv

3.5.5 E�ects of Sparse Schur Complement and Preconditioning . . 54

3.5.6 E�ects of the Hub Selection Ratio 57

3.5.7 Accuracy . 58

3.5.8 Comparison with the-State-of-the-Art Method 59

3.6 Summary . 60

Chapter 4 Personalized Ranking in Signed Graphs 61

4.1 Introduction . 61

4.2 Problem De�nition . 65

4.3 Proposed Method . 65

4.3.1 Signed Random Walk with Restart Model 66

4.3.2 SRWR-Iter: Iterative Algorithm for Signed Random Walk with

Restart . 76

4.3.3 SRWR-Pre: Preprocessing Algorithm for Signed Random Walk

with Restart . 82

4.4 Experiments . 93

4.4.1 Experimental Se�ings . 94

4.4.2 Link Prediction Task . 96

4.4.3 User Preference Preservation Task 99

4.4.4 Troll Identi�cation Task . 100

4.4.5 Sign Prediction Task . 104

4.4.6 E�ectiveness of Balance A�enuation Factors 109

4.4.7 Performance of SRWR-Pre 110

4.5 Summary . 113

Chapter 5 Relational Reasoning in Edge-labeled Graphs 114

v

5.1 Introduction . 114

5.2 Preliminary . 116

5.3 Proposed Method . 118

5.3.1 Label Transition Observation 120

5.3.2 Learning Label Transition Probabilities 121

5.3.3 Multi-Labeled Random Walk with Restart 123

5.3.4 Formulation for MuRWR . 125

5.3.5 Algorithm for MuRWR . 127

5.4 �eoretical Results . 131

5.4.1 Lemma for Solution of Label Transition Probabilities and Con-

vexity . 131

5.4.2 Lemma for Recursive Equation of MuRWR Score Matrix . . . 134

5.4.3 Lemma for Spectral Radius in Convergence �eorem 136

5.4.4 Lemma for Complexity Analysis 137

5.5 Experiment . 138

5.5.1 Experimental Se�ings . 139

5.5.2 Relation Inference Task . 140

5.5.3 E�ects of Label Weights in MuRWR 142

5.5.4 E�ects of Restart Probability in MuRWR 143

5.5.5 Convergence of MuRWR . 144

5.6 Summary . 145

Chapter 6 Future Works . 146

6.1 Fast and Accurate Pseudoinverse Computation 146

6.2 Fast and Scalable Signed Network Generation 147

6.3 Disk-based Algorithms for Random Walk 147

vi

Chapter 7 Conclusion . 149

References . 151

Appendix . 166

A.1 Hub-and-Spoke Reordering Method 166

A.2 Time Complexity of Sparse Matrix Multiplication 167

A.3 Details of Preconditioned GMRES . 167

A.4 Detailed Description of Evaluation Metrics 170

A.4.1 Link Prediction . 170

A.4.2 Troll Identi�cation . 171

A.5 Discussion on Relative Trustworthiness of SRWR 173

Abstract in Korean . 176

vii

List of Figures

Figure 2.1. Example of RWR . 13

Figure 3.1. Performance of BePI . 22

Figure 3.2. Results of node reordering on the Slashdot dataset 27

Figure 3.3. Number of non-zeros of the Schur complement 34

Figure 3.4. E�ect of the sparsi�cation of the Schur complement and the

preconditioning . 52

Figure 3.5. Scalability of BePI . 53

Figure 3.6. Distribution of the eigenvalues of the Schur complements . . 56

Figure 3.7. E�ects of the hub selection ratio k 57

Figure 3.8. Accuracy of BePI . 58

Figure 3.9. Detailed comparison between BePI and Bear 59

Figure 4.1. Example of the personalized node ranking problem in Problem 1 64

Figure 4.2. Examples of traditional random walks and signed random walks 66

Figure 4.3. Examples of how to interpret positive and negative scores of

SRWR . 69

Figure 4.4. Examples of how r+u and r−u are de�ned in SRWR 71

Figure 4.5. Examples of balance a�enuation factors 73

Figure 4.6. Result of node reordering on each signed network 87

Figure 4.7. Link prediction performance of SRWR 97

Figure 4.8. Performance on troll identi�cation of SRWR 101

Figure 4.9. Performance of SRWR for the troll identi�cation task through

various measurements . 101

viii

Figure 4.10. Performance of SRWR on sign prediction 104

Figure 4.11. Accuracy maps of SRWR according to balance a�enuation

factors β and γ . 108

Figure 4.12. E�ect of the balance a�enuation factors of SRWR 109

Figure 4.13. Performance of SRWR-Pre . 111

Figure 5.1. Limitation of a random surfer in traditional RWR 117

Figure 5.2. Examples of labeled walks and label transitive triangles. . . . 119

Figure 5.3. Example of how to obtain label transition observations from

label transitive relationships 121

Figure 5.4. Example of the formulation for the probability R(t)
u1 126

Figure 5.5. E�ect of the label weights in MuRWR 143

Figure 5.6. E�ect of the restart probability c in MuRWR 144

Figure 5.7. Convergence of MuRWR . 144

Figure A.1. Node reordering based on hub-and-spoke method 166

ix

List of Tables

Table 1.1. Various applications based on random walk techniques 3

Table 3.1. Table of symbols used in Chapter 3 24

Table 3.2. Summary of real-world datasets 50

Table 3.3. Number of non-zeros of S . 55

Table 3.4. Average number of iterations to compute r2 by BePI-S and BePI 55

Table 3.5. Statistics of the datasets used in Section 3.5.8 59

Table 4.1. Table of symbols used in Chapter 4 63

Table 4.2. Space complexity of each preprocessed matrix from Algorithm 7 92

Table 4.3. Statistics of the datasets used in Chapter 4 95

Table 4.4. User preference preservation quality of SRWR 100

Table 4.5. Troll prediction results . 103

Table 4.6. Di�erence between SRWR and LOGIT on sign prediction 106

Table 4.7. Total number of non-zeros (nnzt) in precomputed matrices for

each preprocessing method . 111

Table 5.1. Table of symbols used in Chapter 5 117

Table 5.2. Statistics of the datasets used in Chapter 5 138

Table 5.3. Performance of relation inference in terms of accuracy 141

Table 5.4. Performance of relation inference in terms of F1-score 141

x

Chapter 1

Overview

1.1 Motivation

Graphs are fundamental data structures modeling any relationships between entities.

Each entity is abstractly represented as a node, and each of the related pair of nodes

is symbolized as an edge. Numerous real-world phenomena around us are naturally

modeled by graphs (or networks) [1]. For example, social networks from online so-

cial services such as Twi�er [2] and Facebook [3] have been widely used to represent

friendships of people. Hyperlink networks [4] express connections between pages on

linked knowledge systems such as the Web or Wikipedia. Citation networks connect

a scholarly paper to other papers in its bibliography [5]. In bioinfometics, protein

networks [6] are used to represent various interactions between proteins. �e hu-

man brain is also represented as a network of nerve cells [7]. Nature creates food

web networks where species are connected by links indicating which species feed on

which other species [8].

Graph mining has a�racted considerable a�ention from diverse research �elds

since it enables us to gain a be�er understanding of the complicated relationships

in the real world through analyzing their networks. On top of the insight into the

graphs, many researchers have developed bene�cial applications and improved the

performance of their speci�c tasks based on graphs. For instance, social network anal-

ysis has revealed plenty of interesting knowledge on social events and human behav-

1

ior [9, 10, 11]. It has further led to the emergence of network science [12] which pro-

vides a solid theoretical background to understand various real-world networks. As

another example, web search engines such as Google [13] have improved their search

performance by utilizing hyperlink network analysis which reveals node importance

as a ranking score in graphs.

Random walk [14, 15] has been extensively studied and utilized as a simple but

powerful tool for looking into graph data. �is technique aims to simulate a user

who randomly moves around nodes in a graph with a speci�c purpose (e.g., a web

surfer jumps from page to page on the Web in order to search target information),

thereby resulting in relevance or ranking scores between nodes. �ere are several

models on random walk in graphs such as HITS [16], SimRank [17], PageRank [13],

Random walk with Restart (RWR) [18], etc. Among those models, RWR has been

popular in academic �elds as well as industrial areas because it is able to capture

node-to-node relevance scores personalized to a query node (due to this point, RWR

is called Personalized PageRank). Moreover, many works [19, 20] have empirically

shown that RWR has a good ability to account for the multi-faceted relationships (e.g.,

multiple connections, path lengths, node degrees, etc) between nodes and consider

the global topology of a network at the same time. �us, RWR e�ectively obtains

personalized node relevance scores in graphs, and it has been extensively used for a

variety of applications. Table 1.1 lists well-known graph mining applications in which

RWR and its variants have been frequently used.

Even though the importance of such random walk models including RWR is be-

ing emphasized, the utilization of those models is limited for analyzing further large

and complicated real-world networks due to several technical obstacles. �e main

limitation of the random walk based techniques is that they require enormous com-

2

Table 1.1: Various applications based on random walk techniques

Application Brief Description References

Node ranking Rank nodes such as web pages in order of a speci�c
importance in a graph

[21, 13, 22]
[23, 24, 25]

Link prediction Predict future links to be connected between
nodes in a graph

[26, 27, 28]
[29, 30, 31]

Recommendation Suggest interesting items such as movie and music
to a speci�c user in a user-item network

[19, 18, 32]
[33, 34, 35]

Subgraph mining Extract meaningful subgraphs between two or
more nodes

[36, 20, 37]
[38, 39, 40]

Anomaly detection Identify rare items, events or observations such as
web spams, anomalies, and bank frauds

[41, 42, 43]
[44, 45, 46]

Community detection Detect groups of nodes having similar a�liations
di�erent to the rest of a graph

[47, 48, 49]
[50, 51, 52]

putational cost, especially in large graphs. Recent stunning advances in computing

and networking technologies have led to graphs of unprecedented size. For instance,

Wikipedia described that it comprises more than 40 millions articles in 20151. Face-

book reported that it had about 2.41 billion monthly active users in 20192. As a result,

traditional methods fail to perform the random walk based analyses for very large

graphs in a reasonable time with restricted resources. Many researchers have made

great e�orts to tackle this e�ciency issue in large-scale graphs, and proposed various

types of methods such as exact [53, 13, 54], approximate [55, 56, 57, 58], and top-k

approaches [59, 60, 61, 62]. However, none of such previous methods satisfy all of the

desirable aspects such as speed, scalability, exactness, and versatility3 when it comes

to the random walk computation in large graphs.

In addition to the computational problem, the traditional random walk models
1https://en.wikipedia.org/wiki/Wikipedia
2https://newsroom.fb.com/company-info
3�e top-k approach focuses on �nding top-k relevant nodes under the random walk mechanism.

�ey emphasize the e�ciency, but their versatility is limited because they cannot be applied to many
graph mining applications [48, 27, 50, 19, 26, 41, 37, 49] requiring the random walk scores of all nodes.

3

https://en.wikipedia.org/wiki/Wikipedia
https://newsroom.fb.com/company-info

have another limitation that no labels on nodes and edges are allowed in graphs.

�e main reason is that the traditional random surfer does not consider such label

information when doing random walk. Due to this point, the classic models had to

ignore the label data although complicated relationships between nodes are modeled

by various labels in many real-world networks. For example, signed networks [63]

have been suggested to model trust relationships between people with positive and

negative edges. Knowledge bases [64] represent diverse predicates between subjects

and objects as edge labels. �e problem is that this although label information plays

a key role in distinguishing unique characteristics of such networks, the traditional

models do not take into account labels at all. �us, the use of the traditional random

walk and its quality are limited in such labeled networks. Although several random

walk based variants [65, 66, 67] have been proposed to utilize this label information,

most of them are based on heuristic techniques, and exhibit the unsatisfactory per-

formance for applications in those labeled networks.

1.2 Research Statement

�is section describes the research statement which summarizes the research goals,

importance, technical challenges, main approaches, and contributions of this thesis.

1.2.1 Research Goals and Importance

I aim at devising fast, scalable, and exact methods and designing e�ective models for

random walk based mining on large real-world graphs through this research.

First of all, I focus on achieving all of speed, scalability, and exactness when

computing the random walk scores of RWR in very large graphs having billions of

edges on a single machine. It is not easy to handle the problem of ful�lling all of the

4

computational aspects in such billion-scale graphs where most previous methods had

to sacri�ce at least one of them. For example, approximate approaches lose accuracy

to boost e�ciency, and exact preprocessing methods su�er from a scalability issue in

large graphs due to the guarantee of exactness. How can we compute the RWR scores

quickly and exactly in billion-scale graphs, especially without borrowing the power

of multiple machines? What are other existing methods for RWR missing in terms of

such computational factors for processing large graphs?

Further, I address how to utilize edge labels with random walk in real-world net-

works. As described in Section 1.1, the label information is crucial as it represents the

nature of such labeled networks; thus, it should have been considered when doing

random walk in graphs. However, previous research works are insu�cient for pro-

viding a clear solution for the problem, i.e., our understanding of random walk with

such labels was nascent. How can we utilize various labels involved in complicated

real-world networks with random walk for e�ective graph mining? What does the

label information mean for random walk in such labeled graphs?

�rough this thesis, I concentrate on �nding fundamental solutions of the above

questions to pursue the research goal. It is signi�cantly important to accomplish this

goal since the methods derived from this research will enable researchers and practi-

tioners to e�ciently analyze large real-world graphs that previous approaches could

not process within restricted resources. �is research will also lead to allowing devel-

opers to build their novel, bene�cial, and high-quality applications which e�ectively

utilize label data contained in real-world graphs. Furthermore, I aim at establishing

theoretical backgrounds on the approaches taken by this thesis, and hope these to

pave the way for future research on random walk in graphs and graph mining.

5

1.2.2 Technical Challenges

�e technical challenges that this thesis needs to address are categorized as follows.

Computational Performance Improvement. �e main challenge is how to

reduce the enormous cost incurred by the RWR computation in large-scale graphs.

More speci�cally, it is extremely challenging to balance between speed, scalability,

and exactness for computing RWR scores if a graph has billions of nodes and edges.

�e RWR model aims to obtain the random walk scores of all nodes w.r.t. a given

query node in a graph (it is o�en called single-source RWR [68]). If a user gives a

di�erent query node, a method needs to repeat the RWR computation for the given

query node where the computational burden for each query node cannot be ignored.

Also, it is infeasible to store all precomputed scores for each query node, especially in

billion-scale graphs, since this approach requires O(n2) space where n is the number

of nodes. �us, a desirable method should compute the RWR scores quickly using

less memory usage without loss of accuracy whenever a query node is given.

To avoid such tremendous cost, many researchers have exploited approximate or

top-k approaches. However, the accuracy sacri�ced by the approximate methods [55,

56, 57, 58] is not su�cient considering their computational improvement, and signi�-

cantly degrades the quality of applications using RWR. �e top-k approach [59, 60, 61,

62] focuses on �nding top-k relevant nodes under the RWR model; thus, it is limited

to use this approach in many graph mining applications [48, 27, 50, 19, 26, 41, 37, 49]

requiring all nodes’ scores. �ere are also noticeable works [69, 70, 71, 72] to increase

the scalability of the RWR computation with the guarantee of exactness borrowing

the power of distributed systems. However, most distributed methods have focused

on ��ing existing algorithms to distributed systems, i.e., they optimized the I/O costs

of power iteration, one of traditional iterative methods for RWR, so that a distributed

6

system scales to large graphs based on the algorithm. Hence, in this thesis, one pri-

mary goal is to devise novel algorithms for faster and more scalable computation for

exact RWR scores under a single machine so that our algorithms can be extended to

distributed machines as future work.

Label Data Utilization. Another challenge is how to build random walk mod-

els which e�ectively exploits the label data involved in real-world graphs. Many rela-

tionships between nodes are represented as labels on edges where such networks are

called edge-labeled graphs. In this thesis, categorical labels are considered since such

categorical labels can be interpreted as a speci�c sense in the input network’s domain.

For instance, signed networks allow an edge to have a positive or negative label (or

sign) as trust relationship. Knowledge bases let an edge have a verb connecting two

entities where the verb is represented as one of multiple labels. Although the ran-

dom walk techniques including RWR well capture relevance scores between nodes

in plain graphs, it is not obvious how the label data should be re�ected into random

walks in such edge-labeled graphs. In this thesis, I will �rst deliberate how the labels

should be interpreted when its comes to node relevance scores measured by random

walk models in edge-labeled graphs. Based on this concept, I will design novel mod-

els providing a solution on how a random surfer should treat such labels during its

random walk.

1.2.3 Main Approaches

I describe the main approaches of this thesis to tackle the aforementioned technical

challenges.

Exploiting Real-world Graph Properties. One of the main approaches used

in this thesis is to exploit distinct properties inherent in real-world graphs. Most pre-

7

vious methods have focused on improving the computational performance and the

quality of the random walk without carefully investigating graph data. As a result,

those existing methods have limitations in dramatically improving the performance

of random walk, especially in large-scale and complicated graphs. To make a break-

through, I notice most real-world graphs have distinct structural properties com-

monly appeared according to their domain. For example, real-world graphs are scale-

free, i.e., their degree distributions are highly skewed following a power-law [73].

In real-world signed networks, certain types of signed triangles dominate those net-

works, i.e, balanced triangles are more likely to be created than unbalanced ones [74,

75] (see details in Chapter 4). Our previous works [54, 76] have shown that such

scale-free property is helpful for reducing computational cost of operations based on

adjacency matrices of real-world graphs. �us, I utilize various unique and structural

properties of real-world graphs to form a basis of solutions for boosting the perfor-

mance in terms of speed and quality of random walk.

Numerical Computation Methods. Most computations about random walk

in graphs are mathematically represented by operations related to adjacency matri-

ces of the graphs. �us, it is important to understand and utilize e�cient numerical

computation methods in order to accelerate the speed on the computations on ran-

dom walk, especially when we use a single machine. To e�ciently process large-scale

graphs, I combine the approach exploiting real-world graph properties and various

numerical computation methods from simple operations such as sparse matrix-vector

multiplication to advanced operations such as preconditioned Krylov iterative linear

solver [77, 78, 79].

Linear Algebra and Stochastic Process. In order to make random walk based

models computable, mathematical theories such as linear algebra and stochastic pro-

8

cess are necessary because operations on graphs lead to matrix computations, and

the behavior of random walks is described by a Markov chain in stochastic process

(i.e., it guarantees the random walk distribution becomes stable as the number of ran-

dom walks goes to in�nity). In this thesis, I aim to design new random walks based

models exploiting edge labels; thus, such theories are used to mathematically formal-

ize the concepts and equations of the novel models and guarantee their convergence

behavior in labeled real-world graphs.

1.2.4 Contributions

I provide a brief summary of the main contributions resulted from this dissertation

as follows:

• Fast and Scalable Ranking in Large-scale Plain Graphs (Chapter 3). First,

I propose BePI for random walk based ranking on billion-scale graphs by ex-

ploiting real-world graphs structures and taking the advantage of both pre-

processing and iterative approaches. BePI processes 100× larger graphs, and

requires up to 130× less memory space than other preprocessing methods. In

the query phase, BePI computes node ranking scores up to 9× faster than ex-

isting methods.

• Personalized Ranking in Signed Networks (Chapter 4). Second, I propose

SRWR for personalized ranking in signed networks by introducing a signed

random surfer with balance theory describing signed triangle pa�erns in real-

world signed networks. SRWR achieves the best accuracy for link prediction,

predicts trolls 4× more accurately, and shows a satisfactory performance for

inferring missing signs of edges compared to other competitors. I also develop

SRWR-Pre for fast ranking in signed networks by exploiting real-world graph

9

structures in a preprocessing manner. SRWR-Pre preprocesses a signed net-

work 4.5× faster and requires 11× less memory space than other preprocess-

ing methods; furthermore, SRWR-Pre computes SRWR scores up to 14× faster

than other methods in the query phase.

• Relational Reasoning in Edge-labeled Graphs (Chapter 5). Finally, I de-

sign a random walk based model MuRWR for accurate relation reasoning in

edge-labeled graphs. I introduce a labeled random surfer, and learn appropriate

rules on changing the surfer’s label from an input graphs for e�ective reason-

ing. MuRWR provides the most accurate performance for relation inference in

diverse edge-labeled graphs compared to its competitors.

1.2.5 Overall Impact

My research outcomes have potential impacts on academia and industrial worlds as

the followings:

• Computational Improvement.My approaches signi�cantly improve the com-

putational performance of various graph mining tasks based on random walk

in terms of speed, space, and scalability.

• E�ective Analysis. My novel models are bene�cial for researchers to e�ec-

tively analyze complex graphs such as signed networks and knowledge base,

inducing various applications.

I made most of the algorithms developed throughout this thesis open to the

public for reproducibility and the bene�t of the community. In addition, this research

achieved the following results:

• �e work [80] was awarded the silver prize of Samsung Humantech Paper

Award, one of the most prestigious paper awards in Korea.

10

• �e researches [80, 22, 76, 81] were supported by Global Ph.D. Fellowship Pro-

gram of National Research Foundation and NAVER Ph.D. Fellowship.

• �is research results in 2 domestic patent applications and 2 registered domes-

tic patents related to the proposed methods [80, 22, 81].

1.3 �esis Organization

�e rest of this thesis proposal is organized as follows. �e background on several

concepts and the survey of previous works related to this thesis are provided in Chap-

ter 2. In Chapter 3, I present the fast and scalable algorithm BePI for random walk

based ranking in large-scale graphs. In Chapter 4, I �rst describe the novel model

SRWR for personalized ranking and its iterative method, and show the fast method for

computing SRWR in signed social networks. In Chapter 5, I propose our new model

MuRWR based on random walk for relational reasoning in edge-labeled graphs. A�er

discussing future work in Chapter 6, I conclude in Chapter 7.

11

Chapter 2

Background

In this chapter, I introduce concepts and notations on graphs and Random Walk with

Restart (RWR), which are used throughout this dissertation, and describe previous

works related to this research.

2.1 De�nitions

�is section describes the de�nition and mathematical notations for graphs and RWR.

2.1.1 Notations on Graphs

I describe the de�nitions of graphs used throughout this thesis. De�nition 2.1 de�nes

a plain graph without any labels, which is mainly used in Chapter 3. De�nition 2.2

describes signed networks having two edge labels, which is handled in Chapter 4

Edge-labeled networks having K edge labels is de�ned in De�nition 2.3 which is used

in Chapter 5.

De�nition 2.1 (Plain Graph and Adjacency Matrix). A plain graph G = (V,E) is a

pair of the two set V of nodes and the set E of edges where an edge (u,v) represents a

connection between nodes u and v. �e adjacency matrix A of G is a sparse matrix such

that Auv is 1 if there is an edge from u to v, and 0 otherwise. �

De�nition 2.2 (Signed Graph and Signed Adjacency Matrix). A signed graph G =

(V,E±) consists of V of nodes and the set E± of signed edges. A signed edge (u,v) is

associated with a positive or negative sign, i.e., (u,v,+) or (u,v,−), respectively. �e

12

u8

u5

u4

u3 u7

u6

u2

u1

0.287

0.171

0.068

0.124

0.124

0.054

0.054

0.118

u1

u2

u3

u4

u5

u6

u7

u8

scorenode

1

2

6

3

4

7

8

5

rank

Figure 2.1: Example of RWR. In the example, the query node is u1 and RWR scores w.r.t.
u1 are presented in the table. �e RWR scores are utilized for personalized ranking or link
recommendation for u1.

signed adjacency matrix A of G is a sparse matrix such that Auv is +1 (or −1) if there

is a positive (or negative) edge (u,v), and 0 otherwise. �

De�nition 2.3 (Edge-labeled Graph and Labeled Adjacency Matrix). An edge-labeled

graph G = (V,E,L) consists of the set V of nodes, the set E of directed edges, and the

set L of edge labels. Let L = {l1, · · · , lK} where lk is k-th label, and K is the number of

edge labels. For each edge u→ v ∈ E such that u,v ∈ V, the edge is associated with an

edge label luv ∈ L. �e labeled adjacency matrix A of G is a sparse matrix such that Auv

is luv if there is an luv-labeled edge from u to v, and 0 otherwise. �

2.1.2 RandomWalk with Restart

Given a graph G, a query node s, and a restart probability c, random walk with restart

(RWR) [82] measures proximity scores r between the query node s and each node

on the graph. RWR leverages the proximities by allowing a random surfer to move

around the graph. Suppose that a random surfer starts at node s, and takes one of the

following actions at each node:

13

• Random Walk. �e surfer randomly moves to one of the neighbors from the

current node with probability 1− c.

• Restart. �e surfer goes back to the query node s with probability c.

�e proximity or the RWR score between a node u and the query node s is the

steady-state probability that the surfer is at node u a�er performing RWR starting

from node s. If the proximity is high, we consider that nodes u and s are highly related,

e.g., they are close friends in a social network. �us, RWR provides relevance scores

between the query node s and each node, and it is utilized as a personalized ranking

for the query node s [82].

For example, suppose u1 is the query node as shown in Figure 2.1. �e RWR

scores w.r.t. u1 are presented in the table of the �gure, and the scores are used for the

personalized ranking for u1. Also, we are able to recommend to friends for u1 based

on the scores. �e RWR score of u8 is higher than that of u6 because u8 is highly

correlated to u1 by the connections with u4 and u5. �us, u8 will be recommended to

u1 rather than u6 would based on the RWR scores.

RWR scores for all nodes w.r.t. the query node s are represented as an RWR score

vector r which is de�ned by the following recursive equation [13, 82] :

r = (1− c)ÃTr+ cq (2.1)

where Ã is the row-normalized adjacency matrix of the graph G, and q is the starting

vector whose entry that corresponds to the node s is set to 1, and others to 0. From

Equation (2.1), we obtain the following linear equation:

(I− (1− c)ÃT)r = cq⇔Hr = cq (2.2)

14

where H = I− (1− c)ÃT. Note that q is an RWR query, and r is the result corre-

sponding to the query. q is determined by the query node s, and r is distinct for each

RWR query. RWR is a special case of Topic-speci�c PageRank which sets multiple

seed nodes in the starting vector q while RWR sets only one seed node [13, 21].

2.2 Related Works

In this section, I survey existing research works related to random walk-based graph

mining.

2.2.1 Previous Methods for RWR in Plain Graphs

I review previous works on the RWR computation from two perspectives: 1) iterative

methods, 2) preprocessing methods, and 3) approximate and top-k methods. �e iter-

ative and preprocessing methods focus on computing exact single-source RWR scores

of all nodes w.r.t. a given query node. �e approximate methods compute approxi-

mate single-source RWR scores, and top-k methods aim at �nding top-k relevance

nodes in order of RWR scores approximately or exactly.

Iterative methods for RWR. �e most well-known method is power itera-

tion [13] which repeatedly updates the RWR score vector in Equation (2.1). �e power

iteration method aims at �nding the eigenvector corresponding to the largest eigen-

value of the Google matrix derived from Equation (2.1). Krylov subspace methods [79]

are also used to compute the solution of a linear system shown in Equation (2.2).

�ese methods iterate a procedure to search the solution in the Krylov subspace.

Since the matrix H is non-singular and non-symmetric [83], any Krylov subspace

method, such as GMRES [53], which handles a non-symmetric matrix, can be applied

to Equation (2.2). While these iterative methods do not require preprocessing, they

15

have expensive query cost especially when there are lots of queries, since the whole

iterations need to be repeated for each query.

Preprocessingmethods forRWR.�e query speed of RWR can be accelerated

signi�cantly by precomputing the inverse of H of Equation (2.2). However, matrix

inversion does not scale up for large graphs, as it involves a dense matrix that is too

large to �t in memory. To tackle this problem, alternative preprocessing methods have

been developed. Tong et al. [82] proposed NB LIN, which decomposes the adjacency

matrix using a low-rank approximation in the preprocessing phase, and approximates

H−1 from the decomposed matrices in the query phase. Fujiwara et al. applied LU

decomposition [60] and QR decomposition [84] to the adjacency matrix to obtain

sparser matrices to use in place of H−1. Prior to applying LU decomposition [60],

they reordered H based on the degree of nodes and the community structure to make

L−1 and U−1 sparse. Bear [54, 76] preprocesses the adjacency matrix by exploiting

node reordering and block elimination techniques. While all of these methods made

performance improvements over previous approaches, they su�er from the scalability

problem when it comes to billion-scale graphs.

Approximate and top-k methods for RWR. Iterative and preprocessing ap-

proaches o�en fail to scale up for real-world applications due to high computational

cost. Several approximate methods have been developed to overcome this problem.

Observing that the relevance scores are highly skewed, and real-world graphs o�en

exhibit a block-wise structure, Sun et al. [41] proposed an approximate algorithm that

performs RWR only on the partition containing the seed node, while se�ing the rele-

vance score of other nodes outside the partition to 0. Building on similar observations,

Tong et al. [82] proposed approximate algorithms, B LIN and its derivatives, in which

they applied a low-rank approximation to the cross-partition links using eigenvalue

16

decomposition. Gleich et al. [55] proposed methods that apply RWR only to a part of

the graph, which is determined adaptively in the query phase. Andersen et al. [48]

presented an algorithm for local graph partitioning problem that computes PageRank

vectors approximately. Fast-PPR, a Monte Carlo-based method proposed by Lofgren

et al. [57], estimates the single pair PPR (Personalized PageRank) between a start

node and a target node by employing a bi-directional scheme. Bahmani et al. [85]

developed a fast MapReduce algorithm based on Monte Carlo simulation for approx-

imating PPR scores. To compute PPR approximately, Xie et al. [58] used a model

reduction approach where solutions are projected to a low dimensional space. Also,

several works have been proposed to focus on the k most relevant nodes w.r.t. a seed

node instead of calculating the RWR scores of every node. K-dash, a top-k method

proposed by Fujiwara et al. [60], computes the RWR scores of top-k nodes by exploit-

ing precomputed sparse matrices and pruning strategies. Wu et al. [61] proposed Fast

Local Search (FLOS) which �nds top-k relevant nodes in terms of various measures

including RWR. However, approximate and top-k computation for RWR scores are in-

su�cient for many data mining applications [86, 48, 18, 27, 87, 82, 88] which require

accurate RWR scores for any pair of nodes.

2.2.2 Ranking Models in Signed Networks

I review related works on random walk and ranking models in signed networks,

which are categorized as follows: 1) ranking in signed networks, and 2) applications

of ranking in signed networks.

Ranking in signed networks. Many researchers have made great e�orts to

design global node rankings in signed networks. Kunegis et al. [63] presented Signed

spectral Ranking (SR) that heuristically computes PageRank scores based on a signed

17

adjacency matrix. Wu et al. [66] proposed Troll-Trust model (TR-TR) which is a vari-

ant of PageRank. In the algorithm, the trustworthiness of an individual user is mod-

eled as a probability that represents the underlying ranking values. Shahriari et al. [65]

suggested Modi�ed PageRank (MPR), which computes PageRank in a positive sub-

graph and a negative subgraph separately, and subtracts negative PageRank scores

from positive ones. Although the idea of MPR is easily applicable to other personal-

ized ranking models such as RWR by computing ranking scores on the positive and

negative subgraphs, this results in many disconnections between nodes. Note that all

those models mainly focus on global node rankings, and they do not consider com-

plex relationships between negative and positive edges such as friend-of-enemy or

enemy-of-friend.

Applications of ranking in signed networks. Many applications in signed

social networks such as link prediction, troll detection, and sign prediction have been

studied in many literatures. Song et al. [89] proposed GAUC (Generalized AUC) to

measure the quality of link prediction in signed networks where the link prediction

task is to predict nodes which will be positively or negatively linked by a node in

the future. �ey devised a matrix factorization based method GAUC-OPT which ap-

proximately maximizes GAUC for link prediction. Kunegis et al. [63] analyzed the

Slashdot dataset from the perspective of troll detection, and proposed Negative Rank

(NR) as a variant of PageRank for detecting trolls who behave abnormally in the social

network. Leskovec et al. [90] proposed LOGIT which is specially designed for sign

prediction classifying the sign between two arbitrary nodes. �ey exploited a logis-

tic classi�er trained by node and edge features such as node degrees and common

neighbors between those two nodes. Guha et al. [91] also studied sign prediction,

and devised TRUST measuring trustworthiness between two source and target nodes

18

by propagating trust and distrust from the source node to the target node.

2.2.3 Relational ReasoningModels in Edge-labeled Graphs

I review related works on random walk and relational reasoning in edge-labeled

graphs as follows: 1) random walk on heterogeneous networks, and 2) relation in-

ference in edge-labeled graphs.

Random walk on heterogeneous networks. RWR has received much a�en-

tion and has been applied to many graph mining tasks. However, RWR has a lim-

itation on predicting the relation between two nodes in edge-labeled graphs since

it does not consider edge labels for its relevance. Several techniques [23, 33] have

been proposed to compute RWR in heterogeneous networks. �ese methods focus

on how to determine the weights of edges by exploiting a�ributes in the networks,

and then construct a transition matrix with the weights to compute RWR. However,

they also cannot infer the relation between the nodes in edge-labeled graphs because

they produce only one relevance score between two nodes, similarly to RWR. For

relation inference, we need to obtain K relevance scores for edge labels between two

nodes if a graph has K edge labels. Many researchers have recently made great ef-

forts to apply RWR for relevance between nodes in signed networks, a special type

of edge-labeled graphs, represented by positive (trust) and negative (distrust) edges.

Modi�ed RWR (MRWR) [65] computes RWR as trust and distrust scores in positive

and negative subgraphs, respectively. Although the idea is applicable to edge-labeled

graphs by computing RWR on each subgraph containing only a speci�c edge label,

this leads to many disconnections between nodes; thus, MRWR is unable to exploit

meaningful pa�erns from multi-hop paths.

Relation inference in edge-labeled graphs. Two major approaches on re-

19

lation inference for multiple edge labels are classi�ed into path feature model and

translation based model. Path Ranking Algorithm (PRA) [67] is commonly used as a

path feature model in heterogeneous networks. PRA extracts paths connecting two

nodes, and exploits a random surfer to measure path probabilities which are used

as features when predicting their relation. PRA, however, requires explicit path enu-

meration which becomes computationally problematic when it comes to long paths.

Although the authors presented heuristic pruning techniques, PRA’s inference has

still been restricted to short paths since the path enumeration essentially has an ex-

ponential complexity to path length. Translation based models such as TransE [92]

and TransR [93] have been widely utilized due to its simplicity and e�ectiveness for

modeling relational data. �ey formulate the relation between two nodes as a transla-

tion between the corresponding node embeddings. However, those models consider

only one directed edge at a time in training; hence, their reasoning is likely to miss

the information provided by multi-hop paths between them.

20

Chapter 3

Fast and Scalable Ranking in Large-scale

Plain Graphs

3.1 Introduction

Identifying node-to-node proximity in a graph is a fundamental tool for various graph

mining applications, and has been recognized as an important research problem in the

data mining community [94, 95, 60, 61]. Random walk with restart (RWR) provides a

good relevance score, taking into account the global network structure [19] and the

multi-faceted relationship between nodes [20] in a graph. RWR has been successfully

utilized in many graph mining tasks including ranking [82], recommendation [96],

link prediction [27], question and answering [97], and community detection [48, 50,

49].

Existing methods for scalable computation of RWR scores can be classi�ed into

two categories: iterative approaches and preprocessing approaches. Iterative meth-

ods, such as power iteration [13], compute an RWR score by repeatedly updating it

until convergence. While they require much less memory space compared to prepro-

cessing methods, they are slow in the query phase because matrix-vector multiplica-

tions should be performed each time for a di�erent query node. �is makes iterative

methods not fast enough for billion-scale graphs.

On the other hand, preprocessing methods compute RWR scores using precom-

puted intermediate matrices. Since preprocessed matrices need to be computed just

21

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Slashdot

W
ikipedia

Baidu

Flickr

LiveJournal

W
ikiLink

Twitter

Friendster

W
a

ll
c
lo

c
k
 t

im
e

 (
s
e

c
)

BePI
Bear

LU

3679x
7935x

(a) Preprocessing time

10
1

10
2

10
3

10
4

10
5

10
6

Slashdot

W
ikipedia

Baidu

Flickr

LiveJournal

W
ikiLink

Twitter

Friendster

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

BePI
Bear

LU

77x
130x

(b) Memory space for
preprocessed data

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Slashdot

W
ikipedia

Baidu

Flickr

LiveJournal

W
ikiLink

Twitter

Friendster

W
a

ll
c
lo

c
k
 t

im
e

 (
s
e

c
)

BePI
GMRES

Power
Bear

LU

10x
3x

9x

5x
3x

4x
2x 3x

(c) �ery time

Figure 3.1: Performance of BePI. (a) and (b) compare the preprocessing time, and the mem-
ory space for preprocessed data, respectively, among preprocessing methods; (c) compares the
query time among all tested methods. Bars are omi�ed if the corresponding experiments run
out of memory or time (more than 24 hours). (a) In the preprocessing phase, BePI is the fastest
and the most scalable among all preprocessing methods. Only BePI successfully preprocesses
billion-scale graphs such as Twi�er and Friendster datasets. (b) BePI uses the least amount of
space for preprocessed data across all the datasets. Only BePI preprocesses all the datasets,
whereas Bear and LU decomposition fail except for the two smallest ones. (c) In the query
phase, BePI computes RWR scores faster than other competitors over all datasets. Details on
these experiments are presented in Section 3.5.

once, and then can be reused, they are fast in the query phase, especially when they

should serve many query nodes. However, existing preprocessing approaches have

high memory requirements in common, due to the space for the preprocessed matri-

ces, which makes it di�cult to scale them up to billion-scale real-world graphs such

as Twi�er or Friendster datasets (see Table 3.2).

In this work, we propose BePI (Best of Preprocessing and Iteartive approaches

for RWR), a fast, memory-e�cient, and scalable method for computing RWR on

billion-scale graphs. BePI addresses the challenges faced by previous approaches by

combining the best of both preprocessing and iterative methods. BePI uses a block

elimination approach, which is a preprocessing method, to achieve fast query time.

BePI incorporates an iterative method within the block elimination to decrease mem-

ory requirements by avoiding expensive matrix inversion. �e performance of BePI

is further enhanced via matrix sparsi�cation and preconditioning. �rough extensive

experiments with various real-world graphs, we demonstrate the superiority of BePI

22

over existing methods as shown in Figure 3.1. �e main contributions of this paper

are the followings:

• Algorithm. We propose BePI, a fast, memory-e�cient, and scalable algorithm

for computing RWR on billion-scale graphs. BePI e�ciently computes RWR

scores based on precomputed matrices by exploiting an iterative method, re-

ducing the number of non-zeros of a matrix, and applying a preconditioner.

• Analysis. We give theoretical guarantees of the accuracy of BePI. We also

analyze the time and the space complexities of BePI, and show that the com-

plexities are smaller than those of the state-of-the art method.

• Experiment. BePI processes 100× larger graphs and requires 130× less mem-

ory space than existing preprocessing methods. Moreover, BePI provides near

linear scalability in terms of preprocessing and query cost. BePI computes RWR

scores up to 9× faster than existing iterative methods.

�e code of our method BePI and datasets used in the paper are available at

h�ps://datalab.snu.ac.kr/bepi. �e rest of the paper is organized as follows. In Sec-

tion 3.2, we give preliminaries on the de�nition and algorithms of RWR. We describe

our proposed method BePI in Section 3.3. A�er presenting our experimental results

in Section 3.5, we summarize this work in Section 3.6.

3.2 Preliminaries

In this section, we present the preliminaries on two di�erent approaches for RWR,

iterative methods and preprocessing methods. Symbols used in the paper are sum-

marized in Table 3.1.

23

https://datalab.snu.ac.kr/bepi

Table 3.1: Table of symbols used in Chapter 3

Symbol De�nition

G input graph
n number of nodes in G
m number of edges in G
n1 number of spokes in G
n2 number of hubs in G
n3 number of deadends in G
n1i number of nodes in the ith diagonal block of H11
b number of diagonal blocks in H11
s seed node (=query node)
c restart probability
k hub selection ratio in the hub-and-spoke reordering method [98]
ε error tolerance
A (n×n) adjacency matrix of G

Ann adjacency matrix containing edges
from non-deadend nodes to non-deadend nodes

And adjacency matrix containing edges from non-deadend nodes to deadend nodes
Ã (n×n) row-normalized adjacency matrix of G
H (n×n) H = I− (1− c)Ã>

Hi j (ni×n j) (i, j)-th partition of H
S (n2×n2) Schur complement of H11

L1,U1 (n1×n1) LU factors of H11
L̃2, Ũ2 (n2×n2) incomplete LU factors of S
q,qi (n×1) starting vector, and (ni×1) i-th partition of q, respectively
r,ri (n×1) relevance vector, and (ni×1) i-th partition of r, respectively
|A| number of non-zero entries of a matrix A

3.2.1 Iterative Methods for RWR

Iterative methods update the RWR score vector r iteratively. �e most well-known

method is the power iteration method [13] which repeatedly updates r as follows:

r(i)← (1− c)ÃTr(i−1)+ cq

where r(i) denotes the vector r at the i-th iteration. �e repetition continues until r

has converged (i.e., ‖r(i)− r(i−1)‖2 ≤ ε). �e vector r is guaranteed to converge to a

unique solution if 0 < c < 1 [83]. Krylov subspace methods [79] are also used to com-

24

pute the solution of a linear system shown in Equation (2.2). �ese methods iterate a

procedure to search the solution in the Krylov subspace. Since the matrix H is non-

singular and non-symmetric [83], any Krylov subspace method, such as GMRES [53],

which handles a non-symmetric matrix, can be applied to Equation (2.2). While these

iterative methods do not require preprocessing, they have expensive query cost es-

pecially when there are lots of queries, since the whole iterations need to be repeated

for each query.

3.2.2 Preprocessing Methods for RWR

Many real-world applications require RWR scores of any pair of nodes, e.g., scores be-

tween two arbitrary users in social networks. Hence, quickly computing RWR queries

is important and useful for real-world applications. Preprocessing methods directly

calculate r based on precomputed results to accelerate the query speed. One naive

approach is to compute H−1 as follows:

r = cH−1q.

Once H−1 is obtained in the preprocessing phase, r can be computed e�ciently

in the query phase. However, obtaining H−1 is impractical for large graphs because

inverting the matrix is very time-consuming and H−1 is too dense to �t into mem-

ory. Several preprocessing methods were proposed to alleviate the problem about

H−1. Fujiwara et al. [60] proposed to use matrix factorizations such as QR or LU fac-

torization to replace H−1 (e.g., H−1 = U−1L−1 if H is LU factorized). �ey reordered

H based on nodes’ degrees and community structures to make the inverses of factors

sparse. Shin et al. [54] developed a block elimination approach called Bear which ex-

ploits a node reordering technique [98] to concentrate non-zeros of H, and uses block

25

elimination [99] to compute the solution. While these preprocessing methods com-

pute RWR queries quickly based on precomputed results, they have scalability issues

for processing very large graphs because they require heavy computational cost and

large memory space caused by matrix inversion inside the preprocessing phase. �at

is, matrix inversion requires O(n3) time and O(n2) space where n is the dimension of

a matrix to be processed. Under those complexities, if n is greater than a million, it

is infeasible to complete a preprocessing phase based on matrix inversion and store

preprocessed data.

3.3 Proposed Method

In this section, we describe our proposed method BePI for fast, memory-e�cient, and

scalable RWR computation.

3.3.1 Overview

Preprocessing methods process relatively large graphs, and compute RWR scores

quickly. However, they cannot handle very large graphs due to their high memory re-

quirement. On the other hand, iterative methods scale to very large graphs, but show

slow query speed. In this paper, our purpose is to devise a fast and scalable algorithm

by taking the advantages of both preprocessing methods and iterative methods.

We present a basic version of our method BePI-B, and two optimized versions:

BePI-S and BePI. BePI-B reorders nodes based on the characteristics of real-world

graphs and adopts block elimination as a preprocessing method to reduce query time.

Moreover, BePI-B exploits an iterative method within the block elimination approach

to process very large graphs. BePI-S further improves the performance of the iterative

method by sparsifying a matrix in terms of running time and memory requirement.

26

𝐇

(a) Original matrix H

𝐇""

𝐇#" 𝐈

(b) Deadend reordering

𝐇

(c) Hub-and-spoke
reordering

𝐇"#

𝐇## 𝐇#"

𝐇$# 𝐇$" 𝐈

𝐇""

(d) Deadend and
hub-and-spoke reordering

Figure 3.2: Results of node reordering on the Slashdot dataset. (a) is the original matrix
H before node reordering. (b) and (c) are H reordered by deadend reordering and hub-and-
spoke reordering, respectively. (d) is H reordered by the hub-and-spoke reordering method
on top of the result of the deadend reordering method. BePI computes RWR scores on the
reordered matrix H in (d). H11 in (d) is a block diagonal matrix.

On top of that, BePI-B accelerates the query speed by applying a preconditioner to the

iterative method. �e main ideas of our proposed method are summarized as follows:

• BePI-B: exploiting graph characteristics to reorder nodes and apply block

elimination (Section 3.3.2), and incorporating an iterativemethod into block

elimination to increase the scalability of RWR computation (Section 3.3.3).

• BePI-S: sparsifying the Schur complement to improve the performance of

the iterative method (Section 3.3.4).

• BePI: preconditioning a linear system to make the iterative method con-

verge faster (Section 3.3.5).

BePI comprises two phases: the preprocessing phase and the query phase. In

the preprocessing phase (Algorithm 3), BePI precomputes several matrices which are

required by the query phase. In the query phase (Algorithm 4), BePI computes RWR

scores for each query by exploiting the precomputed matrices. Note that the prepro-

cessing phase is run once, and the query phase is run for each seed node. To exploit

sparsity of graphs, we save all matrices in a sparse matrix format such as compressed

column storage [100] which stores only non-zero entries and their locations.

27

3.3.2 BePI-B: ExploitingGraphCharacteristics forNodeRe-

ordering and Block Elimination

BePI-B �rst reorders H = I− (1−c)ÃT based upon real-world graph characteristics,

and applies block elimination for e�cient RWR computation. Previous works [101,

54, 84] have shown that node reordering methods reduce computational cost of op-

erations based on adjacency matrices of real-world graphs. For further improvement,

we propose to mix node reordering strategies based on two graph characteristics: 1)

deadends, and 2) hub-and-spoke structure. A�er reordering nodes, we apply block

elimination as a preprocessing method to reduce query cost.

3.3.2.1 Node Reordering Based on Deadends and Hub-and-

Spoke Structure

Deadends. Deadends are nodes having no out-going edges. Many deadends are pro-

duced from various sources such as a page containing only a �le or an image in real-

world graphs (see Table 3.2). Deadends have been used to improve the performance

of graph operations [101]. In this paper, we reorder nodes based on deadends for ef-

�cient RWR computation. Suppose that an adjacency matrix A is reordered so that

non-deadends and deadends are separated as follows:

A =

Ann And

0 0

where Ann is a submatrix containing edges from non-deadend nodes to non-deadend

nodes, and And is a submatrix containing edges from non-deadend nodes to deadend

28

nodes. �en, Equation (2.2) is represented as follows:

Hr = cq⇔

Hnn 0

Hdn I

rn

rd

= c

qn

qd

where Hnn = I− (1− c)ÃT

nn and Hdn = −(1− c)ÃT
nd. Figure 3.2(b) presents the ex-

ample of H reordered by the deadend reordering approach. �e partitioned solutions

rn and rd are obtained from the following equations:

Hnnrn = cqn (3.1)

rd = cqd−Hdnrn (3.2)

Note that the dimension and the number of non-zeros of Hnn are smaller than

those of H. �e partitioned solution rd is easily computed if we have rn. Hence, the

deadend reordering approach enables to obtain RWR scores by solving the linear

system in Equation (3.1) which is smaller than the original one in Equation (2.2).

One naive method for computing Equation (3.1) is to invert Hnn, i.e., rn = H−1
nn qn.

However, obtaining H−1
nn is infeasible in very large graphs because its dimension is

still too large to invert. To e�ciently solve the linear system in Equation (3.1), we

introduce another reordering technique based on the hub-and-spoke structure on

top of the deadend reordering approach.

Hub-and-spoke structure. Most real-world graphs have the hub-and-spoke

structure meaning they follow power-law degree distribution with few hubs (very

high degree nodes) and majority of spokes (low degree nodes) [73]. �e structure

is exploited to concentrate entries of an adjacency matrix by reordering nodes as

shown in Figure 3.2(c). �e reordered matrix based on the hub-and-spoke structure

29

has improved the performance of operations on graphs [54]. We use the hub-and-

spoke structure to e�ciently solve Equation (3.1). Any reordering method based on

the hub-and-spoke structure can be utilized for the purpose; in this paper, we use

SlashBurn [98] because it shows the best performance in concentrating entries of an

adjacency matrix (more details in Appendix A.1).

We reorder nodes of the submatrix Ann using the hub-and-spoke reordering

method so that the reordered matrix contains a large but easy-to-invert submatrix

such as a block diagonal one as shown in Figure 3.2(c). A�er reordered by the dead-

end approach and the hub-and-spoke reordering method, H is partitioned as follows:

H =

Hnn 0

Hdn I

⇔

H11 H12 0

H21 H22 0

H31 H32 I

 (3.3)

where Hnn is partitioned to

H11 H12

H21 H22

, and Hdn is partitioned to
[
H31 H32

]
. Fig-

ure 3.2(d) illustrates the example of the reordered matrix H in Equation (3.3). Let n1

be the number of spokes, n2 be the number of hubs (see Appendix A.1), and n3 be

the number of deadends. n1 and n2 are determined by the hub-and-spoke reordering

method, and n3 is computed by the deadend reordering method. H11 is an n1× n1

matrix, and H22 is an n2×n2 matrix. H31 is an n3×n1 matrix, and H32 is an n3×n2

matrix. Note that H11 is block diagonal as shown in Figure 3.2(d) since Hnn has the

same sparsity pa�ern as that of the reordered matrix AT
nn except for the diagonal en-

tries, and the upper le� part of the reordered matrix AT
nn is a block diagonal matrix.

30

3.3.2.2 Block Elimination

By plugging Equation (3.3) into Hr = cq, the linear system is represented as follows:

Hr = cq⇔

H11 H12 0

H21 H22 0

H31 H32 I

r1

r2

r3

= c

q1

q2

q3

 . (3.4)

�e partitioned linear system in Equation (3.4) is solved by applying block elimi-

nation [99]. �at is, the RWR solution vector r is obtained from the following lemma:

Lemma 3.1 (Block Elimination [99, 54]). �e linear system in Equation (3.4) is solved

by block elimination, and the solution r is represented as follows:

r =

r1

r2

r3

=

H−1

11 (cq1−H12r2)

S−1(cq2−H21(H−1
11 (cq1)))

cq3−H31r1−H32r2

 (3.5)

where S = H22−H21H−1
11 H12 is the Schur complement of H11. Note that the dimension

of S is n2×n2 where n2 is the number of hubs.

Proof. See Section 3.4.4.2.

If all matrices in Equation (3.5) are precomputed, the RWR score vector r is e�-

ciently calculated, i.e., only matrix vector multiplications are required for the query

computation.

31

3.3.3 BePI-B: Incorporating an IterativeMethod into Block

Elimination

BePI-B incorporates an iterative method within the block elimination to compute

RWR on very large graphs. Based on the block elimination approach, the RWR vector

r = [r1,r2,r3]
T is obtained by solving the following linear systems:

H11r1 = cq1−H12r2 (3.6)

Sr2 = cq2−H21(H−1
11 (cq1)) (3.7)

r3 = cq3−H31r1−H32r2 (3.8)

where S is the Schur complement of H11. Note that those equations are derived from

Equation (3.5). r3 is easily obtained from r1 and r2 based on Equation (3.8). r1 is also

easily computed if we have r2, because H11 is block diagonal and consists of small

blocks; hence, H11 is easy-to-invert (i.e., r1 = H−1
11 (cq1−H12r2)). However, on very

large graphs, inverting the Schur complement S is infeasible because the dimension

of S is large (see Table 3.2). Hence, computing r2 in Equation (3.7) with S−1 is imprac-

tical on billion-scale graphs. Our solution for this problem is to exploit an iterative

method to solve the linear system w.r.t. r2. �is approach enables to avoid matrix in-

version; consequently, the preprocessing time and the storage cost for S−1 are elim-

inated. In the preprocessing phase, BePI-B precomputes several matrices required in

Equations (3.6), (3.7), and (3.8). In the query phase, BePI-B computes those equations

for a given seed node based on the precomputed matrices.

BePI-B: Preprocessing phase (Algorithm 1). BePI-B �rst reorders the adja-

cency matrix A using the deadend reordering technique (line 1). �en, BePI-B per-

mutes the adjacency matrix Ann using the hub-and-spoke reordering method (details

32

Algorithm 1: Preprocessing phase in BePI-B and BePI-S
Input: graph: G, restart probability: c
Output: precomputed matrices: L−1

1 , U−1
1 , S, H12, H21, H31 and H32.

1: reorder A using the deadend reordering approach
2: reorder Ann using the hub-and-spoke reordering method with the following hub

selection ratio k:
(BePI-B only) select k which makes n2 small
(BePI-S only) select k which minimizes |S|

3: compute Ã, and H = I− (1− c)ÃT

4: partition H into H11,H12,H21,H22,H31, and H32
5: decompose H11 into L1 and U1 using LU decomposition and compute L−1

1 and U−1
1

6: compute the Schur complement of H11, S = H22−H21(U−1
1 (L−1

1 (H12)))

7: return L−1
1 , U−1

1 , S, H12, H21, H31, and H32

Algorithm 2: �ery phase in BePI-B and BePI-S
Input: seed node: s, restart probability: c, error tolerance: ε, precomputed matrices: L−1

1 ,
U−1

1 , S, H12, H21, H31, and H32
Output: relevance vector: r

1: create q whose sth entry is 1 and the others are 0
2: partition q into q1, q2, and q3
3: compute q̃2 = cq2−H21(U−1

1 (L−1
1 cq1)

4: solve Sr2 = q̃2 using an iterative method and the error tolerance ε

5: compute r1 = U−1
1 (L−1

1 (cq1−H12r2))
6: compute r3 = cq3−H31r1−H32r2
7: create r by concatenating r1, r2, and r3

8: return r

in Appendix A.1) so that the reordered matrix contains a large block diagonal matrix

as seen in Figure 3.2(c) (line 2). Notice that when we permute Ann, the rows of And also

need to be permuted according to the permutation produced by the hub-and-spoke

reordering method. In BePI-B, we choose a hub selection ratio k which makes the

dimension of the Schur complement n2 small enough in order to concentrate entries

of Ann as much as possible. �en, BePI-B computes and partitions H (lines 3 and 4).

When we compute H−1
11 , we invert the LU factors of H11 since this approach is more

e�cient in terms of time and space than directly inverting H11 as suggested in [60, 54]

(line 5). BePI-B �nally computes the Schur complement of H11 (line 6).

33

0.1 0.2 0.3 0.4 0.5

Hub selection ratio (k)

0

1

2

3

4

5

6

7

N
u
m

b
e
r

o
f
n
o
n
-z

e
ro

s

×10
5

|S|
|H22|
|H21H

−1

11
H12|

(a) Slashdot

0.1 0.2 0.3 0.4 0.5

Hub selection ratio (k)

0

2

4

6

8

10

N
u

m
b

e
r

o
f

n
o

n
-z

e
ro

s

×10
5

|S|
|H22|
|H21H

−1

11
H12|

(b) Wikipedia

0.2 0.4 0.6

Hub selection ratio (k)

0

2

4

6

8

10

12

14

N
u
m

b
e
r

o
f
n
o
n
-z

e
ro

s

×10
7

|S|
|H22|
|H21H

−1

11
H12|

(c) Flickr

0.2 0.4 0.6

Hub selection ratio (k)

0

1

2

3

4

5

6

N
u

m
b

e
r

o
f

n
o

n
-z

e
ro

s

×10
8

|S|
|H22|
|H21H

−1

11
H12|

(d) WikiLink

Figure 3.3: Number of non-zeros of the Schur complement |S| with di�erent hub selec-
tion ratio k on the Slashdot, the Wikipedia, the Flickr, and the WikiLink datasets. �e �gures
show the trade-o� problem for selecting k. If we select large k, then |S| decreases compared to
small k. However, if we choose too large k (e.g., when k is greater than 0.3 in the sub-�gures),
then |S| increases. We set k between 0.2 and 0.3 since those constants decrease |S| enough
(see Table 3.2).

BePI-B: �ery phase (Algorithm 2). In the query phase, BePI-B computes

the RWR score vector r for a given seed node s based on the precomputed matrices.

�e vector q denotes the length-n starting vector whose entry at the index of the

seed node s is 1 and otherwise 0. It is partitioned into the length-n1 vector q1, the

length-n2 vector q2, and the length-n3 vector q3 (lines 1 and 2). BePI-B �rst solves

the linear system w.r.t. r2 in Equation (3.7) using an iterative method (lines 3 and 4).

�en, BePI-B computes r1 and r3 (lines 5 and 6).

Since S is non-symmetric and invertible [102], any iterative methods for a non-

symmetric matrix can be used; in this paper, we use GMRES since it is the state-of-the-

art method in terms of e�ciency and accuracy. GMRES repeats an iteration procedure

until the relative residual is less than an error tolerance ε (i.e., ‖|Sr(i)2 − q̃2||2/||q̃2||2 ≤

ε where r(i)2 indicates r2 at the i-th iteration of GMRES).

3.3.4 BePI-S: Sparsifying the Schur Complement

We present BePI-S which improves on BePI-B by decreasing the number of non-zero

entries of the Schur complement S used by the iterative procedure in BePI-B. Since

34

the time complexity of iterative methods depends on the number of non-zeros of the

matrix, this approach saves time for solving the linear system on S. Also, decreasing

non-zero entries of S reduces the storage cost for S. By the de�nition of S (i.e., S =

H22−H21H−1
11 H12), the entries of S are determined by H22 and H21H−1

11 H12. �us,

the number of non-zeros of S is roughly bounded as follows:

|S| ≤ |H22|+ |H21H−1
11 H12|

where |A| is the number of non-zeros of the matrix A. To decrease the number of

non-zeros of S, BePI-S sets a hub selection ratio k which minimizes the number of

non-zeros of S. If we increase k, the hub-and-spoke reordering method selects more

hubs at each step; therefore, n2 increases, and n1 decreases (i.e., n−n3 = n1 +n2). In

other words, |H22| increases while |H11|, |H12|, and |H21| decrease; thus, |H21H−1
11 H12|

is also reduced. �e point is that, with a suitable choice of k, |S| decreases since

|H22| slightly increases while |H21H−1
11 H12| is signi�cantly reduced. Note that this

is a trade-o� problem between the number of entries of H22 and that of H21H−1
11 H12.

If we set k too large, then although |H21H−1
11 H12| decreases a lot, |H22| also increases

a lot; therefore, |S| becomes large. Figure 3.3 illustrates the trade-o� problem on real-

world graphs.

BePI-S: Preprocessing phase (Algorithm 1). BePI-S precomputes the matri-

ces demanded in the query phase on top of BePI-B. First of all, BePI-S reorders A

and Ann using the deadend and the hub-and-spoke reordering methods similarly to

BePI-B (line 1 and 2). However, when BePI-S reorders Ann using the hub-and-spoke

reordering method, we set a hub selection ratio k which minimizes the number of

non-zeros of the Schur complement S (line 2). We empirically select k as 0.2 or 0.3

35

which makes the Schur complement sparse enough, as presented in Figure 3.3 and

Table 3.2. As we will discuss in Section 3.5.5, BePI-S accelerates preprocessing speed

by up to 10× and saves memory space by up to 5× compared to BePI-B.

BePI-S:�ery phase (Algorithm 2). BePI-S computes RWR scores for a given

seed node based on the precomputed matrices. Note that the query phase of BePI-S is

the same as that of BePI-B. However, the query speed of BePI-S is faster than that of

BePI-B because BePI-S decreases the number of non-zeros of the Schur complement

used in the iterative method (line 4). As we will see in Section 3.5.5, BePI-S leads to

up to 5× performance improvement in terms of query speed compared to BePI-B.

3.3.5 BePI: Preconditioning a Linear System for the Itera-

tive Method

Our �nal method BePI improves BePI-S by exploiting a preconditioner [103] to en-

hance the speed of the iterative method in the query phase. �e main purpose of pre-

conditioning is to modify a linear system so that iterative methods converge faster.

More speci�cally, preconditioning decreases the condition number of the matrix to

be solved and makes the eigenvalues of the modi�ed system to form a tighter cluster

away from the origin. �e small condition number and the tight eigenvalue distri-

bution are the main criteria for fast convergence [53, 78]. A standard approach is to

use a non-singular matrix M as a preconditioner. With M, a linear system Ax = b is

preconditioned to M−1Ax = M−1b. Notice that the solution of the original system is

the same as that of the preconditioned system.

BePI exploits a preconditioner to make convergence faster when solving the

linear system of S in Equation (3.7) using an iterative method. Among various pre-

conditioning techniques such as incomplete LU decomposition (ILU) [79] or Sparse

36

Approximate Inverse (SPAI) [104], we choose ILU as a preconditioner because ILU

factors are easily computed and e�ective for preconditioning. �e incomplete LU de-

composition of a matrix A is a sparse approximation of the LU factors of the matrix,

i.e., A ' L̃Ũ. �e ILU factors, L̃ and Ũ, have the same sparsity pa�ern as the lower

and upper triangular parts of A, respectively.

�e linear system, Sr2 = q̃2, in Equation (3.7) is preconditioned with the ILU

factors of S as follows:

Ũ−1
2 L̃−1

2 Sr2 = Ũ−1
2 L̃−1

2 q̃2 (3.9)

where S' L̃2Ũ2 and q̃2 = cq2−H21(H−1
11 (cq1)). �en, an iterative method �nds the

solution r2 of the preconditioned system in Equation (3.9). However, it is di�cult to

explicitly construct the preconditioned system due to the inversion of the ILU factors.

Instead of directly obtaining Ũ−1
2 and L̃−1

2 , many preconditioned iterative methods,

such as preconditioned GMRES [77], involve a procedure which iteratively precondi-

tions the original system by taking advantage of triangular matrix, L̃2 and Ũ2, without

explicitly constructing the preconditioned system and inverting the preconditioner

(see more details in Appendix A.2). We exploit a preconditioned iterative method to

solve the preconditioned system in Equation (3.9) with the preconditioner.

BePI: Preprocessing phase (Algorithm 3). BePI precomputes the matrices

required for computing RWR scores in the query phase. When BePI reorders nodes

using the hub-and-spoke reordering method,BePI also chooses the hub selection ratio

k which minimizes the number of non-zeros of the Schur complement S as in BePI-

S (line 2). A�er reordering nodes, BePI computes H and the Schur complement S

(lines 3∼6). �en, BePI calculates the ILU factors of S, L̃2 and Ũ2 (line 7) to obtain

a preconditioner for the iterative method in the query phase. Note that the storage

cost of L̃2 and Ũ2 is the same as that of S, since L̃2 and Ũ2 follow the same sparsity

37

Algorithm 3: Preprocessing phase in BePI
Input: graph: G, restart probability: c
Output: precomputed matrices: L−1

1 , U−1
1 , S, L̃2, Ũ2, H12, H21, H31 and H32.

1: reorder A using the deadend reordering approach
2: reorder Ann using the hub-and-spoke reordering method with a hub selection ratio k

which minimizes |S|
3: compute Ã, and H = I− (1− c)ÃT

4: partition H into H11,H12,H21,H22,H31, and H32
5: decompose H11 into L1 and U1 using LU decomposition and compute L−1

1 and U−1
1

6: compute the Schur complement of H11, S = H22−H21(U−1
1 (L−1

1 (H12)))
7: compute incomplete LU factors of S' L̃2Ũ2

8: return L−1
1 , U−1

1 , S, L̃2, Ũ2, H12, H21, H31, and H32

Algorithm 4: �ery phase in BePI
Input: seed node: s, restart probability: c, error tolerance: ε, precomputed matrices: L−1

1 ,
U−1

1 , S, L̃2, Ũ2, H12, H21, H31, and H32
Output: relevance vector: r

1: create q whose sth entry is 1 and the others are 0
2: partition q into q1, q2, and q3
3: compute q̃2 = cq2−H21(U−1

1 (L−1
1 cq1)

4: solve the preconditioned system Ũ−1
2 L̃−1

2 Sr2 = Ũ−1
2 L̃−1

2 q̃2 using a preconditioned
iterative method with L̃2 and Ũ2, and the error tolerance ε

5: compute r1 = U−1
1 (L−1

1 (cq1−H12r2))
6: compute r3 = cq3−H31r1−H32r2
7: create r by concatenating r1, r2, and r3

8: return r

pa�ern of S.

BePI: �ery phase (Algorithm 4). In the query phase, BePI computes Equa-

tions (3.6), (3.7), and (3.8) to obtain the RWR score vector r w.r.t. a seed node s based

on the matrices precomputed by Algorithm 3. BePI �rst sets the starting vector q

for given seed node s (lines 1 and 2). �en, BePI solves the preconditioned system in

Equation (3.9) using an iterative method such as preconditioned GMRES (see details

in Appendix A.2) with the preconditioner L̃2 and Ũ2 (lines 3 and 4). A�er obtain-

ing r2, BePI computes r1 and r3 (lines 5 and 6). As we will see in Section 3.5.5, the

preconditioner accelerates query speed by up to 4× compared to BePI-S.

38

3.4 �eoretical Results

We analyze the time and space complexities of BePI. Moreover, we analyze the ac-

curacy bound of BePI, since BePI exploits an iterative method. Note that all matrices

are saved in a sparse matrix format such as compressed column storage [100] which

contains only non-zero entries and their locations, and all sparse matrix operations

such as sparse matrix vector multiplication only consider non-zero entries to exploit

such sparsity.

3.4.1 Time Complexity

We provide proofs for the time complexity of BePI.

�eorem 3.1. �e preprocessing phase of BePI takes

O(dn2/(k× l)e(m+ l log l)+
∑b

i=1 n3
1i+n2

∑b
i=1 n2

1i+ |S|+min(n2
2n1,n2m)) where l =

n1 +n2 and k is the hub selection ratio of the hub-and-spoke reordering method.

Proof. Computing L−1
1 , U−1

1 , and S a�er doing the hub-and-spoke reordering method

takes O(dn2/(k×l)e(m+l log l)+
∑b

i=1 n3
1i+n2

∑b
i=1 n2

1i+min(n2
2n1,n2m)) [54] where

l = n1 + n2 and dn2/(k× n)e indicates the number of iterations of SlashBurn. Since

incomplete LU decomposition for a sparse matrix A takes O(|A|) [79], it takes O(|S|)

to compute L̃2 and Ũ2.

According to �eorem 3.1, the preprocessing cost of BePI mainly depends on the

number of iterations of the reordering method and the computations related to the

Schur complement. Note that since the number of iterations of the hub-and-spoke

reordering method [98] and |S| are reduced as k increases, the preprocessing cost de-

creases as in Figures 3.4(a) and 3.7. Also, �eorem 3.1 indicates that the preprocessing

cost of BePI is much smaller than that of Bear, the state-of-the-art block elimination

39

approach, since BePI demands O(|S|) and Bear requires O(n3
2) (i.e., |S| � n3

2) while

other factors are the same in both methods.

�eorem3.2. �e query phase ofBePI takes O(
∑b

i=1 n2
1i+min(n1n2,m)+min(n1n3,m)+

min(n2n3,m)+T |S|) where T is the number of iterations.

Proof. Since it takes O(
∑b

i=1 n2
1i+min(n1n2,m)) to compute q̃2 = cq2−H21(H−1

11 (cq1))

[54], and solving a sparse linear system Ax=b with an iterative method takes O(T |A|)

where T is the number of iterations [53], it takes O(
∑b

i=1 n2
1i +min(n1n2,m)+T |S|)

to solve the linear system of S. Note that the time complexity for computing r1 is the

same as that of q̃2. For r3, it takes O(min(n1n3,m)+min(n2n3,m)).

�eorem 3.2 implies that the query cost of BePI mainly depends on the number

of iterations T and |S|. Since |S| and T are reduced by the sparsi�cation of the Schur

complement and the preconditioner, respectively, the query cost of BePI decreases

compared to those of BePI-B and BePI-S.

3.4.2 Space Complexity

We provide a proof for the space complexity of BePI.

�eorem3.3. BePI requires O(
∑b

i=1 n2
1i+min(n1n2,m)+min(n1n3,m)+min(n2n3,m)+

|S|) memory space for preprocessed matrices: L−1
1 , U−1

1 , S, L̃2, Ũ2, H12, H21, H31, and

H32.

Proof. It requires O(min(n1n2,m)) memory space for H12 and H12, and O(
∑b

i=1 n2
1i)

memory space for L−1
1 and U−1

1 [54]. Also, it requires O(min(n1n3,m)+min(n2n3,m))

memory space for H31 and H32. Since the space cost for incomplete LU factors is the

same as that of the given sparse matrix, it requires O(|S|) for S, L̃2 and Ũ2.

40

�eorem 3.3 indicates that the space cost of BePI mainly depends on O(|S|)

because the number of non-zeros of S is larger than those of other matrices except

for the incomplete LU factors of S. Note that BePI demands much smaller memory

space than the state-of-the-art method Bear because the space cost of Bear mainly

depends on O(n2
2); i.e., |S| � n2

2. Also, through sparsifying the Schur complement S,

the space costs of BePI and BePI-S decrease compared to that of BePI-B which is the

basic version without sparsifying S.

3.4.3 Accuracy Bound

We analyze the accuracy bound of the RWR score vector r computed by BePI. Since

r consists of r1, r2, and r3, and r1 and r3 are computed a�er r2, we �rst analyze the

bound of r2 in Lemma 3.2, that of r1 in Lemma 3.3, and that of r3 in Lemma 3.4. �en,

we conclude the bound of r in �eorem 3.4 using these lemmas.

Lemma 3.2 (Accuracy Bound of r2). Let r∗2 be the true solution of the linear system

Sr2 = q̃2 where q̃2 = cq2−H21(H−1
11 (cq1)), and r(k)2 be the solution computed by BePI

a�er the relative residual becomes less than a given tolerance ε at the k-th iteration.

�en, ||r∗2− r(k)2 ||2 ≤
||q̃2||2

σmin(S)ε where σmin(S) is the smallest singular value of S.

Proof. See Section 3.4.4.3.

Lemma 3.3 (Accuracy Bound of r1). Let r∗1 be the true solution of the linear system

H11r1 = q̃1 where q̃1 = cq1−H12r2, and r(k)1 be the solution of H11r(k)1 = q̃(k)
1 where

q̃(k)
1 = cq1−H12r(k)2 . �en, ||r∗1−r(k)1 ||2≤

||H12||2
σmin(H11)

||r∗2−r(k)2 ||2≤
||H12||2||q̃2||2

σmin(H11)σmin(S)ε where

σmin(A) is the smallest singular value of a matrix A.

Proof. See Section 3.4.4.4.

41

Lemma 3.4 (Accuracy Bound of r3). Let r∗3 be the true solution of the equation r3 =

cq3−H31r∗1−H32r∗2, and r(k)3 be the solution of r(k)3 = cq3−H31r(k)1 −H32r(k)2 . �en,

‖r∗3− r(k)3 ‖2 ≤ ‖H31‖2‖r∗1− r(k)1 ‖2 +‖H32‖2‖r∗2− r(k)2 ‖2.

Proof. See Section 3.4.4.5.

�eorem 3.4 (Accuracy Bound of BePI). Let r∗ be the true solution of the linear system

Hr = cq, and r(k) be the solution r(k) =
[
r(k)1 ,r(k)2 ,r(k)3

]T
where r(k)2 is the solution of

Sr2 = q̃2 computed by BePI a�er the residual becomes less than the error tolerance ε at

the k-th iteration, r(k)1 is the solution of H11r(k)1 = cq1−H12r(k)2 , and r(k)3 is the solution of

r3 = cq3−H31r(k)1 −H32r(k)2 . Let α = ||H12||2
σmin(H11)

. �en, ||r∗−r(k)||2 is bounded as follows:

||r∗− r(k)||2 ≤
(√

(α||H31||2 + ||H32||2)2 +α2 +1
)
||q̃2||2

σmin(S)
ε.

Proof. By the de�nition of L2-norm, ||r∗− r(k)||22 is represented as follows:

||r∗− r(k)||22 =

∥∥∥∥∥∥∥∥∥

r∗1− r(k)1

r∗2− r(k)2

r∗3− r(k)3

∥∥∥∥∥∥∥∥∥

2

2

= ‖r∗1− r(k)1 ‖
2
2 +‖r∗2− r(k)2 ‖

2
2 +‖r∗3− r(k)3 ‖

2
2

�en, by Lemma 3.4, it is bounded as follows:

||r∗− r(k)||22 ≤‖r∗1− r(k)1 ‖
2
2 +‖r∗2− r(k)2 ‖

2
2 +‖H31‖2

2‖r∗1− r(k)1 ‖
2
2

+‖H32‖2
2‖r∗2− r(k)2 ‖

2
2 +2‖H31‖2‖H32‖2‖r∗1− r(k)1 ‖2‖r∗2− r(k)2 ‖2

From Lemma 3.3, ||r∗1 − r(k)1 ||2 ≤
||H12||2

σmin(H11)
||r∗2 − r(k)2 ||2 = α||r∗2 − r(k)2 ||2 where α =

42

||H12||2
σmin(H11)

. Hence, the bound is represented as follows:

||r∗− r(k)||22 ≤ ‖r∗2− r(k)2 ‖
2
2

(
α

2 +1+α
2‖H31‖2

2 +‖H32‖2
2 +2α‖H31‖2‖H32‖2

)
= ||r∗2− r(k)2 ||

2
2

(
α

2 +1+(α‖H31‖2 +‖H32‖2)
2
)
.

By Lemma 3.2, ‖r∗2− r(k)2 ‖2 ≤ ||q̃2||2
σmin(S)ε; thus, the above inequality is wri�en as:

||r∗− r(k)||22 ≤
(

α
2 +1+(α‖H31‖2 +‖H32‖2)

2
)(‖q̃2‖2

σmin(S)
ε

)2

.

Finally, the bound of ||r∗− r(k)||2 is represented in the following inequality:

||r∗− r(k)||2 ≤
(√

(α||H31||2 + ||H32||2)2 +α2 +1
)
||q̃2||2

σmin(S)
ε

According to �eorem 3.4, the accuracy of BePI is bounded by the norms and

the smallest singular values of the input matrices and the error tolerance ε. Also,

�eorem 3.4 indicates that BePI guarantees ||r∗− r(k)||2 ≤ εT where εT is the target

accuracy if we set the error tolerance to ε satisfying the following inequality:

0 < ε≤
(√

(α||H31||2 + ||H32||2)2 +α2 +1
)−1

σmin(S)
||q̃2||2

εT .

3.4.4 Lemmas and Proofs

We describe the lemmas and proofs used in the above theoretical results.

3.4.4.1 Proof of Inverse Inequality

Lemma 3.5. For Ax = b, if a matrix A is invertible, then ||A−1||−1
2 ||x||2 ≤ ||Ax||2.

43

Proof. Since A is invertible, ‖x‖2 is bounded as follows:

‖x‖2 = ‖A−1Ax‖2 ≤ ‖A−1‖2‖Ax‖2.

Hence, ||A−1||−1
2 ||x||2 ≤ ||Ax||2.

3.4.4.2 Proof of Lemma 3.1

Proof. �e partitioned linear system in Equation (3.4) is represented using Equa-

tions (3.1) and (3.2) as follows:

H11 H12

H21 H22

r1

r2

= c

q1

q2

 (3.10)

r3 = cq3−H31r1−H32r2

Equation (3.10) is split into two equations:

H11r1 +H12r2 = cq1 (3.11)

H21r1 +H22r2 = cq2 (3.12)

�en, r1 is obtained from Equation (3.11) as follows:

H11r1 +H12r2 = cq1⇒H11r1 = cq1−H12r2

⇒ r1 = H−1
11 (cq1−H12r2).

44

If we plug the above equation of r1 into Equation (3.12), then it is represented as

follows:

H21r1 +H22r2 = cq2

⇒H21(H−1
11 (cq1−H12r2))+H22r2 = cq2

⇒H21(H−1
11 (cq1))+(H22−H21H−1

11 H12)r2 = cq2

⇒ Sr2 = cq2−H21(H−1
11 (cq1))

⇒ r2 = S−1(cq2−H21(H−1
11 (cq1)))

where S=H22−H21H−1
11 H12. Note that H and H11 is invertible if 0< c< 1 since they

are strictly diagonally dominant; S is invertible because H is invertible [102].

3.4.4.3 Proof of Lemma 3.2

Proof. Since we use GMRES to solve the linear system of S, we �rst analyze the ac-

curacy bound of GMRES. Since GMRES stops the iteration when the relative residual
||Sr(k)2 −q̃2||2
||q̃2||2 ≤ ε, the inequality is wri�en as follows:

||Sr(k)2 − q̃2||2 ≤ ε||q̃2||2⇒ ||Sr(k)2 −Sr∗2||2 ≤ ε||q̃2||2⇒ ||S(r∗2− r(k)2)||2 ≤ ε||q̃2||2

Note that H and H11 are invertible because those matrices are diagonally dominant;

this fact implies that S is invertible [102], and we are able to apply Lemma 3.5 to the

45

last equation as follows:

||S−1||−1
2 ||r

∗
2− r(k)2 ||2 ≤ ||S(r

∗
2− r(k)2)||2 ≤ ε||q̃2||2

⇒ ||S−1||−1
2 ||r

∗
2− r(k)2 ||2 ≤ ε||q̃2||2

⇒ ||r∗2− r(k)2 ||2 ≤ ε||S−1||2||q̃2||2

Since ||S−1||2 = σmin(S)−1 [105], ||r(k)2 − r∗2||2 is bounded as follows:

||r∗2− r(k)2 ||2 ≤
||q̃2||2

σmin(S)
ε

where σmin(S) is the smallest singular value of S.

3.4.4.4 Proof of Lemma 3.3

Proof. Since H11r∗1 = cq1−H12r∗2 and H11r(k)1 = cq1−H12r(k)2 , ||H11r∗1−H11r(k)1 ||2 is

represented as follows:

||H11r∗1−H11r(k)1 ||2 = ||cq1−H12r∗2− cq1 +H12r(k)2 ||2

= ||H12r∗2−H12r(k)2 ||2

= ||H12(r∗2− r(k)2)||2

Since L2-norm is a sub-multiplicative norm [105], ||H12(r∗2− r(k)2)||2 ≤ ||H12||2||r∗2−

r(k)2 ||2. Hence ||H11r∗1−H11r(k)1 ||2 is bounded as follows:

||H11r∗1−H11r(k)1 ||2 ≤ ||H12||2||r∗2− r(k)2 ||2

46

By Lemma 3.5, (||H−1
11 ||2)−1||r∗1− r(k)1 ||2 ≤ ||H11(r∗1− r(k)1)||2. Hence, ||r∗1− r(k)1 ||2 is

bounded as follows:

||r∗1− r(k)1 ||2 ≤ ||H
−1
11 ||2||H12||2||r∗2− r(k)2 ||2.

By Lemma 3.2, ||r∗2− r(k)2 ||2 ≤
||q̃2||2

σmin(S)ε, and ||H−1
11 ||2 = σmin(H11)

−1 [105]. �erefore,

||r∗1− r(k)1 ||2 is bounded as follows:

||r∗1− r(k)1 ||2 ≤
||H12||2||q̃2||2

σmin(H11)σmin(S)
ε.

3.4.4.5 Proof of Lemma 3.4

Proof. From the triangular inequality and the submultiplicative property of L2-norm,

it is represented as follows:

‖r∗3− r(k)3 ‖2 = ‖−H31r∗1−H32r∗2 +H31r(k)1 +H32r(k)2 ‖2

= ‖H31(r∗1− r(k)1)+H32(r∗2− r(k)2)‖2

≤ ‖H31(r∗1− r(k)1)‖2 +‖H32(r∗2− r(k)2)‖2

≤ ‖H31‖2‖r∗1− r(k)1 ‖2 +‖H32‖2‖r∗2− r(k)2 ‖2

47

3.5 Experiments

In this section, we evaluate the performance of our method BePI, and compare it to

other existing methods for computing RWR scores. We aim to answer the following

questions from the experiments:

• Q1. Preprocessing cost (Section 3.5.2). How much memory space do BePI

and other methods require for their preprocessed results? How long does this

preprocessing phase take?

• Q2. �ery cost (Section 3.5.3). How quickly does BePI respond to an RWR

query compared to other methods?

• Q3. Scalability (Section 3.5.4). How well does BePI scale up compared to

other methods?

• Q4. E�ectiveness of the optimizations (Section 3.5.5). How e�ective are

the sparsi�cation of the Schur complement (Section 3.3.4) and the precondi-

tioning (Section 3.3.5) in terms of preprocessing and query cost?

• Q5. E�ects of the hub selection ratio k (Section 3.5.6). How does the hub

selection ratio k in Algorithm 3 a�ect the performance of BePI in terms of

running time and memory requirement?

• Q6. Accuracy (Section 3.5.7). Does BePI produce the exact result for the RWR

computation compared to other methods?

• Q7. Detailed comparison to Bear (Section 3.5.8). How much does BePI im-

prove the computational performance for RWR compared to Bear, the state-of-

the-art method?

48

3.5.1 Experimental Settings

Machine. All experiments are conducted on a workstation with a single CPU Intel(R)

Xeon(R) CPU E7540 @ 2.00GHz and 500GB memory.

Methods. We compare our methods with power iteration, LU decomposition, a

Krylov subspace method (GMRES), and Bear, all of which are described in Section 3.2.

We evaluate our approach using three di�erent versions:

• BePI-B is the basic version without the sparsi�cation of the Schur complement

and the preconditioner.

• BePI-S exploits only the sparsi�cation of the Schur complement without the

preconditioner.

• BePI uses both the sparsi�cation of the Schur complement and the precondi-

tioner.

Approximate methods are excluded from the experiments since all the aforemen-

tioned methods including our methods compute exact RWR scores. All these methods

are implemented in C++ and Eigen1 which is an open source C++ numerical linear

algebra package.

Parameters. We set the restart probability c to 0.05 as in the previous works [82,

54]. For Bear and BePI-B, we set k of the hub-and-spoke reordering method to 0.001

as in the previous work [54]. For BePI-S and BePI, we set k of the hub-and-spoke

reordering method di�erently for each dataset as described in Table 3.2 to make the

Schur complement sparse. For larger graphs, 0.2 is usually used for k. �e error tol-

erance ε for power iteration, GMRES, and our method is set to 10−9. We set the time

limit for preprocessing to 24 hours.

1h�p://eigen.tuxfamily.org/

49

http://eigen.tuxfamily.org/

Ta
bl

e3
.2:

S
u
m
m
a
r
y
o
f
r
e
a
l
-
w
o
r
l
d
d
a
t
a
s
e
t
s

w
he

re
n

is
th

en
um

be
ro

fn
od

es
,m

is
th

en
um

be
ro

fe
dg

es
,a

nd
k

is
th

eh
ub

se
le

ct
io

n
ra

tio
in

Sl
as

hB
ur

n
us

ed
fo

rB
eP

I-S
an

d
Be

PI
.n

1
is

th
e

nu
m

be
ro

fs
po

ke
s,

n 2
is

th
e

nu
m

be
ro

fh
ub

s,
an

d
n 3

is
th

e
nu

m
be

ro
fd

ea
de

nd
s.

Fo
r

Be
PI
-B

,w
e

se
tk

to
0.

00
1

in
Sl

as
hB

ur
n.

N
ot

e
th

at
n 2

of
Be

PI
-S

ar
e

th
e

sa
m

e
as

th
at

of
Be

PI
.

d
a
t
a
s
e
t

n
m

k
n 1

i
n

B
e
P
I
-
B

n 1
i
n

B
e
P
I
a
n
d

B
e
P
I
-
S

n 2
i
n

B
e
P
I
-
B

n 2
i
n

B
e
P
I
a
n
d

B
e
P
I
-
S

n 3

S
l
a
s
h
d
o
t

79
,1

20
51

5,
58

1
0.

30
37
,8

72
31
,9

20
7,

72
8

13
,6

80
33
,5

20
W

i
k
i
p
e
d
i
a

10
0,

31
2

1,
62

7,
47

2
0.

25
79
,7

37
72
,1

87
16
,5

12
24
,0

62
4,

06
3

B
a
i
d
u

41
5,

64
1

3,
28

4,
31

7
0.

20
34

7,
59

6
31

5,
58

6
46
,8

86
78
,8

96
21
,1

59
F
l
i
c
k
r

2,
30

2,
92

5
33
,1

40
,0

17
0.

20
1,

71
7,

12
0

1,
55

4,
00

6
22

5,
38

8
38

8,
50

2
36

0,
41

7
L
i
v
e
J
o
u
r
n
a
l

4,
84

7,
57

1
68
,4

75
,3

91
0.

30
3,

13
8,

04
1

2,
65

5,
34

5
1,

15
6,

29
1

1,
63

8,
98

7
55

3,
23

9
W

i
k
i
L
i
n
k

11
,1

96
,0

07
34

0,
24

0,
45

0
0.

20
8,

67
0,

43
8

8,
06

2,
00

3
2,

50
5,

98
4

3,
11

4,
41

9
19
,5

85
T
w
i
t
t
e
r

41
,6

52
,2

30
1,

46
8,

36
5,

18
2

0.
20

33
,9

27
,4

19
24
,0

61
,9

69
6,

17
5,

86
2

16
,0

41
,3

12
1,

54
8,

94
9

F
r
i
e
n
d
s
t
e
r

68
,3

49
,4

66
2,

58
6,

14
7,

86
9

0.
20

43
,6

66
,1

18
33
,6

66
,1

18
12
,4

44
,0

80
22
,4

44
,0

80
12
,2

39
,2

68

50

Data. �e graph data used in our experiments are summarized in Table 3.2. Each

dataset is brie�y described as follows:

• Slashdot
2
. �is is the social network in the technology news site Slashdot.

• Wikipedia
3
.�is is the small network between articles of the English Wikipedia.

• Baidu
4
. �is is the hyperlink network between articles of the Chinese online

encyclopedia Baidu.

• Flickr
5
. �is is the friendship network of Flickr users.

• LiveJournal
6
. Nodes are users of LiveJournal, and directed edges represent

friendships.

• WikiLink
7
. �is network consists of the wiki-links of the English Wikipedia.

• Twitter
8
. �is is the follower network from Twi�er, containing 1.4 billion di-

rected follow edges between 41 million Twi�er users.

• Friendster
9
. �is is the friendship network of the online social site Friendster.

3.5.2 Preprocessing Cost

We examine the cost of the preprocessing phase of BePI in terms of preprocessing

time and memory space for preprocessed data. We compare our method with Bear and

LU decomposition, the best preprocessing methods. Preprocessing time is measured

in wall-clock time, and it includes the time taken for SlashBurn in BePI and Bear.
2h�p://dai-labor.de/IRML/datasets
3h�p://konect.uni-koblenz.de/networks/link-dynamic-simplewiki
4h�p://zhishi.me
5h�p://socialnetworks.mpi-sws.org/data-wosn2008.html
6h�p://snap.stanford.edu/data/soc-LiveJournal1.html
7h�p://dumps.wikimedia.org/
8h�p://an.kaist.ac.kr/traces/WWW2010.html
9h�ps://archive.org/details/friendster-dataset-201107

51

http://dai-labor.de/IRML/datasets
http://konect.uni-koblenz.de/networks/link-dynamic-simplewiki
http://zhishi.me
http://socialnetworks.mpi-sws.org/data-wosn2008.html
http://snap.stanford.edu/data/soc-LiveJournal1.html
http://dumps.wikimedia.org/
http://an.kaist.ac.kr/traces/WWW2010.html
https://archive.org/details/friendster-dataset-201107

10-1

100

101

102

103

104

105

Slashdot

Wikipedia

Baidu
Flickr

LiveJournal

WikiLink

Twitter

Friendster

W
al

l c
lo

ck
 ti

m
e

(s
ec

)

BePI-B
BePI-S

BePI

3x 4x
8x

4x

10x
6x

6x

(a) E�ect on preprocessing
time

101

102

103

104

105

106

Slashdot

Wikipedia

Baidu
Flickr

LiveJournal

WikiLink

Twitter

Friendster

M
em

or
y

us
ag

e
(M

B)

BePI-B
BePI-S

BePI

2x 1.4x

5x
3x

4x 2x

5x

(b) E�ect on space for
preprocessed data

10-2

10-1

100

101

102

103

104

Slashdot

Wikipedia

Baidu
Flickr

LiveJournal

WikiLink

Twitter

Friendster

W
al

l c
lo

ck
 ti

m
e

(s
ec

)

BePI-B
BePI-S

BePI

1.2x

1.2x

5x

3x
4x 1.2x

3x

4x

3x
3x

3x
2x

3x
2x 1.2x

(c) E�ect on query time

Figure 3.4: E�ect of the sparsi�cation of the Schur complement and the precondi-

tioning. In these �gures, bars are omi�ed in case the corresponding experiments run out of
memory. In terms of the e�ect of the sparsi�cation of the Schur complement, (a) and (b) show
that the preprocessing cost is reduced: BePI-S is up to 10× faster than BePI-B, and BePI-S re-
quires up to 5× less memory space than BePI-B. Moreover, (c) presents that the query time is
also decreased: BePI-S is up to 5× faster than BePI-B in the query phase. In terms of the e�ect
of the preconditioning, the preprocessing cost of BePI is slightly larger than that of BePI-S as
seen in (a) and (b) due to the additional operation for incomplete LU factors. However, BePI
is up to 4× faster than BePI-S in the query phase thanks to the e�ect of the preconditioning
as shown in (c).

Figures 3.1(a) and 3.1(b) show the preprocessing time and the memory space usage of

preprocessed data. Note that onlyBePI successfully performs the preprocessing phase

for all the datasets, while other methods fail because their memory requirements are

high, or they run out of time. As seen in Figure 3.1(a), BePI requires the least amount

of time, which is less than about 2 hours for all the datasets. For the Slashdot dataset,

which is the smallest dataset, BePI is 3,679× faster than Bear. For other datasets,

Bear and LU decomposition fail to show the results (they took more than 24 hours).

To compare memory e�ciency, we measure how much memory each method requires

for the preprocessed matrices. As seen in Figure 3.1(b), BePI requires the least amount

of space for preprocessed matrices. BePI requires up to 130× less memory space than

other competitors in all the datasets, which indicates the superiority of our method

in terms of scalability compared to other preprocessing methods.

52

10-1

100

101

102

103

104

105

106 107 108

Pr
ep

ro
ce

ss
in

g
Ti

m
e

(s
ec

)

Number of edges

BePI
Bear

LU

100x

o.o.t.o.o.t.

slope=1.01

(a) Preprocessing time

100

101

102

103

104

106 107 108

M
em

or
y

us
ag

e
(M

B)

Number of edges

BePI
Bear

LU

100x
o.o.t.o.o.t.

slope=0.9
9

(b) Space for preprocessed data

10-3

10-2

10-1

100

101

102

103

106 107 108

Q
ue

ry
 T

im
e

(s
ec

)

Number of edges

BePI
Bear

LU
GMRES

Power

slope=1.1
o.o.t.

o.o.t.

(c) �ery time

Figure 3.5: Scalability of BePI compared to other methods on the WikiLink dataset. (a),
(b), and (c) show the scalability of the three methods in terms of the number of edges. o.o.t.
stands for out of time (more than 24 hours). BePI shows up to 100× be�er scalability than
existing preprocessing methods, and scales well with regard to the size of graphs. Also, BePI
provides near linear scalability in terms of preprocessing and query cost.

3.5.3 �ery Cost

We compare BePIwith other methods in terms of query cost. We compare our method

with power iteration, GMRES, Bear, and LU decomposition. We measure the average

query time for 30 random seed nodes.

As presented in Figure 3.1(c), only BePI and iterative methods successfully com-

pute RWR scores on all the datasets, and BePI outperforms competitors for large

graphs. For the Baidu dataset, BePI is up to 9× faster than GMRES, which is the sec-

ond best one. For the largest Friendster dataset, BePI is 3× faster than GMRES. Com-

pared to power iteration, BePI is 19× and 10× faster for the Baidu and the Friendster

datasets, respectively.

3.5.4 Scalability

We compare the scalability of BePI against existing methods, in terms of the number

of edges. For the WikiLink dataset, we extract the principal submatrices, which are

the upper le� part of the adjacency matrix, of di�erent lengths so that the number of

edges of each matrix is di�erent. For each submatrix, we preprocess the matrix using

53

BePI, Bear, and LU decomposition. �en, we compute RWR scores using BePI, Bear,

LU decomposition, power iteration, and GMRES. We measure preprocessing time,

memory usage and average query time for 30 randomly selected seed nodes.

Figure 3.5 presents that BePI shows a good scalability with respect to the num-

ber of edges, while other preprocessing methods fail to scale up. As shown in Fig-

ures 3.5(a) and 3.5(b), BePI processes 100× larger graph, while using less memory

space than other preprocessing methods. Also, the slope of the ��ed line for BePI is

1.01 in Figure 3.5(a), 0.99 in Figure 3.5(b), and 1.1 in Figure 3.5(c). �ese results in-

dicate that BePI provides near linear scalability in terms of preprocessing and query

cost.

3.5.5 E�ects of Sparse Schur Complement and Precondi-

tioning

3.5.5.1 E�ects on Preprocessing Phase

We examine the e�ects of the sparsi�cation of the Schur complement (Section 3.3.4)

and the preconditioning (Section 3.3.5) in the preprocessing phase of BePI. We mea-

sure the preprocessing time and the space for preprocessed data required by BePI,

BePI-S, and BePI-B for each dataset.

To investigate the e�ect of the sparsi�cation of the Schur complement, we �rst

compare BePI-B with BePI-S in terms of the preprocessing time and the memory

space. For preprocessing time, Figure 3.4(a) shows that BePI-S is up to 10× faster than

BePI-B. For memory space, Figure 3.4(b) presents that BePI-S requires up to 5× less

memory space than BePI-B. Table 3.3 summarizes the reduction of non-zero entries

of the Schur complement a�er applying the sparsi�cation of the Schur complement.

For all datasets, the number of non-zero entries of S decreases by the sparsi�cation.

54

Table 3.3: Number of non-zeros of S computed by our methods. Note that the number of
non-zeros of S decreases by the sparsi�cation of the Schur complement. BePI-B runs out of
time (more than 24 hours) when computing S for the Friendster dataset, while BePI-S and
BePI successfully compute it.

dataset A: (|S| in BePI-B)

B: (|S| in BePI

or BePI-S)

ratio

(A/B)

Slashdot 664,686 353,559 1.9×
Wikipedia 844,983 626,887 1.3×
Baidu 23,136,773 2,359,563 9.8×
Flickr 113,842,305 29,990,289 3.8×
LiveJournal 417,551,300 83,070,865 5.0×
WikiLink 555,468,477 377,197,963 1.5×
Twitter 8,494,161,448 1,640,399,051 5.2×
Friendster o.o.t. 2,018,006,285 −

Table 3.4: Average number of iterations to compute r2 by BePI-S and BePI. A�er pre-
conditioning, the number of iterations for solving the linear system of S decreases.

dataset

A:

(# iterations

in BePI-S)

B:

(# iterations

in BePI)

ratio

(A/B)

Slashdot 43.2 6.6 6.5×
Wikipedia 52.4 13.1 4.0×
Baidu 42.6 14.9 2.9×
Flickr 44.2 11.3 3.9×
LiveJournal 49.1 16.2 3.0×
WikiLink 70.2 16.5 4.3×
Twitter 60.3 18.7 3.2×
Friendster 24.2 10.5 2.3×

Especially, BePI-S reduces the number of non-zeros of S by 9.8× than BePI-B for the

Baidu dataset. BePI-B runs out of time when computing S for the largest Friendster

dataset.

Compared to BePI-S, BePI uses slightly more memory space as seen in Fig-

ure 3.4(b). In addition, the preprocessing phase of BePI takes slightly longer than

that of BePI-S. �e reason is that BePI computes the incomplete LU factors of S, L̃2

and Ũ2, in the preprocessing phase, while BePI-S does not. However, the gap between

them is small in terms of the preprocessing time and the memory space; furthermore,

55

Real part of an eigenvalue
1 1.2 1.4 1.6 1.8 2

Im
a
g
in

a
ry

 p
a
rt

 o
f
a
n
 e

ig
e
n
v
a
lu

e

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
BePI-S
BePI

(a) Slashdot
Real part of an eigenvalue

1 1.2 1.4 1.6 1.8 2

Im
a
g
in

a
ry

 p
a
rt

 o
f
a
n
 e

ig
e
n
v
a
lu

e

-0.5

0

0.5
BePI-S
BePI

(b) Wikipedia
Real part of an eigenvalue

1.2 1.4 1.6 1.8 2

Im
a
g
in

a
ry

 p
a
rt

 o
f
a
n
 e

ig
e
n
v
a
lu

e x10
-3

-5

0

5
BePI-S
BePI

(c) Baidu

Figure 3.6: Distribution of the top-200 eigenvalues of the preconditioned Schur com-

plement (blue o’s) and the original Schur complement (red x’s). X-axis and y-axis rep-
resent the real part and the imaginary part of an eigenvalue, respectively. Results from three
di�erent datasets, Slashdot, Wikipedia, and Baidu, show that the dispersion of eigenvalue
distribution becomes much smaller when the Schur complement is preconditioned.

BePI achieves faster query time thanks to the incomplete LU factors, which we de-

scribe in the following subsection.

3.5.5.2 E�ects on�ery Phase

We investigate the e�ects of the sparsi�cation of the Schur complement and the pre-

conditioner on the query phase of our method. To evaluate the e�ects, we generate 30

random seeds, and measure the average query time using BePI, BePI-S, and BePI-B.

Figure 3.4(c) compares these methods in terms of query time.

We �rst compare BePI-B and BePI-S to see the e�ect of the sparsi�cation of the

Schur complement. According to the result shown in Figure 3.4(c), BePI-S is up to 5×

faster than BePI-B. �is speedup is due to the reduction in the number of non-zeros

of S by the sparsi�cation of the Schur Complement as described in Table 3.2.

For analyzing the e�ect of preconditioning, we compare BePI-S and BePI. BePI

is up to 4× faster than BePI-S as shown in Figure 3.4(c). Applying the preconditioner

reduces the number of iterations for computing r2, as summarized in Table 3.4. �is

faster convergence is closely related to the tighter clustering of eigenvalues of the

preconditioned Schur complement [53]. Figure 3.6 shows that the eigenvalues in BePI

56

0.2 0.4 0.6

Hub selection ratio (k)

0

2

4

6

8

P
re

p
ro

c
e

s
s
in

g
 T

im
e

(s
e

c
)

0.2 0.4 0.6

Hub selection ratio (k)

15

20

25

30

35

M
e

m
o

ry
 U

s
a

g
e

(M
B

)

0.2 0.4 0.6

Hub selection ratio (k)

0

0.05

0.1

0.15

0.2

Q
u

e
ry

 T
im

e
(s

e
c
)

(a) Slashdot

0.2 0.4 0.6

Hub selection ratio (k)

0

200

400

600

800

1000

P
re

p
ro

c
e

s
s
in

g
 T

im
e

(s
e

c
)

0.2 0.4 0.6

Hub selection ratio (k)

0

1000

2000

3000

M
e

m
o

ry
 U

s
a

g
e

(M
B

)

0.2 0.4 0.6

Hub selection ratio (k)

0

2

4

6

8

10

Q
u
e
ry

 T
im

e
(s

e
c
)

(b) Baidu

0.2 0.4 0.6

Hub selection ratio (k)

0

200

400

600

800

1000

P
re

p
ro

c
e

s
s
in

g
 T

im
e

(s
e

c
)

0.2 0.4 0.6

Hub selection ratio (k)

1000

2000

3000

4000

5000

M
e

m
o

ry
 U

s
a

g
e

(M
B

)

0.2 0.4 0.6

Hub selection ratio (k)

5

10

15

20

25

30

Q
u
e
ry

 T
im

e
(s

e
c
)

(c) Flickr

0.2 0.4 0.6

Hub selection ratio (k)

0

1000

2000

3000

4000

P
re

p
ro

c
e

s
s
in

g
 T

im
e

(s
e

c
)

0.2 0.4 0.6

Hub selection ratio (k)

0

5000

10000

15000

M
e

m
o

ry
 U

s
a

g
e

(M
B

)

0.2 0.4 0.6

Hub selection ratio (k)

50

100

150

200

Q
u
e
ry

 T
im

e
(s

e
c
)

(d) LiveJournal

Preprocessing time Space for preprocessed data Query time

Figure 3.7: E�ects of the hub selection ratio k in Algorithm 3. According to results,
preprocessing time and memory usage of BePI decrease as k increases. Especially, when k
is small (e.g., k = 0.001), preprocessing time and memory consumption are high. �e query
speed of BePI is the fastest when k is around 0.2∼ 0.3 as shown in the �gures.

form a tight cluster, while those in BePI-S do not. In sum, BePI is up to 13× faster than

BePI-B in the query phase, which indicates that the query cost is e�ectively reduced

with the sparsi�cation of the Schur complement and the preconditioner.

3.5.6 E�ects of the Hub Selection Ratio

We investigate the e�ects of the hub selection ratio k (Algorithm 3) on the perfor-

mance of our method BePI. We measure preprocessing time, memory space of pre-

processed data, and query time of BePI varying k on the Slashdot, the Baidu, the

Flickr, and the LiveJournal datasets. As shown in Figure 3.7, the performance of BePI

in terms of preprocessing time and memory usage becomes improved as k increases.

In particular, BePI requires high preprocessing time and memory space when k is

very small (e.g., k = 0.001). In terms of query time, BePI shows the best performance

when k is from 0.2 through 0.3 as presented in Figure 3.7. �ere are two reasons for

these e�ects. First, if we set a large k in Algorithm 3, then the running time of the

57

0 50 100 150 200 250

Number of iterations

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

L
2
-n

o
rm

 e
rr

o
r

BEST

BePI

Power

GMRES

Figure 3.8: Accuracy of BePI according to the number of iterations. BePI achieves the high-
est accuracy and the fastest convergence compared to other iterative methods.

hub-and-spoke reordering method decreases because the number of iterations of the

reordering method is reduced. Also, as described in Section 3.3.4 and Table 3.3, the

number of non-zeros of the Schur complement decreases as k increases from 0; thus,

the memory usage is reduced. However, se�ing too large k is not good for query time

because the number of non-zeros and the dimension of the Schur complement be-

come large. As shown in Figure 3.7, when k is around 0.2, it provides a good trade-o�

between preprocessing time, memory usage, and query time.

3.5.7 Accuracy

We investigate the accuracy of each iterative method compared to exact RWR solu-

tions r∗ = cH−1q. We perform this experiment on a small social network, the Physi-

cians dataset 10, with 241 nodes and 1,098 edges in order to compute H−1. We select

100 seed nodes randomly, and measure average L2-norm errors between exact RWR

solutions r∗ and results r(i) from each method with ε = 10−9 a�er i-th iterations (i.e.,

the errors are measured by computing ‖r∗−r(i)‖2). As seen in Figure 3.8, our method

BePI shows the best performance in terms of accuracy compared to other iterative
10h�p://moreno.ss.uci.edu/data.html#ckm

58

 http://moreno.ss.uci.edu/data.html#ckm

Table 3.5: Statistics of the datasets used in Section 3.5.8.

Dataset Node Edge Description

Gnutella1 62,586 147,892 Peer-to-peer network
HepPH1 34,546 421,578 Coauthorship network

Facebook1 46,952 876,993 Social network
Digg1 279,630 1,731,653 Social network

1 h�p://konect.uni-koblenz.de/

10
-1

10
0

10
1

10
2

10
3

10
4

G
nutella

HepPH

Facebook

Digg

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
)

BePI
Bear

(a) Preprocessing time

10
0

10
1

10
2

10
3

10
4

G
nutella

HepPH

Facebook

Digg

M
e
m

o
ry

 u
s
a
g
e

 (
M

B
)

BePI
Bear

(b) Space for preprocessed data

10
-2

10
-1

10
0

G
nutella

HepPH

Facebook

Digg

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
)

BePI
Bear

(c) �ery time
Figure 3.9: Detailed comparison between BePI and Bear. Our method BePI signi�cantly
outperforms Bear, the state-of-the-art preprocessing method [54], in terms of preprocessing
time and memory usage as shown in (a) and (b), and shows faster query speed as in (c).

methods. Furthermore, BePI converges rapidly with higher accuracy, while power it-

eration and GMRES converge slowly. Note that BePI is an exact method which can

make the error smaller than any given error tolerance. As shown in Figure 3.8, the

error of our method monotonically decreases and �nally becomes smaller than the

given error tolerance, which is also the property of the iterative method that we ex-

ploit [53].

3.5.8 Comparison with the-State-of-the-Art Method

We compare our method with Bear, the-state-of-the-art preprocessing method [54].

Since Bear su�ers from the scalability issue in very large graphs as described in Sec-

tion 3.5, we perform this experiment on relatively small graphs that Bear performs

the preprocessing phase successfully. �e datasets used in this experiments are sum-

marized in Table 3.5. As shown in Figure 3.9, BePI signi�cantly outperforms Bear in

59

terms of preprocessing time, memory usage, and query time.

3.6 Summary

In this work, we propose BePI, a fast, memory-e�cient, and scalable algorithm for

random walk with restart computation on billion-scale graphs. BePI takes the ad-

vantages of both preprocessing methods and iterative methods by incorporating an

iterative method within a block elimination approach. Furthermore, BePI improves

the performance by decreasing the number of non-zeros of a matrix and applying

a preconditioner. Consequently, BePI achieves a be�er scalability as well as faster

query time than existing methods. We give theoretical analysis on the accuracy and

complexities of BePI. Also, we experimentally show that BePI processes up to 100×

larger graph, and requires up to 130× less memory space than other preprocessing

methods. In the query phase, BePI computes RWR scores 9× faster than other exist-

ing methods in large graphs which other preprocessing methods fail to process, due

to running out of memory or time.

60

Chapter 4

Personalized Ranking in Signed Graphs

4.1 Introduction

How can we obtain personalized rankings for users in signed social networks? Many

social networks have allowed users to express their trust or distrust to other users.

For example, in online social networks such as Slashdot [63], a user is explicitly able

to mark other users as friends or foes. �e users are represented as nodes, and the

expressions are represented as positive and negative edges in graphs which are called

signed networks [106]. Ranking nodes in signed networks has received much interest

from data mining community to reveal trust and distrust between users [63] inducing

many useful applications such as link prediction [89], anomaly detection [63], sign

prediction [90], and community detection [107] in signed networks.

Traditional ranking models, however, do not provide satisfactory node rank-

ings in signed networks. Existing random walk based ranking models such as PageR-

ank [13] and Random Walk with Restart [37, 54, 76, 80, 108, 109] assume only positive

edges; thus, they are inappropriate in the signed networks containing negative edges.

Many researchers have proposed heuristics on the classical methods to make them

computable in signed networks [63, 65]. However, those heuristic methods still have

room to improve in terms of ranking quality since they do not consider complex so-

cial relationships such as friend-of-enemy or enemy-of-friend in their rankings as

shown in Figure 4.2. In addition, most existing ranking models in signed networks

61

focus only on a global node ranking, although personalized rankings are more desir-

able for individuals in many contexts such as recommendation. Also, the fast ranking

computation is important for the computational performance of applications.

In this work, we propose Signed RandomWalkwith Restart (SRWR), a novel

model for e�ective personalized node rankings in signed networks. �e main idea

of SRWR is to introduce a sign into a random surfer in order to let the surfer con-

sider negative edges based on structural balance theory [74, 90]. Consequently, our

model considers complex edge relationships, and makes random walks interpretable

in signed networks. We devise SRWR-Iter, an iterative method which naturally fol-

lows the de�nition of SRWR, and iteratively update SRWR scores until convergence.

Furthermore, we propose SRWR-Pre, a preprocessing method for computing SRWR

scores quickly which is useful for various applications in signed networks. �rough

extensive experiments, we demonstrate that our proposed approach o�ers improved

performance for personalized rankings compared to alternative methods in signed

social networks. Our main contributions are as follows:

• Novel ranking model. We propose Signed Random Walk with Restart

(SRWR), a novel model for personalized rankings in signed networks (De�ni-

tion 4.1). We show that our model is a generalized version of RWR working on

both signed and unsigned networks (Property 3).

• Algorithm.We propose SRWR-Iter and SRWR-Pre for computing SRWR scores.

SRWR-Iter is an iterative algorithm which naturally follows the de�nition of

SRWR (Algorithm 6). SRWR-Pre is a preprocessing method which employs a

node reordering technique and block elimination to accelerate SRWR compu-

tation speed (Algorithms 7 and 8).

• Experiment. We show that SRWR achieves higher accuracy for link predic-

62

Table 4.1: Table of symbols used in Chapter 4. Boldface capital le�ers, such as A, represent
matrices. Boldface small le�ers, such as r, represent vectors.

Symbol De�nition

G = (V,E) signed input graph
V set of nodes in G
E set of signed edges in G
n number of nodes in G
n1 number of spokes in G
n2 number of hubs in G
m number of edges in G
s seed node (= query node, source node)
c restart probability
ε error tolerance
←−
N u set of in-neighbors to nodes u
−→
N u set of out-neighbors from nodes u
A (n×n) signed adjacency matrix of G
|A| (n×n) absolute adjacency matrix of G
D (n×n) out-degree matrix of |A|, Dii =

∑
j |A|i j

Ã (n×n) semi-row normalized matrix of A
Ã+ (n×n) positive semi-row normalized matrix of A
Ã− (n×n) negative semi-row normalized matrix of A
|Ã| (n×n) absolute row-normalized matrix of |A|
q (n×1) starting vector (= s-th unit vector)

r+ (n×1) positive score vector
r− (n×1) negative score vector
r (n×1) trustworthiness score vector, e.g., r = r+− r−
p (n×1) p = r++ r−
|H| (n×n) |H|= I− (1− c)|Ã|>
T (n×n) T = I− (1− c)(γÃ>+−βÃ>−)

|H|i j,Ti j (ni×n j) (i, j)-th partition of |H| or T
S|H|, ST (n2×n2) Schur complement of |H|11 or T11
qi, pi, r−i (ni×1) i-th partition of q, p or r−

63

Figure 4.1: Example of the personalized node ranking problem in Problem 1. Given
a signed network and a seed node (in this example, node A is the seed node), our goal is to
compute the trustworthiness score vector r w.r.t. the seed node. Our proposed model SRWR
(see De�nition 4.1 in Section 4.3) aims to compute r based on the positive and negative score
vectors r+ and r−, i.e., r = r+− r−.

tion (Figure 4.7), predicts trolls 4×more accurately (Figure 4.9), and provides a

good performance for sign prediction compared to other ranking models (Fig-

ure 4.10). In terms of e�ciency, SRWR-Pre preprocesses signed networks up

to 4.5× faster, and requires 11× less memory space than baseline preprocess-

ing methods. Furthermore, SRWR-Pre computes SRWR scores up to 14× faster

than other methods including SRWR-Iter (Figure 4.13).

�e code of our method and datasets used in this paper are available at h�p:

//datalab.snu.ac.kr/srwrpre. �e rest of this paper is organized as follows. We �rst

introduce the formal de�nition of the personalized ranking problem in signed net-

works at Section 4.2. In Section 4.3, we describe our proposed model and algorithms

for computing personalized rankings. A�er presenting experimental results in Sec-

tion 4.4, we summarize this work in Section 4.5. Table 4.1 lists the symbols used in

this chapter.

64

http://datalab.snu.ac.kr/srwrpre
http://datalab.snu.ac.kr/srwrpre

4.2 Problem De�nition

We de�ne the personalized ranking problem in signed networks as follows:

Problem 1 (Personalized Node Ranking in Signed Networks).

• Input: a signed network G = (V,E) and a seed node s where V is the set of nodes,

and E is the set of signed edges.

• Output: a trustworthiness score vector r ∈ Rn of all other nodes for seed node s

to rank those nodes w.r.t. seed node s. �

In signed social networks, users are represented as nodes, and trust or distrust

relations between users are represented as positive or negative edges. When a user

u considers that a user v is trustworthy, a positive edge u→ v is formed. On the

contrary, a negative edge u→ v is formed when u distrusts v. Given those signed

edges between nodes and a seed node s, the personalized ranking problem is to rank

all other nodes w.r.t. seed node s in the order of trustworthiness scores represented

by r where ru indicates how much seed node s should trust node u as depicted in

Figure 4.1. If the score ru is high, then s is likely to trust u. Otherwise, s is likely to

distrust u.

4.3 Proposed Method

We propose Signed RandomWalkwithRestart (SRWR), a novel ranking model for

signed networks in Section 4.3.1. �en we �rst develop an iterative algorithm SRWR-

Iter for computing SRWR scores w.r.t. a seed node in Section 4.3.2, and then propose

a preprocessing algorithm SRWR-Pre to accelerate SRWR computation speed in Sec-

tion 4.3.3.

65

(a) Traditional random walks (b) Signed random walks

Figure 4.2: Examples of traditional random walks and signed random walks. Each
case represents 1) friend’s friend, 2) friend’s enemy, 3) enemy’s friend, or 4) enemy’s enemy
from the top. A random surfer has either a positive (blue) or a negative (red) sign on each
node in Figure 4.2(b). When the signed surfer traverses a negative edge, she changes her sign
from positive to negative or vice versa.

4.3.1 Signed RandomWalk with Restart Model

As discussed in Section 4.1, complicated relationships of signed edges are the main

obstacles for providing e�ective rankings in signed networks. Most existing works on

signed networks have not focused on personalized rankings. In this work, our goal is

to design a novel ranking model which resolves those problems in signed networks.

�e main ideas of our model are as follows:

• We introduce a signed random surfer. �e sign of the surfer is either positive

or negative, which means favorable or adversarial to a node, respectively.

• When the random surfer encounters a negative edge, she changes her sign from

positive to negative, or vice versa. Otherwise, she keeps her sign.

• We introduce balance a�enuation factors into the surfer to consider the uncer-

tainty for friendship of enemies.

�ere are four cases according to the signs of edges as shown in Figure 4.2: 1)

friend’s friend, 2) friend’s enemy, 3) enemy’s friend, and 4) enemy’s enemy. Suppose

a random surfer starts at node s toward node t . A traditional surfer just moves along

66

the edges without considering signs as seen in Figure 4.2(a) since there is no way

to consider the signs on the edges. Hence, classical models cannot distinguish those

edge relationships during her walks. For instance, the model considers that node s

and node t are friends for the second case (friend’s enemy), even though node t are

more likely to be an enemy w.r.t. node s.

On the contrary, our model in Figure 4.2(b) has a signed random surfer who

considers those complex edge relationships. If the random surfer starting at node s

with a positive sign encounters a negative edge, she �ips her sign from positive to

negative, or vice versa. Our model distinguishes whether node t is the friend of node

s or not according to her sign at node t . As shown in Figure 4.2(b), the results for

all cases from our model are consistent with structural balance theory [74]. �us,

introducing a signed random surfer enables our model to discriminate those edge

relationships.

Trust or distrust relationships between a speci�c node s and other nodes are re-

vealed as the surfer is allowed to move around a signed network starting from node

s. If the positive surfer visits a certain node u many times, then node u is trustable

for node s. On the other hand, if the negative surfer visits node u many times, then

node s is not likely to trust node u. �us, rankings are obtained by revealing a degree

of trust or distrust between people based on the signed random walks. Here, we for-

mally de�ne our model on signed networks in De�nition 4.1. Note that De�nition 4.1

involves the concept of restart which provides personalized rankings w.r.t. a user.

De�nition 4.1 (Signed Random Walk with Restart). A signed random surfer has a

sign, which is either positive or negative. At the beginning, the surfer starts with + sign

from a seed node s because she trusts s. Suppose the surfer is currently at node u, and c

is the restart probability of the surfer. �en, she takes one of the following actions:

67

• Action 1: SignedRandomWalk.�e surfer randomly moves to one of the neigh-

bors from node u with probability 1−c. �e surfer �ips her sign if she encounters

a negative edge. Otherwise, she keeps her sign.

• Action 2: Restart. �e surfer goes back to the seed node s with probability c. Her

sign should become + at the seed node s because she trusts s. �

We measure two probabilities on each node through Signed Random Walk

with Restart (SRWR) starting from the seed node s. �e two probabilities are rep-

resented as follows:

• r+u = P(u,+): the probability that the positive surfer visits node u a�er SRWR

from seed node s.

• r−u = P(u,−): the probability that the negative surfer visits node u a�er SRWR

from seed node s.

Note that r+u (or r−u) corresponds to a ratio of how many times the positive (or

negative) surfer visits node u during SRWR. If the positive surfer visits node u much

more than the negative one, then s is likely to trust u. Otherwise, s is likely to distrust

u. In other words, s would consider u as a positive node if r+u is greater than r−u . On

the contrary, s would treat u as a negative one if r−u is greater than r+u . Based on this

intuition, we de�ne the relative trustworthiness score ru = r+u −r−u between s and u.

For all nodes, r+ is a positive score vector and r− is a negative score vector of SRWR.

�en, the trustworthiness score vector for SRWR is represented as r = r+− r−, the

output of Problem 1. Many researchers have dealt with trust and distrust between

nodes through such representation for trustworthiness [63, 65, 110, 91]. Especially,

the interpretation of the resulting values from ru = r+u − r−u is consistent with what

Kunegis et al. said as follows:

• “�e resulting popularity (based on trustworthiness) measure admits both posi-

68

(a) A trustful case (b) A neutral case (c) A distrustful case

Figure 4.3: Examples of how to interpret positive and negative scores of SRWR be-
tween nodes s and u. �e bars on node u depict how many the signed surfer visits that node,
indicating positive and negative scores between s and u. (a) and (c) represent trustful and
distrustful cases between those nodes: s is likely to trust u in (a), and s is likely to distrust u in
(c). However, if the those scores are similar as in (b), it is di�cult for node s to decide whether
to trust node u or not. Hence, s is likely to be neutral about node u in (b).

tive and negative values, and represents a measure of popularity in the network,

with positive edges corresponding to a positive endorsement and negative edges to

negative endorsements. �is interpretation is consistent with the semantics of the

‘friend’ and ‘foe’ relationships [63].”

Note that from the viewpoint of measure theory, the relative trustworthiness ru

is also an acceptable measure as signed measure [111] if we consider r+u and r−u as non-

negative measures (i.e., r+u ≥ 0 and r−u ≥ 0). We discuss this in detail in Appendix A.5.

Discussion on positive and negative SRWR scores. We explain how to in-

terpret positive and negative SRWR scores using an example in Figure 4.3. Suppose

the signed surfer starts at node s, and performs SRWR to measure the trustworthi-

ness between nodes s and u. Note that the trustworthiness score depends on which

signed surfer stays at node u more frequently. �en, there would be three cases de-

pending on the link structure between s and u as shown in Figure 4.3. For the case

in Figure 4.3(a), s is likely to trust u since the positive surfer visits u much more than

69

the negative surfer through paths from s to u (i.e., the positive score is larger than

the negative one at u). For the opposite case in Figure 4.3(c), s is likely to distrust

u because the negative surfer frequently visits u. However, if those scores on u are

similar as shown in Figure 4.3(b), then it is hard for s to determine whether to trust

u or not. In this case s is likely to be neutral about node u. �us, the trustworthiness

score ru of the trustful case is high (and positive in SRWR), and that of the distrustful

case is low (and negative in SRWR). For the neutral case, the score would be in the

middle (and around zero between −1 and 1 in SRWR).

Connection to balance theory. According to balance theory [74, 112], Fig-

ure 4.3(a) and 4.3(c) are balanced networks because the graphs are divided into two

sets of users with mutual antagonism between the sets. For example, the set of nodes

{v1,v2,s} and the other set of nodes {w1,w2,u} in Figure 4.3(c) are connected with

negative edges, and nodes in each set are positively connected. In the balanced net-

works, each node has either a positive score or a negative one. Because the signed

surfer changes her sign walking negative edges linking the two groups, the positive

surfer stays and walks only in one group and the negative surfer stays and walks

only in the other group. However, Figure 4.3(b) is an unbalanced network because

it cannot be divided into two sets that are negatively connected each other. Hence,

positive and negative surfers visits the same node, i.e., each node has both positive

and negative scores. In this case, the trustworthiness score on a node is determined

by which signed surfer visits the node more frequently, which is represented by the

di�erence between positive and negative scores.

70

(a) An example of a positive
probability, r+u (t +1)

(b) An example of a negative
probability, r−u (t +1)

Figure 4.4: Examples of how r+u and r−u are de�ned in SRWR.

4.3.1.1 Formulation for Signed RandomWalk with Restart

We formulate the probability vectors, r+ and r−, following Signed Random Walk

with Restart. First, we explain how to de�ne r+ and r− using the example shown

in Figure 4.4. In the example, we label a (sign, transition probability) pair on each

edge. For instance, the transition probability for the positive edge from node i to

node u is 1/3 because node i has 3 outgoing edges. �is edge is denoted by (+,1/3).

Other pairs of signs and transition probabilities are also similarly de�ned. In order

that the random surfer has a positive sign on node u at time t + 1, a positive surfer

on one of u’s neighbor at time t must move to node u through a positive edge, or a

negative surfer must move through a negative edge according to the signed random

walk action in De�nition 4.1. Considering the restart action of the surfer with the

probability c, r+u (t +1) in Figure 4.4(a) is represented as follows:

r+u (t +1) = (1− c)

(
r+i (t)

3
+

r−j (t)
2

+
r−k (t)

2

)
+ c1(u = s)

71

where 1(u = s) is 1 if u is the seed node s and 0 otherwise. In Figure 4.4(b), r−u (t +1)

is de�ned similarly as follows:

r−u (t +1) = (1− c)

(
r−i (t)

3
+

r+j (t)
2

+
r+k (t)

2

)

Note that we do not add the restarting score c1(u = s) to r−u (t +1) in this case

because the surfer’s sign must become positive when she goes back to the seed node

s. �e recursive equations of our model are de�ned as follows:

r+u = (1− c)

∑
v∈←−N+

u

r+v
|−→N v|

+
∑

v∈←−N−u

r−v
|−→N v|

+ c1(u = s)

r−u = (1− c)

∑
v∈←−N−u

r+v
|−→N v|

+
∑

v∈←−N+
u

r−v
|−→N v|

 (4.1)

where ←−N i is the set of in-neighbors of node i, and −→N i is the set of out-neighbors

of node i. Superscripts of ←−N i or −→N i indicate signs of edges between node i and its

neighbors (e.g.,←−N+
i indicates the set of positively connected in-neighbors of node i).

We need to introduce several symbols related to an adjacency matrix A to vectorize

Equation (4.1).

De�nition 4.2 (Signed adjacency matrix). �e signed adjacency matrix A of G is a

matrix such that Auv is positive or negative when there is a positive or a negative edge

from node u to node v respectively, and zero otherwise. �

De�nition 4.3 (Semi-row normalized matrix). Let |A| be the absolute adjacency ma-

trix of A, and D be the out-degree diagonal matrix of |A| (i.e., Dii =
∑

j |A|i j). �en

semi-row normalized matrix of A is Ã = D−1A. �

De�nition 4.4 (Positive or negative semi-row normalized matrix). �e positive semi-

72

(a) �e surfer’s sign at node t is positive with
β (balanced case)

(b) �e surfer’s sign at node t is negative
with 1−β (unbalanced case)

(c) �e surfer’s sign at node t is negative
with γ (balanced case)

(d) �e surfer’s sign at node t is positive with
1− γ (unbalanced case)

Figure 4.5: Examples of balance attenuation factors. (a) and (b) represent the uncertainty
for ”the enemy of my enemy is my friend” with probability β, and (c) and (d) represent the
uncertainty for ”the friend of my enemy is my enemy” with probability γ.

row normalized matrix Ã+ contains only positive values in the semi-row normalized

matrix Ã. �e negative semi-row normalized matrix Ã− contains absolute values of

negative elements in Ã. In other words, Ã = Ã+− Ã−, and |Ã|= Ã++ Ã−. �

Based on De�nitions 4.3 and 4.4, Equation (4.1) is represented as follows:

r+ = (1− c)
(

Ã>+r++ Ã>−r−
)
+ cq

r− = (1− c)
(

Ã>−r++ Ã>+r−
) (4.2)

where q is a vector whose sth element is 1 and all other elements are 0.

4.3.1.2 Balance Attenuation Factors

�e signed surfer measures positive and negative scores of nodes w.r.t. a seed node

in terms of trust and distrust according to edge relationships as discussed in Sec-

tion 4.3.1. Our model in De�nition 4.1 strongly supports the four cases between nodes

in Figure 4.2(b) where those cases represent strong balance theory [75, 74]. How-

ever, recent works [113] have argued that the strong balance theory is unsatisfactory

73

for fully supporting real-world signed networks, since unbalanced relationships fre-

quently appear. �us, this limitation would be naturally inherent in our model. To al-

leviate this limitation, many researchers have studied weak balance theory [114, 113]

which generalizes the strong balance theory by allowing several unbalanced cases

such as ”the enemy of my enemy is my enemy”. Similarly, we adopt the generaliza-

tion strategy of the weak balance theory to make our model �exible on unbalanced

networks through dealing with both balanced and unbalanced cases.

We consider that the relationship of enemies of a seed user is uncertain since

the user cannot believe the information provided by her enemies. We re�ect the un-

certainty of the relationship of those enemies into our ranking model by introducing

stochastic parameters, β and γ, called balance a�enuation factors. Note that we as-

sume that the positive and negative relationship of friends of the seed user is reliable

since the user trusts her friends. β is a parameter for the uncertainty of ”the enemy of

my enemy is my friend”, and γ is for ”the friend of my enemy is my enemy.” We �rst

explain β using the fourth case (enemy’s enemy) in Figure 4.2(b). Suppose a surfer

with a positive sign starts at node s toward node t and encounters two consecutive

negative edges. Based on strong balance theory, her sign becomes negative at the

intermediate node m and positive at node t in Figure 4.5(a). However, some people

might think that the enemy of my enemy is my enemy as shown in Figure 4.5(b). In

this case, her sign will be negative at nodes m and t . To consider this uncertainty, we

introduce a parameter β so that if the negative surfer at node m encounters a negative

edge, her sign becomes positive with probability β or negative with 1−β at node t .

�e other parameter γ is also interpreted similarly to β. When the negative surfer at

node m encounters a positive edge, her sign will be negative with probability γ or

positive with 1− γ at node t as in Figures 4.5(c) and 4.5(d). SRWR with the balance

74

a�enuation factors is represented as follows:

r+ = (1− c)
(

Ã>+r++βÃ>−r−+(1− γ)Ã>+r−
)
+ cq

r− = (1− c)
(

Ã>−r++ γÃ>+r−+(1−β)Ã>−r−
) (4.3)

Discussion on other balance attenuation factors. Note that other parame-

ters for the uncertainties of ”enemy of friend” and ”friend of friend” could be easily

adopted into our model. However, we do not re�ect those parameters on our model

with the following reasons:

• As described in this subsection, we assume that the positive and negative rela-

tionship of friends of a seed user is reliable and stable. If the seed user’s friends

distrust a user, then she is unlikely to believe the user since the user trusts her

friends.

• Introducing the additional parameters could improve the performance of ap-

plications in signed networks, but it increases the complexity of our model

considering too many uncertain cases. We consider that introducing β and γ

achieves a good trade-o� between the model complexity and the performance

of each application as shown in Section 4.4.

Discussion on the initial sign. In De�nition 4.1, we initialize the signed surfer

as positive when she restarts at a seed node s. One might consider that our model is

easily extendable to probabilistically initializing the signed surfer as negative for the

restart action. Let p denote the probability of being the positive surfer for the restart

action. �en, the extended version is established by changing cq to (c× p)q in the

�rst equation and adding (c× (1− p))q into the second equation of equation (4.3).

However, we do not consider such case with the following reason:

• If the negative surfer starts at s, the surfer becomes positive at nodes negatively

75

connected from s and negative at those positively connected from s. �is im-

plies that the surfer recognizes the friends of s as enemies and the enemies of

s as friends. �us, it is hard to interpret the scores measured by the negative

initial surfer in terms of trustworthiness for s based on balance theory.

4.3.2 SRWR-Iter: Iterative Algorithm for Signed Random

Walk with Restart

We present an iterative algorithm SRWR-Iter for computing SRWR scores based on

Equation (4.3). Note that the solution of a linear system with recursive structure is

typically and e�ciently obtained via an iterative manner such as power iteration

and Jacobi method [115]. We also adopt such iterative strategy to solve the recursive

equations in Equation (4.3). We describe how SRWR-Iter obtains the trustworthiness

SRWR score vector r given a signed network and a seed node in Algorithms 5 and 6.

Moreover, we prove that the iterative approach in SRWR-Iter converges, and returns

a unique solution for the seed node in �eorem 4.1 of Section 4.3.2.2.

Normalization phase (Algorithm 5). Our proposed algorithm �rst computes

the out-degree diagonal matrix D of |A|, which is the absolute adjacency matrix of

A (line 1). �en, the algorithm computes the semi-row normalized matrix Ã using D

(line 2). We split Ã into two matrices: the positive semi-row normalized matrix (Ã+)

and the negative semi-row normalized matrix (Ã−) (line 3) satisfying Ã = Ã+− Ã−.

Iteration phase (Algorithm 6). Our algorithm computes the SRWR score vec-

tors r+ and r− for the seed node s with the balance a�enuation factors (β and γ) in the

iteration phase. We set q to s-th unit vector, and initialize r+ to q and r− to 0 (lines

1 and 2). Our algorithm iteratively computes Equation (4.3) (lines 4 and 5). We con-

catenate r+ and r− vertically (line 6) into h. We then compute the error δ between

76

Algorithm 5: Normalization phase of SRWR-Iter
Input: signed adjacency matrix: A
Output: positive semi-row normalized matrix: Ã+, and negative semi-row normalized

matrix: Ã−
1: compute out-degree matrix D of |A|, Dii =

∑
j |A|i j

2: compute semi-row normalized matrix, Ã = D−1A.
3: split Ã into Ã+ and Ã− such that Ã = Ã+− Ã−
4: return Ã+ and Ã−

h and h′ which is the result in the previous iteration (line 7). We update h into h′

for the next iteration (line 8). �e iteration stops when the error δ is smaller than a

threshold ε (line 9). We �nally return the trustworthiness score vector r used for the

personalized ranking w.r.t. s by computing r = r+− r− (lines 10 and 11).

4.3.2.1 Space and Time Complexities of SRWR-Iter

Lemma 4.1 (Space and Time Complexities of SRWR-Iter). Let n and m denote

the number of nodes and edges of a signed network, respectively. �en, the space com-

plexity of Algorithm 6 is O(n+m). �e time complexity of Algorithm 6 is O(T (n+m))

where the number T of iterations is log1−c
ε

2 , c is the restart probability, and ε is an error

tolerance.

Proof. �e space complexity for Ã+ and Ã− is O(m) if we exploit a sparse matrix

format such as compressed column storage to save the matrices. We need O(n) for

SRWR score vectors r+ and r−. �us, the space complexity is O(n+m). One iteration

in Algorithm 6 takes O(n+m) time due to sparse matrix vector multiplications and

vector additions where the time complexity of a sparse matrix vector multiplication

is linear to the number of non-zeros of a matrix [100]. Hence, the total time complex-

ity is O(T (n+m)) where the number T of iterations is log1−c
ε

2 which is proved in

Lemma 4.2.

77

Algorithm 6: Iteration phase of SRWR-Iter
Input: positive semi-row normalized matrix: Ã+, and negative semi-row normalized

matrix: Ã−, and seed node: s, restart probability: c, balance a�enuation factors: β and γ,
and error tolerance: ε.

Output: trustworthiness SRWR score vector: r
1: set the starting vector q from the seed node s
2: set r+ = q, r− = 0, and h′ = [r+;r−]
3: repeat

4: r+← (1− c)(Ã>+r++βÃ>−r−+(1− γ)Ã>+r−)+ cq
5: r−← (1− c)(Ã>−r++ γÃ>+r−+(1−β)Ã>−r−)
6: concatenate r+ and r− into h = [r+;r−]>
7: compute the error between h and h′, δ = ‖h−h′‖
8: update h′← h for the next iteration
9: until δ < ε

10: compute r = r+− r−

11: return r

4.3.2.2 �eoreticalAnalysis of IterativeAlgorithmand Signed

RandomWalk with Restart

We theoretically analyze the iterative algorithm SRWR-Iter and the properties of

Signed Random Walk with Restart.

Convergence Analysis of SRWR-Iter. We show that the iteration in Algo-

rithm 6 converges to the solution of a linear system as described in the following

theorem.

�eorem 4.1 (Convergence of SRWR-Iter). Suppose h = [r+;r−]> and qs = [q;0]>.

�en the iteration for h in Algorithm 6 converges to the solution h= c(I−(1−c)B̃>)−1qs

where B̃> =

Ã>+ βÃ>−+(1− γ)Ã>+

Ã>− (1−β)Ã>−+ γÃ>+

.

Proof. Equation (4.3) is represented as follows:

r+

r−

= (1− c)

Ã>+ βÃ>−+(1− γ)Ã>+

Ã>− (1−β)Ã>−+ γÃ>+

r+

r−

+ c

q

0

⇔ h = (1− c)B̃>h+ cqs

78

where B̃> =

Ã>+ βÃ>−+(1− γ)Ã>+

Ã>− (1−β)Ã>−+ γÃ>+

, h =

r+

r−

, and qs =

q

0

. �us, the iteration

in Algorithm 6 is wri�en as in the following equation:

h(k) = (1− c)B̃>h(k−1)+ cqs

=
(
(1− c)B̃>

)2
h(k−2)+

(
(1− c)B̃>+ I

)
cqs

= · · ·

=
(
(1− c)B̃>

)k
h(0)+

k−1∑
j=0

(
(1− c)B̃>

) j

cqs

(4.4)

�e spectral radius ρ((1− c)B̃>) = (1− c) < 1 when 0 < c < 1 since B̃> is a col-

umn stochastic matrix and its largest eigenvalue is 1 [115]. �erefore, limk→∞((1−

c)B̃>)kh(0) = 0 and limk→∞ h(k) converges as follows:

lim
k→∞

h(k) = 0+ lim
k→∞

k−1∑
j=0

(
(1− c)B̃>

) j

cqs = c
(

I− (1− c)B̃>
)−1

qs.

In the above equation,
∑

∞

j=0((1− c)B̃>) j is a geometric series of the matrix (1−

c)B̃>, and the series converges to (I− (1− c)B̃>)−1 since the spectral radius of (1−

c)B̃> is less than one. Note that the inverse matrix is a non-negative matrix whose

entries are positive or zero because the matrix is the sum of non-negative matrices

(i.e.,
∑

∞

j=0((1− c)B̃>) j). Hence, each entry of h is non-negative (i.e., hu ≥ 0 for any

node u).

Error analysis of SRWR-Iter. We show that the error δ of SRWR-Itermono-

tonically decrease over iterations using the following lemma.

Lemma 4.2 (Error analysis of SRWR-Iter). Suppose h = [r+;r−]>, and h(k) is the

79

result of k-th iteration in SRWR-Iter. Let δ(k) denote the error ‖h(k)− h(k−1)‖1. �en

δ(k) ≤ 2(1− c)k, and the estimated number T of iterations for convergence is log1−c
ε

2

where ε is an error tolerance, and c is the restart probability.

Proof. According to Equation (4.4), δ(k) is represented as follows:

δ
(k) = ‖h(k)−h(k−1)‖1 = (1− c)‖B̃>(h(k−1)−h(k−2))‖1

≤ (1− c)‖B̃>‖1‖h(k−1)−h(k−2)‖1

= (1− c)‖h(k−1)−h(k−2)‖1 = (1− c)δ(k−1)

Note that ‖B̃>‖1 = 1 since B̃> is column stochastic as described in �eorem 4.1.

Hence, δ(k) ≤ (1−c)δ(k−2) ≤ ·· · ≤ (1−c)kδ(1). Since δ(1)=‖h(1)−h(0)‖1 ≤‖h(1)‖1+

‖h(0)‖1=2, δ(k) ≤ 2(1− c)k. Note that when δ(k) ≤ ε, the iteration of SRWR-Iter is

terminated. �us, for k ≤ log1−c
ε

2 , the iteration is terminated, and the number T of

iterations for convergence is estimated at log1−c
ε

2 .

Properties of SRWR. We discuss the properties of our ranking model SRWR to

answer the following questions: 1) Is the resulting SRWR score vector a probability

distribution (Property 1)? 2) Is the signed random surfer able to visit all nodes in

a network which is strongly connected (Property 2)? and 3) Does SRWR work on

unsigned networks as well (Property 3)?

Property 1. Consider the recursive equation p = (1−c)|Ã|>p+cq where p = r++r−

and |Ã|> is a column stochastic matrix. �en 1>p =
∑

i pi = 1.

Proof. By multiplying both sides by 1>, the equation is represented as follows:

p = (1− c)|Ã|>p+ cq⇔ 1>p = (1− c)1>|Ã|>p+ c1>q

80

Note that 1>|Ã|> = (|Ã|1)>, and |Ã| is a row stochastic matrix; thus, (|Ã|1)> = 1>.

Hence, the above equation is represented as follows:

1>p = (1− c)1>|Ã|>p+ c1>q⇔ 1>p = (1− c)1>p+ c⇔ 1>p = 1

�is indicates that the resulting SRWR scores follow a probability distribution.

Property 2. Suppose a signed network is strongly connected. �en, all entries of r++r−

are positive (i.e., r++ r− > 0).

Proof. Let r++ r− be p. By summing the recursive equations on r+ and r− in Equa-

tion (4.3), p is represented as follows:

p = (1− c)
(

Ã>+p+ Ã>−p
)
+ cq⇔ p = (1− c)|Ã|>p+ cq⇔ p = Gp

where |Ã|= Ã++Ã− by De�nition 4.3, G=(1−c)|Ã|>+cq1>, and 1>p=
∑

i pi = 1

by Property 1. Note that the graph represented by G is also strongly connected since

the graph of |Ã| has the same topology with the original graph which is strongly

connected. Moreover, the graph represented by G has a self-loop at the seed node s

due to cq1>. �us, G is irreducible and aperiodic. Hence, all entries of p = r++ r−

are positive according to Perron-Frobenius theorem [83].

Note that r+u (or r−u) indicates that the stationary probability of the positive (or

negative) surfer visits node u a�er performing SRWR starting from a seed node. Ac-

cording to Property 2, r+u + r−u for an arbitrary node u is always positive if a given

signed network is strongly connected. �at is, the signed random surfer is able to

visit node u with probability r+u + r−u which is always greater than zero.

81

Property 3. �e result of SRWR on networks containing only positive edges is the same

as that of RWR.

Proof. Ã+ = Ã and Ã− = 0n×n because the adjacency matrix A only contains pos-

itive edges. Also, r− = 0n×1 at the beginning time of Algorithm 6. Equation (4.3) is

represented as follows:

r+ = (1− c)
(

Ã>r++β0n×n×0n×1 +(1− γ)Ã>0n×1

)
+ cq

r− = (1− c)
(

0n×n× r++ γÃ>0n×1 +(1−β)0n×n×0n×1

)
�erefore, r− = 0n×1 and r+ = (1− c)Ã>r++ cq. �e equation of r+ is exactly the

same as that of RWR.

�is implies that our model SRWR is a generalized version of RWR working on

both unsigned and signed networks in the following property.

4.3.3 SRWR-Pre: PreprocessingAlgorithm for SignedRan-

domWalk with Restart

We propose SRWR-Pre, a preprocessing algorithm to quickly compute SRWR scores.

�e iterative approach SRWR-Iter in Algorithm 6 requires multiple matrix-vector

multiplications to compute SRWR scores whenever seed node s changes; thus the

iterative method is not fast enough when we require SRWR scores for any pair of

nodes in large-scale signed networks. Our goal is to directly compute SRWR scores

from precomputed intermediate data without iterations. We exploit the following

ideas for our preprocessing method:

• �e positive and negative SRWR score vectors r+ and r− are obtained by solv-

ing linear systems (Section 4.3.3.1).

82

• �e adjacency matrix of real-world graphs is permuted so that it contains a

large but easy-to-invert block diagonal matrix as shown in Figure 4.6 (Sec-

tion 4.3.3.2).

• �e block elimination approach e�ciently solves a linear system on a matrix if

it has an easy-to-invert sub-matrix (Section 4.3.3.3).

Our preprocessing method comprises two phases: preprocessing phase (Algo-

rithm 7) and query phase (Algorithm 8). �e preprocessing phase preprocesses a

given signed adjacency matrix into several sub-matrices required in the query phase

to compute SRWR scores w.r.t. seed node s. Note that the preprocessing phase is per-

formed once, and the query phase is run for each seed node. �e starting vector q in

Equation (4.3) is called an SRWR query, and r+ and r− are the results corresponding

to the query q. �e query vector q is determined by the seed node s, and r+ and r−

are distinct for each SRWR query. To exploit sparsity of graphs, we save all matrices

in a sparse matrix format such as compressed column storage [100] which stores only

non-zero entries and their locations.

4.3.3.1 Formulation of Signed Random Walk with Restart

as Linear Systems

We �rst represent linear systems related to r+ and r−. Let p be the sum of r+ and r−

(i.e., p = r++ r−). �en, p is the solution of the following linear system:

|H|p = cq⇔ p = c|H|−1q (4.5)

83

where |H| = I− (1− c)|Ã|> and |Ã| = Ã++ Ã−. �e proof of Equation (4.5) is pre-

sented in Lemma 4.3. �e linear system for r− is given by the following equation:

Tr− = (1− c)Ã>−p⇔ r− = (1− c)
(

T−1(Ã>−p)
)

(4.6)

where T = I− (1−c)(γÃ>+−βÃ>−), and γ and β are balance a�enuation factors. �e-

orem 4.2 shows the proof of Equation (4.6). Based on the aforementioned linear sys-

tems in Equations (4.5) and (4.6), r− and r+ for a given seed node s are computed as

follows:

1. Set a query vector q whose s-th element is 1 and all other elements are 0.

2. Solve the linear system in Equation (4.5) to obtain the solution p.

3. Compute r− by solving the linear system in Equation (4.6).

4. Compute r+ = p− r−.

Lemma 4.3. Suppose that p = r++ r−, |H| = I− (1− c)|Ã|> and |Ã| = Ã++ Ã−.

�en, p is the solution of the following linear system:

|H|p = cq⇔ p = c|H|−1q

Proof. According to the result in Property 2, the recursive equation for p is repre-

sented as follows:

p = (1− c)|Ã|>p+ cq

where |Ã|= Ã++ Ã− is the row-normalized matrix of |A|. �e linear system for p is

84

represented by moving (1− c)|Ã|>p to the le� side as follows:

(
I− (1− c)|Ã|>

)
p = cq⇔ |H|p = cq

where |H| is I− (1− c)|Ã|>. Note that |H| is invertible when 0 < c < 1 because it is

strictly diagonally dominant [116]. Hence, p = c|H|−1q.

�eorem 4.2. �e SRWR score vectors r+ and r− from Equation (4.3) are represented

as follows:

r+ = p− r−

r− = (1− c)
(

T−1(Ã>−p)
)

where p = c|H|−1q, T = I− (1−c)(γÃ>+−βÃ>−), and γ and β are balance a�enuation

factors which are between 0 and 1 (i.e., 0 < γ,β < 1).

Proof. Note that r− = (1−c)(Ã>−r++ γÃ>+r−+(1−β)Ã>−r−) by Equation (4.3), and

r+ = p−r− according to Lemma 4.3. �e equation for r− is represented by plugging

r+ = p− r− as follows:

r− = (1− c)
(

Ã>−p− Ã>−r−+ γÃ>+r−+(1−β)Ã>−r−
)
⇔

r− = (1− c)
(

γÃ>+−βÃ>−
)

r−+(1− c)Ã>−p

We move (1− c)(γÃ>+−βÃ>−)r− to the le� side; then, the above equation is repre-

sented as follows:

(
I− (1− c)(γÃ>+−βÃ>−)

)
r− = (1− c)Ã>−p⇔ Tr− = (1− c)Ã>−p

85

where T is I− (1− c)(γÃ>+ − βÃ>−). Note that the matrix T is strictly diagonally

dominant when 0 < c < 1 and 0 < γ,β < 1; thus, T is invertible. Hence, r− = (1−

c)(T−1(Ã>−p)). r+ is obtained by computing r+ = p− r−.

One naive approach (Inversion) for SRWR score vectors r+ and r− based on

the linear systems in Equations (4.5) and (4.6) is to precompute the inverse of the

matrices |H| and T. However, this approach is impractical for large-scale graphs since

inverting a matrix requires O(n3) time and O(n2) space where n is the dimensions

of the matrix. Another approach (LU) is to obtain the inverse of LU factors of |H|

and T a�er reordering the matrices in the order of node degrees as suggested in [60]

(i.e., p = c(U−1
p (L−1

p q)); r− = (1− c)(U−1
r− (L

−1
r− (Ã

>
−p))) where |H|−1 = U−1

p L−1
p and

T−1 = U−1
r− L−1

r−). Although LU is more e�cient than Inversion in terms of time and

space as shown in Figure 4.13, LU still has a performance issue due to O(n3) time

and O(n2) space complexities. On the other hand, our preprocessing method SRWR-

Pre is faster and more memory e�cient than Inversion and LU as we will see in

Section 4.4.7.

4.3.3.2 NodeReordering based onHub-and-Spoke Structure

SRWR-Pre permutes the matrices |H| and T using a reordering technique based on

hub-and-spoke structure. Previous works [54, 80] have exploited the reordering tech-

nique to reduce computational cost of graph operations in real-world graphs. We also

adopt the node reordering based on hub-and-spoke structure to e�ciently solve the

linear systems in Equations (4.5) and (4.6).

�e hub-and-spoke structure indicates that most real-world graphs follow power-

law degree distribution with few hubs (very high degree nodes) and majority of

spokes (low degree nodes). �e structure has been utilized to concentrate entries

86

(a) Original matrix |H| in the
Wikipedia dataset

(b) Original matrix |H| in the
Slashdot dataset

(c) Original matrix |H| in the
Epinions dataset

(d) Reordered matrix |H| in the
Wikipedia dataset

(e) Reordered matrix |H| in the
Slashdot dataset

(f) Reordered matrix |H| in the
Epinions dataset

Figure 4.6: Result of node reordering on each signed network. (a), (b), and (c) are the
original matrix |H| before node reordering in the Wikipedia, the Slashdot, and the Epinions
datasets, respectively. (d), (e) and (f) present |H| reordered by the hub-and-spoke method.
Note that T is also reordered equivalently to |H| since they have the same sparsity pa�ern.
|H|11 and T11 are block diagonal.

87

of an adjacency matrix by reordering nodes as shown in Figure 4.6. Any reordering

method based on the hub-and-spoke structure can be utilized for the purpose; in this

paper, we use SlashBurn [98, 117] as a hub-and-spoke reordering method because it

shows the best performance in concentrating entries of an adjacency matrix (see the

details in Appendix A.1).

We reorder nodes of the signed adjacency matrix A so that reordered matrix

contains a large but easy-to-invert submatrix such as block diagonal matrix as shown

in Figure 4.6. We then compute |H|= I−(1−c)(Ã>++Ã>−) and T= I−(1−c)(γÃ>+−

βÃ>−). Note that |H| and T have the same sparsity pa�ern as the reordered adjacency

matrix A> except for the diagonal part. Hence, |H| and T are partitioned as follows:

|H|=

|H|11 |H|12

|H|21 |H|22

 ,T =

T11 T12

T21 T22

 . (4.7)

Let n1 and n2 denote the number of spokes and hubs, respectively (see the details

in Appendix A.1). �en |H|11 and T11 are n1×n1 matrices, |H|12 and T12 are n1×n2

matrices, |H|21 and T21 are n2×n1 matrices, and |H|22 and T22 are n2×n2 matrices.

�e linear systems for |H| and T in Equations (4.5) and (4.6) are represented as follows:

|H|p = cq⇔

|H|11 |H|12

|H|21 |H|22

p1

p2

= c

q1

q2

 (4.8)

Tr− = (1− c)t⇔

T11 T12

T21 T22

r−1

r−2

= (1− c)

t1

t2

 (4.9)

where t = Ã>−p is an n×1 vector.

88

4.3.3.3 Block Elimination for Solving Linear Systems

�e solutions of the partitioned linear systems in Equations (4.8) and (4.9) are ob-

tained by the following equations:

p =

p1

p2

=

 |H|−1
11 (cq1−|H|12p2)

c(S−1
|H|(q2−|H|21(|H|

−1
11 (q1))))

 (4.10)

r− =

r−1

r−2

=

 T−1
11 ((1− c)t1−T12r−2)

(1− c)(S−1
T (t2−T21(T−1

11 (t1))))

 (4.11)

where S|H| = |H|22− |H|21|H|
−1
11 |H|12 is the Schur complement of |H|11 and ST =

T22−T21T−1
11 T12 is the Schur complement of T11. Equations (4.10) and (4.11) are de-

rived by applying block elimination described in Lemma 4.4 to the partitioned linear

systems in Equations (4.8) and (4.9), respectively. Note that the sub-matrices |H|11

and T11 are invertible when 0 < c < 1 and 0 < γ,β < 1 since they are strictly diag-

onally dominant. If all matrices in Equations (4.10) and (4.11) are precomputed, then

the SRWR score vectors r+ and r− are e�ciently and directly computed from the

precomputed matrices.

Lemma 4.4 (Block Elimination [99]). Suppose a linear system Ax = b is partitioned

as follows:

A11 A12

A21 A22

x1

x2

=

b1

b2

where A11 and A22 are square matrices. If the sub-matrix A11 is invertible, then the

89

Algorithm 7: Preprocessing phase of SRWR-Pre
Input: signed adjacency matrix: A, restart probability: c, balance a�enuation factors:

β and γ

Output: preprocessed matrices from |H| and T, negative semi-row normalized matrix Ã−
1: reorder A using the hub-and-spoke reordering method [98, 117]
2: compute Ã+ and Ã− from A using Algorithm 5
3: compute |H| and T, i.e., |H|= I− (1− c)|Ã|> and T = I− (1− c)(γÃ>+−βÃ>−)
4: partition |H| into |H|11, |H|12, |H|21, |H|22, and compute |H|−1

11
5: partition T into T11, T12, T21, T22, and compute T−1

11
6: compute the Schur complement of |H|11, i.e., S|H| = |H|22−|H|21|H|

−1
11 |H|12

7: compute the Schur complement of T11, i.e., ST = T22−T21T−1
11 T12

8: compute the inverse of LU factors of S|H|, i.e., S−1
|H| = U−1

|H|L
−1
|H|

9: compute the inverse of LU factors of ST, i.e., S−1
T = U−1

T L−1
T

10: return preprocessed matrices from |H|: L−1
|H|, U−1

|H|, |H|
−1
11 , |H|12, and |H|21

preprocessed matrices from T: L−1
T , U−1

T , T−1
11 , T12, and T21

negative semi-row normalized matrix Ã−

solution x is represented as follows:

x =

x1

x2

=

 A−1
11 (b1−A12x2)

S−1(b2−A21(A−1
11 (b1)))

where S = A22−A21A−1

11 A12 is the Schur complement of A11. �

Lemma 4.4 implies that a partitioned linear system is e�ciently solved if it con-

tains an easy-to-invert sub-matrix and the dimension of the Schur complement is

small. Note that inverting H11 and T11 is trivial because they are block diagonal ma-

trices as shown in Figure 4.6. Also, the dimension of S|H| and ST is n2 where n2 is the

number of hubs and most real-world graphs have a small number of hubs compared

to the number of nodes (see Table 4.3).

Preprocessing phase (Algorithm 7). Our preprocessing phase precomputes

the matrices exploited for computing SRWR scores in the query phase. Our algorithm

�rst reorders nodes of a given signed adjacency matrix A using the hub-and-spoke

90

Algorithm 8: �ery phase of SRWR-Pre
Input: seed node: s, preprocessed matrices from Algorithm 7
Output: trustworthiness SRWR score vector: r

1: create q whose s-th entry is 1 and the others are 0, and partition q into q1 and q2
2: compute p2 = c(U−1

|H|(L
−1
|H|(q2−|H|21(|H|

−1
11 q1))))

3: compute p1 = |H|−1
11 (cq1−|H|12p2)

4: create p by concatenating p1 and p2
5: compute t = Ã>−p, and partition it into t1 and t2

6: compute r−2 = (1− c)(U−1
T (L−1

T (t2−T21(T−1
11 t1))))

7: compute r−1 = T−1
11 ((1− c)t1−T12r−2))

8: create r− by concatenating r−1 and r−2
9: compute r+ = p− r−

10: compute r = r+− r−

11: return r

reordering method, and performs semi-normalization on A to obtain Ã+ and Ã− us-

ing Algorithm 5 (lines 1∼2). �en our algorithm computes |H| and T, and partitions

the matrices as shown in Figure 4.6 (lines 3∼5). Our algorithm calculates the inverses

of |H|11 and T11, and computes the Schur complements of |H|11 and T11 (lines 4∼7).

When we compute S−1
|H| and S−1

T , we invert the LU factors of S|H| and ST (lines 8 and 9)

because this approach is faster and more memory e�cient than directly inverting S|H|

and ST as suggested in [54].

�ery phase (Algorithm 8). Our query phase computes SRWR score vectors

r+ and r− for a given seed node s using precomputed matrices from Algorithm 7. Our

algorithm �rst creates a starting vector q whose entry at the index of the seed node s

is 1 and otherwise 0, and partitions q into q1 and q2 (line 1). We then compute p2 and

p1 based on Equation (4.10), and concatenate the vectors to obtain p (lines 2∼4). Our

algorithm calculates t = Ã>−p and partitions t into t1 and t2 (line 5). We compute r−2

and r−1 based on Equation (4.11), and concatenate the vectors to obtain r− (lines 6∼8).

A�er computing r+ = p− r− to obtain r+ (line 9), we obtain r = r+− r− (line 10).

91

Table 4.2: Space complexity of each preprocessed matrix from Algorithm 7. Note that
m is the number of edges of the input graph; n2 is the number of hubs, and n1i is the number
of nodes in i-th block where b blocks in |H|11 (or T11) are identi�ed by the hub-and-spoke
reordering method.

Matrix Space Complexity

Ã−, |H|12, |H|21, T12, and T21 O(m)

|H|−1
11 , and T−1

11 O(
∑b

i=1 n2
1i) = O(m)

L−1
|H|, U−1

|H|, L−1
T , and U−1

T O(n2
2)

4.3.3.4 Space and Time Complexities of SRWR-Pre

Lemma 4.5 (Space Complexity of SRWR-Pre). �e space complexity of the pre-

processed matrices from SRWR-Pre is O(n2
2 +m) where n2 is the number of hubs and m

is the number of edges in the graph.

Proof. �e space complexity of each preprocessed matrix is summarized in Table 4.2.

Ã−, |H|12, |H|21, T12, and T21 are sparse matrices, and constructed from the input

graph; hence, the space complexity is bounded by the number of edges (i.e., O(m)).

Note that |H| and T have the same sparsity pa�ern; hence, |H|11 and T11 identi�ed

by [98, 117] have the same b blocks. �e i-th block in |H|−1
11 (or T−1

11) contains n2
1i

non-zeros; therefore, |H|−1
11 and T−1

11 require O(
∑b

i=1 n2
1i) space, respectively. Since

the dimension of L−1
|H|, U−1

|H|, L−1
T , and U−1

T is n2, they require O(n2
2) space.

Note that the blocks in |H|11 (or T11) are discovered by the reordering method [98,

117] as brie�y described in Appendix A.1. In real-world graphs,
∑b

i=1 n2
1i can be

bounded by O(m) as shown in [54]. Hence, we assume that the space complexity

of |H|−1
11 and T−1

11 is O(m) for simplicity.

Lemma 4.6 (TimeComplexity of Preprocessing Phase in SRWR-Pre). �e pre-

processing phase in Algorithm 7 takes O(T (m+n logn)+n3
2 +mn2) where T = d n2

kne is

the number of iterations, and k is the hub selection ratio in the hub-and-spoke reordering

92

method [98, 117].

Proof. We only consider the main factors of the time complexity of Algorithm 7 in this

proof. �e hub-and-spoke reordering method takes O(T (m+ n logn)) time (line 1)

where T is d n2
kne which is proved in [98, 117]. Computing the Schur complement of

|H|11 takes O(n2
2 +mn2) because it takes O(mn2) to compute P1 = |H|−1

11 |H|12 and

P2 = |H|21P1 by Lemma A.1, and O(n2
2) to compute |H|22−P2 (line 6). It takes O(n3

2)

to compute the inverse of the LU factors (line 8). Note that computing |H|−1
11 (line 4)

requires O(
∑b

i=1 n3
1i) time where it takes n3

1i to obtain the inverse of i-th block. In

real-world networks, the size n1i of each block is much smaller than the number n2

of hubs; thus, we assume that
∑b

i=1 n3
1i � n3

2 [54]. Hence, the time complexity of

preprocessing |H| is O(T (m+n logn)+n3
2 +mn2). Note that the time complexity of

preprocessing T is included into that of preprocessing |H| since T and |H| have the

same sparsity pa�ern.

Lemma 4.7 (Time Complexity of�ery Phase in SRWR-Pre). �e query phase

in Algorithm 8 takes O(n2
2 +n+m) time.

Proof. We only consider the main factors of the time complexity of Algorithm 8 in

this proof. It takes O(n2
2 +m) to compute p2 since it takes O(n2 +m) to compute

q̃2 = q2−|H|21(|H|
−1
11 q1), and O(n2

2) to compute U−1
|H|(L

−1
|H|q̃2) (line 2). It takes O(n)

time to concatenate the partitioned vectors (lines 4 and 8) and compute r+ and r (lines

9 and 10). Hence, the total time complexity of the query phase is O(n2
2 +n+m).

4.4 Experiments

We evaluate the e�ectiveness of SRWR compared to existing ranking methods. Since

there is no ground-truth of personalized rankings for each node in real-world graphs,

93

we exploit an indirect way by examining the performance of applications such as

link prediction, troll identi�cation, and sign prediction tasks. We also investigate the

performance of our approaches in terms of time and space. Based on these se�ings,

we aim to answer the following questions from the experiments:

• Q1. Link prediction (Section 4.4.2). How e�ective is our proposed SRWR

model for the link prediction task in signed networks?

• Q2. User preference preservation (Section 4.4.3). How well does our model

SRWR preserve users’ known preferences in personalized rankings in signed

networks?

• Q3. Troll detection (Section 4.4.4). How well do personalized rankings of

SRWR capture trolls who are abnormal users compared to those of other mod-

els?

• Q4. Sign prediction (Section 4.4.5). How helpful are trustworthiness scores

of SRWR for predicting missing signs of edges in signed networks?

• Q5. E�ects of balance attenuation factors (Section 4.4.6). How e�ective

are the balance a�enuation factors of SRWR for applications in signed net-

works?

• Q6. E�ciency (Section 4.4.7). How fast and memory e�cient is our prepro-

cessing method SRWR-Pre compared to other baselines?

4.4.1 Experimental Settings

Machines. �e experiments on the e�ectiveness of SRWR in Sections 4.4.2, 4.4.4,

4.4.5 and 4.4.6 are conducted on a PC with Intel(R) Core(TM) i5-4590 CPU @ 3.30GHz

and 8GB memory. �e experiments on the computational performance of SRWR-Pre

94

Table 4.3: Statistics of the datasets used in Chapter 4. n is the number of nodes and m is
the total number of edges. m+ is the number of positive edges, m− is the number of negative
edges, and n2 is the number of hubs.

Dataset n m m+ m− n2

Wikipedia1 7,118 103,617 81,285 22,332 1,800
Slashdot2 79,120 515,561 392,316 123,245 10,160
Epinions3 131,828 841,372 717,667 123,705 10,164

1 h�p://snap.stanford.edu/data/wiki-Vote.html
2 h�p://dai-labor.de/IRML/datasets
3 h�p://www.trustlet.org/wiki/Extended Epinions dataset

in Section 4.4.7 are performed on a workstation with a single Intel(R) Xeon(R) CPU

E5-2630 v4 @ 2.20GHz and 256GB memory.

Datasets.�e signed networks for our experiments are summarized in Table 4.3.

We use all datasets in the link prediction task, the sign prediction task and the ex-

periments for evaluating the computational performance of the proposed methods

(Sections 4.4.2, 4.4.5, and 4.4.7). We use the Slashdot dataset in the troll identi�cation

task (Section 4.4.4) since there is a troll list only in the dataset.

Methods. To answerQ1-4, we compare our proposed model with Random Walk

with Restart (RWR) [21], Modi�ed Random Walk with Restart (M-RWR) [65], Modi-

�ed Personalized SALSA (M-PSALSA) [118], Personalized Signed spectral Rank (PSR)

[63], Personalized Negative Rank (PNR) [63], Troll-Trust Model (TR-TR) [66], TRUST

[91], LOGIT [90], and GAUC-OPT [89]. Note that RWR is computed on the abso-

lute adjacency matrix of a signed network. For Q5, we compare our model SRWR to

H-SRWR which is a version of SRWR without the balance a�enuation parameters.

For Q6, we compare our preprocessing method SRWR-Pre to other baseline meth-

ods Inversion and LU mentioned in Section 4.3.3.1 including our iterative method

SRWR-Iter.

Parameters.�ere are three hyper-parameters in our ranking model, i.e., restart

95

probability c and balance a�enuation parameters β and γ. We set c to 0.15 for all

random walk based approaches including our model for simplicity. To choose β and

γ, we perform a grid search over a range 0 ≤ β,γ ≤ 1 by 0.1 (i.e., search (β,γ) in

P = {(0.1x,0.1y)|0 ≤ x,y ≤ 10 and x,y ∈ Z}). To select proper parameters, we ran-

domly split a dataset into training, validation, and test sets; and then, we compute

personalized rankings based on the training set, and choose the best parameter com-

bination (β,γ) on the validation set with a target metric corresponding to each task.

We report results on the test set with the validated parameters. �e detailed se�ings

on how to split the dataset and which metric is used are described in each subsec-

tion of the corresponding task. �e validated parameters of SRWR are summarized

as follows:

• Link prediction task (Section 4.4.2): In the Epinions and the Slashdot datasets,

β = 0.5 and γ = 0.8. In the Wikipedia dataset, β = 0.5 and γ = 0.5.

• Troll identi�cation task (Section 4.4.4): In this task, the Slashdot dataset is used

as mentioned above, and in the dataset, β = 0.1 and γ = 1.0.

• Sign prediction task (Section 4.4.5): In the Epinions and the Slashdot datasets,

β = 0.5 and γ = 0.8. In the Wikipedia dataset, β = 0.2 and γ = 0.6.

4.4.2 Link Prediction Task

We evaluate the performance of personalized ranking models on link prediction in

signed networks. �e link prediction task is de�ned as follows: given a signed net-

work and a seed node s, predict nodes which will be positively or negatively linked by

the seed node in the future. An ideal personalized ranking for this task should place

nodes that the seed node s potentially trusts (i.e., positive links) at the top, those that

s potentially distrusts (i.e., negative links) at bo�om, and other unknown ones in the

96

(a) GAUC on Epinions (b) GAUC on Slashdot (c) GAUC on Wikipedia

(d) AUC on Epinions (e) AUC on Slashdot (f) AUC on Wikipedia

Figure 4.7: Link prediction performance of SRWR in terms of GAUC and AUC. GAUC
indicates how well a model ranks nodes to be positively connected by a seed node at the top
and those to be negatively linked at the bo�om. AUC indicates how many positive nodes are
ranked higher than negative ones (see the details in Appendix A.4.1). Our proposed model
SRWR shows the best link prediction performance in terms of GAUC and AUC for all the
datasets.

middle. GAUC (Generalized AUC), proposed by [89], has been used to evaluate the

quality of personalized rankings for link prediction in signed networks, and it mea-

sures such ideal ranking as 1.0. We also evaluate the ranking quality in terms of AUC

indicating how many positive nodes are ranked higher than negative ones (see the

details in Appendix A.4.1).

To perform this evaluation, we randomly select 1,000 seed nodes, and choose

20% edges of positive and negative edges from each seed node to form a validation

set. �en, we randomly select another 1,000 seed nodes, and choose 20% edges of

positive and negative edges from each seed node as a test set. We remove those se-

97

lected edges, and utilize the remaining edges as a training set to compute personalized

rankings. For given a parameter combination, we measure GAUC on the personal-

ized ranking w.r.t. each seed node in the validation set, and record the average GAUC

over all the seed nodes. �en, we pick the best parameter combination that provides

the highest average GAUC in the validation set. With the validated parameters, we

report the average GAUC over all seed nodes in the test set. We perform the same

procedure for AUC. For nodes directly connected with a seed node s in the training

set, we exclude those nodes from a personalized ranking list w.r.t. s since we need to

recommend links which are unknown to s.

Results. We compare SRWR to other random-walk based models M-RWR, M-

PSALSA, PSR, RWR, and TR-TR on the link prediction task in signed networks. We

also compare our method to GAUC-OPT which is a matrix factorization based link

prediction method approximately maximizing GAUC [89]. As demonstrated in Fig-

ure 4.7, SRWR presents the best link prediction performance in terms of GAUC and

AUC among the evaluated models over all the datasets. Compared to RWR which

does not consider negative signs at all, our approach SRWR shows the signi�cant

improvement in the link prediction accuracy. Especially, GAUC of all other methods

considering signed edges is higher than that of RWR as shown in Figure 4.7. �is

indicates that it is important to consider the sign of edges when we compute per-

sonalized rankings for link prediction in signed networks. Furthermore, SRWR out-

performs other random walk based models including GAUC-OPT which is specially

designed for this task, implying our signed surfer based on balance theory e�ectively

estimates personalized rankings for link prediction in signed networks.

98

4.4.3 User Preference Preservation Task

Since a personalized ranking includes known and unknown users for a seed user

(or node), how the ranking is consistent with the seed user’s known preferences is

also considered as one criterion for evaluating the quality of personalized rankings.

In signed social networks, we consider that the known preferences of a seed user

s are well preserved in a personalized ranking if positive users for s (i.e., they are

positively connected by s) are at the top and negative ones are at the bo�om in the

ranking. Hence, an ideal ranking for s (excluding s from the ranking) should produce

1.0 GAUC with known positive and negative links from s in terms of user preference

preservation. To evaluate the preference preservation performance of each method,

we report the average GAUC over all test seed nodes without removing the selected

test edges from a training set.

As shown in Table 4.4, our ranking model SRWR demonstrates the best GAUC in

user preference preservation among all tested methods, indicating that SRWR almost

perfectly preserves users’ known preferences within their personalized rankings. �e

main reason for the result is that our signed surfer occasionally restarts at a seed node

s with a positive sign; thus, the positive surfer frequently visits the positive neighbors

of s, and the negative surfer frequently visits the negative neighbors of s. Hence, the

trustworthiness scores on the positive neighbors are high, and those on the negative

neighbors are low compared to those on nodes that are not connected by s.

One might think a simple approach that arbitrarily places the positive neighbors

at the top, the negative ones at the bo�om, and the other unknown nodes at the mid-

dle in a ranking list. �e simple approach will produce 1.0 GAUC for user preference

preservation; however, this cannot work on link prediction since we need to predict

target nodes among unknown nodes (i.e., they are not connected to a seed node). On

99

Table 4.4: User preference preservation quality of SRWR in terms of GAUC (Ap-
pendix A.4.1). Note that 1.0 GAUC indicates that a method perfectly preserves a user’s known
preferences in its personalized ranking. Our proposed model SRWR shows the best perfor-
mance in user preference preservation among all tested methods.

Datasets

(GAUC)

SRWR

(prop.)
M-RWR M-PSALSA PSR RWR TR-TR

GAUC

-OPT

Epinions 1.000 0.999 0.902 0.730 0.708 0.650 0.824
Slashdot 1.000 0.982 0.800 0.728 0.705 0.625 0.708

Wikipedia 0.999 0.944 0.934 0.707 0.702 0.778 0.742

the contrary, our model SRWR is e�ective for not only user preference preservation

but also signed link prediction as shown in Table 4.4 and Figure 4.7.

4.4.4 Troll Identi�cation Task

In this section, we investigate the quality of a personalized ranking generated by

SRWR in identifying trolls who behave abnormally or cause normal users to be ir-

ritated. �e task is de�ned as follows: given a signed network and a normal user,

identify trolls using a personalized ranking w.r.t. the user. In signed networks, we

consider that a good personalized ranking of the normal user needs to capture trolls

at the bo�om of the ranking since most normal users are likely to dislike those trolls.

�us, we measure how well a personalized ranking of each method captures trolls at

the bo�om of the ranking to examine the quality of personalized node rankings.

As in the previous work [63], we also use the enemies of a user called No-More-

Trolls in the Slashdot dataset as trolls. �e user is an administrative account created

for the purpose of collecting a troll list (i.e., the administrator is negatively connected

to each troll). �ere are 96 trolls in the list. We exclude the edges adjacent to No-

More-Trolls from the Slashdot dataset, and use the remaining edges to estimate a per-

sonalized ranking as a training set. We use the bo�om-k of the ranking to search

for those trolls. We randomly select 1,000 seed nodes as a validation set to search

100

Figure 4.8: Performance on troll identi�cation of SRWR w.r.t. MRR. �e measure in-
dicates how trolls are ranked low in a personalized ranking. �e SRWR is the highest MRR
among all tested models.

(a) MAP@k (b) NDCG@k (c) Precision@k (d) Recall@k

Figure 4.9: Performance of SRWR for the troll identi�cation task through vari-

ous measurements: MAP@k (4.9(a)), NDCG@k (4.9(b)), Precision@k (4.9(c)), and Recall@k
(4.9(d)). SRWR shows the best performance for all the measurements compared to other com-
petitors.

for hyper-parameters required by each method. We pick the best parameter combi-

nation that provides the highest Mean Reciprocal Rank (MRR) in the validation set.

�en, for each user, we search for trolls within the bo�om-k ranking, and evaluate

how those trolls are ranked low in the ranking, which is measured by MRR. We also

measure Mean Average Precision (MAP@k), Normalized Discount Cumulated Gain

(NDCG@k), Precision@k, and Recall@k to check the performance of each method

in terms of various metrics (see the details in Appendix A.4.2). Since there are no

user-graded scores for the troll list, we set those scores to 1 for NDCG.

Results. Our proposed model SRWR signi�cantly outperforms other ranking

models for the troll identi�cation task as shown in Figures 4.8 and 4.9. According to

101

Figure 4.8, the rank of a bo�om ranked troll from our model is lower than that of other

ranking models because MRR of our model is the highest compared to other competi-

tors. More trolls are captured within the bo�om-k ranking produced by our proposed

model according to MAP@k shown in Figure 4.9(a). Note that Figures 4.9(c) and 4.9(d)

indicate that SRWR achieves higher Precision@k and Recall@k for capturing trolls

than other methods. SRWR provides 4× be�er performance than PNR, the second

best one, in terms of Precision@k when k = 1. Many trolls tend to be ranked low in

our personalized ranking because SRWR achieves be�er MAP@k and NDCG@k than

other ranking models as presented in Figures 4.9(a) and 4.9(b).

Case study. We investigate the top-20 and the bo�om-20 of the personalized

ranking for a user called ”yagu” in Table 4.5. We list the users in the bo�om-20 rank-

ing in the ascending order of the ranking scores in Table 4.5. According to the result,

more trolls are ranked low in the personalized ranking from SRWR, indicating that

our model is more sensitive in capturing trolls than other models. Also, the query user

is ranked low at the bo�om of the ranking from M-PSALSA while the user is ranked

high in the ranking from our model. �e query user should trust himself; thus, the

user should be ranked at the top in a personalized ranking. �is implies our model is

more desirable than other models for personalized rankings in signed networks.

102

Ta
bl

e
4.5

:T
r
o
l
l
p
r
e
d
i
c
t
i
o
n
r
e
s
u
l
t
s

of
ra

nk
in

g
m

od
el

s
w.

r.t
.a

no
rm

al
us

er
”y

ag
u”

.F
or

ea
ch

m
od

el
,w

e
sh

ow
to

p-
20

(tr
us

te
d)

an
d

bo
�o

m
-2

0
(d

ist
ru

st
ed

)n
od

es
ba

se
d

on
th

e
pe

rs
on

al
iz

ed
ra

nk
in

g
fo

r
”y

ag
u”

.�
e

us
er

s
in

th
e

bo
�o

m
-2

0
ra

nk
in

g
ar

e
so

rte
d

in
th

e
as

ce
nd

in
g

or
de

ro
ft

he
ra

nk
in

g
sc

or
es

.R
ed

-c
ol

or
ed

us
er

s(
†)

ar
e

tro
lls

,a
bl

ue
-c

ol
or

ed
us

er
(?

)i
sa

qu
er

y
us

er
,a

nd
th

e
bl

ac
k-

co
lo

re
d

(n
on

-m
ar

ke
d)

ar
e

no
rm

al
us

er
s.

N
ot

e
th

at
SR

W
R

sh
ow

st
he

be
st

re
su

lt:
in

SR
W

R,
th

e
qu

er
y

us
er

is
ra

nk
ed

1s
t,

an
d

m
an

y
tro

lls
ar

e
ra

nk
ed

at
th

e
bo

�o
m

in
th

e
pe

rs
on

al
iz

ed
ra

nk
in

g.
M

-P
SA

LS
A

pr
ov

id
es

in
fe

rio
rr

es
ul

ts
sin

ce
th

ey
ra

nk
th

e
qu

er
y

us
er

hi
gh

at
th

e
bo

�o
m

of
th

e
ra

nk
in

g,
al

th
ou

gh
th

e
qu

er
y

us
er

is
th

e
m

os
tt

ru
st

ed
us

er
fo

rt
hi

st
as

k.
M

-R
W

R,
PS

R
an

d
TR

-T
R

ar
e

no
ts

at
isf

ac
to

ry
ei

th
er

:t
he

y
do

no
tc

ap
tu

re
m

an
y

tro
lls

at
th

e
bo

�o
m

of
th

ei
rr

an
ki

ng
s.

S
R
W

R
(p

ro
po

se
d)

M
-
R
W

R
M
-
P
S
A
L
S
A

P
S
R

T
R
-
T
R

R
a
n
k

T
r
u
s
t

R
a
n
k
i
n
g

D
i
s
t
r
u
s
t

R
a
n
k
i
n
g

T
r
u
s
t

R
a
n
k
i
n
g

D
i
s
t
r
u
s
t

R
a
n
k
i
n
g

T
r
u
s
t

R
a
n
k
i
n
g

D
i
s
t
r
u
s
t

R
a
n
k
i
n
g

T
r
u
s
t

R
a
n
k
i
n
g

D
i
s
t
r
u
s
t

R
a
n
k
i
n
g

T
r
u
s
t

R
a
n
k
i
n
g

D
i
s
t
r
u
s
t

R
a
n
k
i
n
g

1
y
a
g
u
?

K
l
e
r
c
k

†
y
a
g
u
?

du
bb

a-
d

W
or

k+
Ac

H
an

zo
Sa

y
a
g
u
?

Sm
ur

fB
u

y
a
g
u
?

Ja
ck

+B
.

2
Ph

ot
on

+
A
d
o
l
f
+
H

†
Br

uc
e+

P
de

ra
go

Un
kn

ow
n

J
e
r
k
+
C
i
†

Ur
uk

D
r.S

eu
s

de
xt

er
p

in
�

eL
o

3
Ur

uk
GI

SG
EO

L
Cm

dr
Ta

c
m

sf
od

de
a�

de
l

N
in

eN
in

Ph
ot

on
+

D
oc

to
r

Ja
m

ie
+Z

M
ac

tro
p

4
st

uk
to

n
N

im
ra

ng
Cl

ev
er

N
cr

am
us

he
iro

ny
Ro

ge
rb

o
cl

um
p

ar
to

o
ry

an
r

D
ic

eM
e

5
TT

M
us

kr
Ka

�
a

C
Ur

uk
la

ke
rd

o
bo

km
an

n
S
e
x
y
K
e
l
†

TT
M

us
kr

Ju
gg

le
Ks

hG
od

d
Ei

ns
te

i
6

cl
um

p
�

in
ki

t
Ph

ot
on

+
p4

14
di

n
ez

er
i

Sc
o�

Ki
st

uk
to

n
Fr

ea
ky

G
�

eI
nd

i
Fi

nc
hW

o
7

Br
uc

e+
P

C
m
d
e
r
T
a

†
st

uk
to

n
an

+u
no

r
As

+S
ee

n
qu

ro
b

Rx
Sc

ra
m

Ru
nF

at
B

da
oi

ne
Pe

nu
s+

T
8

Rx
Sc

ra
m

St
ea

kN
S

cl
um

p
ex

fu
ga

Ki
lle

rD
be

nd
od

g
ch

ar
lie

jm
po

as
t

Be
ry

lli
r

gl
en

9
Cm

dr
Ta

c
Jo

nK
at

z
TT

M
us

kr
kr

yp
to

k
po

ta
z

A
rn

ol
dY

ss
bg

El
M

ue
r

da
nh

ar
a

Ro
la

nd
+

10
ap

ho
r

H
en

ry
+V

Rx
Sc

ra
m

to
om

z
by

ol
in

u
jc

r
Id

ar
ub

i
Gh

os
t+

H
D

eg
re

es
st

in
g3

r
11

Cl
ev

er
N

M
ig

ue
l+

Jo
hn

+C
a

Sh
az

zm
a

St
an

ist
da

ve
sc

h
sp

o�
ed

�
e+

H
ob

ch
ar

lie
Tu

va
i

12
th

ro
x

rin
gb

ar
ap

ho
r

Je
tb

oy
0

Tr
ip

M
as

Li
st

+o
f

Go
lia

s
ba

na
na

c
sa

ge
i

12
34

56
7

13
ch

ris
d

�m
bu

lv
ch

ris
d

Kr
isC

ow
an

dy
+l

a
y
a
g
u
?

Sl
id

er
4

So
da

de
ta

dg
hi

n
13

37
h4

14
Co

w
bo

yN
by

+F
or

t
Tr

ip
M

as
%2

BM
aj

e
ba

ni
lin

ze
al

Tw
id

pe
a�

le
ca

po
cc

i
1g

%2
4m

a
15

Bl
ak

ey
+

I
+
A
m
+
�

†
kf

g
fra

nk
yf

SE
TI

Gu
y

je
�y

12
To

as
t

GI
SG

EO
L

ei
ns

te
i

%2
B%

2B
g

16
H

em
os

VA
XG

ee
k

H
em

os
Lu

ka
no

ge
ne

ric
fo

ob
ar

1
Un

kn
ow

n
N

im
ra

ng
je

be
ll

3p
1p

h4
n

17
cg

en
m

an
N

in
eN

in
da

ve
sc

h
J’r

ax
is

Bi
()h

az
de

al
sit

na
no

ja
t

A
d
o
l
f
+
H

†
py

th
or

l
4d

49
43

4
18

Tr
ip

M
as

df
en

st
r

Co
w

bo
yN

fu
nk

lo
r

xe
no

Ub
un

tu
D

lu
ca

st
h

Ka
�

a
C

sp
he

re
4e

61
74

7
19

kf
g

�
an

tu
m

N
ew

Yo
rk

st
ay

nz
7

H
ey

La
ug

gr
ee

nr
d

pi
tb

os
s

St
ea

kN
S

w
in

ne
to

A
Be

ow
ul

20
to

ph
am

Sm
ur

fB
u

da
da

21
ik

ki
br

El
i+

Go
t

Co
nc

er
n

ha
rlo

w
s

�
in

ki
t

A
lle

n+
V

A
bs

ol
ut

?
�

is
in

di
ca

te
st

he
qu

er
yi

ng
no

rm
al

us
er

.
†

�
is

in
di

ca
te

sa
tro

ll.

103

(a) Macro accuracy (b) Micro accuracy

Figure 4.10: Performance of SRWR on sign prediction in terms of macro and micro
accuracies where the macro accuracy indicates the average seed-wise accuracy, and the micro
accuracy indicates the ratio of the number of correct predictions to the total test edges. While
the micro accuracy of SRWR is the second best, the macro accuracy of SRWR is the best
compared to its competitors.

4.4.5 Sign Prediction Task

We evaluate ranking scores produced by each ranking model rather than the order

between nodes. Note that a ranking score between a seed node s and a target node

t is based on the trustworthiness between those nodes. Hence, it is also important

to examine how well those ranking scores re�ect trust relationships between nodes.

We measure the quality of those ranking scores exploiting the sign prediction task

which is de�ned as follows: given a signed network and a seed node s where signs of

edges connected from s are missed, predict those signs using the personalized ranking

scores of each method with respect to the seed node s.

To construct a validation set, we randomly select 1,000 seed nodes, and choose

20% edges of positive and negative links from each seed node. We also randomly

select another 1,000 seed nodes, and choose 20% positive and negative edges from

each seed node to form a test set. �en, we remove each selected edge (s→ t), and

predict the edge’s sign based on personalized ranking scores w.r.t. node s in the graph

104

represented by the remaining edges. Our ranking score vector is r = r+− r− whose

values range from−1 to 1. If rt is greater than or equal to 0, then we predict the sign

of the edge (s→ t) as positive. Otherwise, it is considered as negative. We pick the

best parameter combination having the highest micro accuracy (see the below) in the

validation set. With the validated parameters, we measure the following prediction

accuracies of a test set, macro and micro accuracies which are de�ned as follows:

macro accuracy =
1

nQ

nQ∑
i=1

accuracy(i)

micro accuracy =
of correct predictions

of total test edges

where nQ is the number of test seed nodes, and accuracy(i) is the seed-wise accuracy

of i-th test seed node (i.e., the ratio of the number of correct predictions to the number

of test edges on i-th seed node).

Results. We compare the performance of SRWR to that of other random walk

based ranking models M-RWR, M-PSALSA, TR-TR, and PSR on the sign prediction

task. We also compare our model SRWR to TRUST [91] and LOGIT [90] which are

specially designed for predicting signs between two arbitrary nodes in signed net-

works. As shown in Figure 4.10(a), SRWR shows the best macro accuracy among all

tested methods. Although SRWR obtains higher micro accuracy than LOGIT in the

Epinions dataset, the micro accuracy of LOGIT is be�er than that of SRWR in other

datasets as shown in Figure 4.10(b).

Another observation is that LOGIT has a large gap between macro and micro

accuracies while SRWR has a small gap as shown in Figure 4.10. A large gap implies

that on average, the deviation between micro accuracy and seed-wise accuracy (i.e.,

accuracy(i)) is large, i.e., accuracy(i) for i-th test seed node is likely to deviate sub-

105

Table 4.6: Di�erence between SRWR and LOGIT on sign prediction in terms of macro
accuracies of high and low degree groups. �e overall group is the union of the high and
low degree groups. We measure the average of seed-wise accuracies for each group (i.e., the
macro accuracy of the group) and the standard deviation between accuracies of those groups.
LOGIT tends to predict a seed node’s test edges in the high degree group be�er than SRWR,
while SRWR predicts be�er those in the low degree group compared to LOGIT. Also, the
result on the standard deviation indicates that the disparity of SRWR between accuracies of
those groups is smaller than that of LOGIT.

Datasets Methods

Overall

Group

High Degree

Group

Low Degree

Group

Standard

Deviation

Epinions SRWR 0.8696 0.8876 0.8651 0.0159

LOGIT 0.7762 0.8760 0.7510 0.0883

Slashdot SRWR 0.7128 0.7133 0.7127 0.0004

LOGIT 0.6827 0.7943 0.6546 0.0987

Wikipedia SRWR 0.8004 0.8556 0.7865 0.0489

LOGIT 0.7937 0.8671 0.7752 0.0650

stantially from the micro accuracy. To analyze such deviation, we look into seed-wise

accuracies in terms of node degrees. Since there are a few high degree nodes and a

lot of low degree nodes in real-world graphs according to power-law degree distri-

bution [119], we split test seed nodes into two groups as follows: high (top-20%) and

low (bo�om-80%) groups in the order of out-degrees of test seed nodes. �en, we

measure the average of seed-wise accuracies for each group (i.e., the macro accuracy

of the group) and the standard deviation between the accuracies of those groups.

According to Table 4.6, LOGIT tends to be�er predict test edges of a seed node in

the high degree group than those in the low degree one. In particular, on the Epinions

and the Slashdot datasets, the macro accuracy of LOGIT in the low degree group is

rather lower than that of LOGIT in the high degree group. �ese results imply that

LOGIT is biased toward predicting test edges from a high degree seed node. Note that

the number of test edges from a high degree node is larger than that of test edges from

a low degree node since 20% test edges are randomly extracted from each selected

106

test node. �us, the total number of correct predictions from LOGIT is large (i.e., the

micro accuracy becomes high). However, the seed-wise accuracies of LOGIT are low

in the low degree group (i.e., the macro accuracy becomes low) as shown in Table 4.6,

thereby increasing the gap of LOGIT between micro and macro accuracies.

On the contrary, the gap of SRWR between micro and macro accuracies are

relatively smaller than that of LOGIT as shown in Figure 4.10, along with the small

standard deviation of SRWR as shown in Table 4.6. Note that SRWR outperforms

LOGIT in the low degree group over all the datasets as shown in Table 4.6. �at is why

the macro accuracy of SRWR is higher than that of LOGIT for the total test seed nodes

as shown in Figure 4.10. SRWR also shows a satisfactory performance in the high

degree group, especially on the Epinions dataset, although the performance of SRWR

is not be�er than that of LOGIT on the Slashdot and the Wikipedia datasets as shown

in Table 4.6. �us the standard deviation of SRWR between those groups is smaller

than that of LOGIT. �ese experimental results indicate that SRWR is competitive

enough to be comparable to other models such as LOGIT in the sign prediction task.

Note that LOGIT is a graph feature based method which exploits local graph fea-

tures, within 1 hop from seed and target nodes, such as node degrees, common neigh-

bors, and local wedges for predicting the sign between the seed and target nodes. A

high degree node is likely to have plentiful features, since the high degree node has

many connections to other nodes. A low degree node would not have such local fea-

tures enough due to less connections; hence, LOGIT has a limitation on increasing

the predictive performance for test edges from the low degree node based only on

local graph features. On the other hand, SRWR’s inference is based on the informa-

tion more than 1 hop from the seed node because the signed random surfer visits the

target node via various length of paths from the seed node to the target node. �at

107

(a) Epinions (b) Slashdot (c) Wikipedia

Figure 4.11: Accuracy maps of SRWR according to balance attenuation factors β and

γ where each color indicates a degree of accuracy. �e Epinions and the Slashdot datasets
present similar tendencies while the Wikipedia dataset shows a di�erent result from those of
the two datasets.

is why SRWR works well on predicting test edges of low degree nodes compared to

LOGIT.

Balance attenuation factors. We adjust the balance a�enuation factors of

SRWR, and evaluate the sign prediction task in terms of micro accuracy to exam-

ine how well balance theory explains signed networks. In this experiment, we use

the top-100 highest degree nodes as a test set for each network. �e Epinions and the

Slashdot datasets show similar results where larger values of β and γ achieve high

accuracy as shown in Figures 4.11(a) and 4.11(b). Unlike these two datasets, the ac-

curacy is high when β is small in the Wikipedia network as shown in Figure 4.11(c).

�is implies that ”an enemy of my enemy is my friend” would not be correct in the

network, which means balance theory does not apply well to the Wikipedia dataset.

�e reason is that the Wikipedia network represents votes between users to elect

administrators; thus, the dataset is di�erent from the Epinions and the Slashdot net-

works which are general social networks. Note that the validated balance a�enuation

factors for the sign prediction task in Section 4.4.1 are consistent with the tendency

108

(a) GAUC of the link prediction
task

(b) MRR of the troll
identi�cation task

(c) Micro Accuracy of the sign
prediction task

Figure 4.12: E�ect of the balance attenuation factors of SRWR. �e performance of
SRWR is be�er than that of H-SRWR (i.e., SRWR without using balance a�enuation factors)
in terms of the link prediction, the troll identi�cation, and the sign prediction tasks.

demonstrated in Figure 4.11. Another observation is that the ideal balance theory

does not apply to real-world signed networks because the accuracy is not the best

over all datasets when β = 1 and γ = 1 (i.e., the ideal balance theory).

4.4.6 E�ectiveness of Balance Attenuation Factors

We examine the e�ects of the balance a�enuation factors of SRWR on the perfor-

mance of the link prediction, the troll identi�cation, and the sign prediction tasks. In

this experiment, we use H-SRWR (β = 1 and γ = 1) and SRWR with validated bal-

ance factors for each dataset as mentioned in Section 4.4.1. H-SRWR indicates that

we compute SRWR scores using Equation (4.2) which does not adopt balance a�en-

uation factors. We measure GAUC for link prediction, MRR for troll prediction, and

micro accuracy for sign prediction to compare SRWR and H-SRWR.

Figure 4.12 indicates that introducing balance a�enuation factors is helpful for

improving the performance of each application in signed networks. As shown in Fig-

ure 4.12(a), SRWR obtains higher GAUC than H-SRWR in the link prediction task.

Also, Figure 4.12(b) presents that SRWR achieves be�er MRR than H-SRWR on the

109

troll identi�cation task. Moreover, the accuracy of SRWR is higher than that of H-

SRWR over all datasets for the sign prediction task as presented in Figure 4.12(c). Al-

though introducing balance a�enuation factors increase the complexity of our model

and demand an additional step for searching those factors, it makes our model �exi-

ble so that SRWR resolves the weakness inherent from the strong balance theory as

discussed in Section 4.3.1.2 through adjusting those factors, and improves the perfor-

mance of each application in signed social networks.

4.4.7 Performance of SRWR-Pre

We investigate the performance of our preprocessing method SRWR-Pre in terms of

preprocessing time, memory space for precomputed data, and query time. We com-

pare SRWR-Pre to other baseline preprocessing methods Inversion and LU as well as

our iterative method SRWR-Iter. Preprocessing and query time are measured in wall-

clock time, and we measure the average query time for 1,000 random seed nodes. We

set β = 0.5, γ = 0.5, c = 0.05 for all tested methods. In SRWR-Pre, we set the hub

selection ratio k = 0.001 for the hub-and-spoke reordering method to make the num-

ber of hubs n2 small enough as in [54]. We also measure how much memory space

each preprocessing method needs for the precomputed matrices to compare mem-

ory e�ciency. We omit bars for SRWR-Iter in Figures 4.13(a) and 4.13(b) because

SRWR-Iter does not involve a heavy preprocessing phase (i.e., the time cost for the

normalization phase of SRWR-Iter in Algorithm 5 is trivial, and the memory usage

of SRWR-Iter is equal to that of the input graph).

Figures 4.13(a) and 4.13(b) show that SRWR-Pre provides be�er performance

than LU and Inversion in terms of preprocessing time and memory space for pre-

processed data. SRWR-Pre is up to 4.5× faster than the second best preprocess-

110

(a) Preprocessing time (b) Memory space for
preprocessed data

(c) �ery time

Figure 4.13: Performance of SRWR-Pre: (a) and (b) show the comparison of the prepro-
cessing time and the memory space for preprocessed data among preprocessing methods;
(c) compares the query time among all tested methods. SRWR-Pre presents the best perfor-
mance compared to other preprocessing methods in terms of preprocessing time and mem-
ory e�ciency. SRWR-Pre also computes SRWR scores more quickly than SRWR-Iter and the
baseline methods.
Table 4.7: Total number of non-zeros (nnzt) in precomputed matrices for each prepro-

cessing method. Our method SRWR-Pre generates less non-zeros in precomputed matrices
than other preprocessing methods.

Dataset

A: nnzt in
SRWR-Pre

B: nnzt in
LU

C: nnzt in
Inversion

Ratio

B/A

Ratio

C/A

Wikipedia 3,207,758 11,257,644 23,928,232 3.51 7.46
Slashdot 119,580,272 1,032,276,955 4,817,461,830 8.63 40.29
Epinions 165,006,379 1,825,755,902 11,755,245,476 11.06 71.24

ing method LU in terms of preprocessing time. Also, SRWR-Pre requires up to 11×

less memory space than LU. Especially, our method SRWR-Pre uses 2.6GB mem-

ory for the precomputed data in the Epinions dataset while LU and Inversion re-

quire 28GB and 180GB memory, respectively. �ese results imply that SRWR-Pre

is fast and memory-e�cient compared to other preprocessing methods. SRWR-Pre

also shows the fastest query speed among other competitors including our iterative

method SRWR-Iter as presented in Figure 4.13(c). SRWR-Pre is up to 14× faster than

SRWR-Iter, and up to 15× faster than the second best preprocessing method LU in

111

the Epinions dataset. Note that SRWR-Pre computes SRWR scores for a given seed

node in less than 0.3 second over all signed networks. Inversion is the slowest among

the tested methods over all datasets. �e main reason is that Inversion produces a

very large number of non-zeros in precomputed matrices (e.g., Inversion produces

about 11 billion non-zeros in the Epinions dataset as presented in Table 4.7). �ese

results indicate that SRWR-Pre is appropriate to serve given queries in real-time on

the datasets with low memory usage compared to other methods.

Discussion. In this work, we propose two methods for SRWR: SRWR-Iter and

SRWR-Pre which are iterative and preprocessing methods computing SRWR scores,

respectively. SRWR-Iter does not require heavy precomputed data to compute SRWR

scores. However, SRWR-Iter shows slow query speed as presented in Figure 4.13(c)

because SRWR-Iter should perform matrix vector multiplications many times for

a given seed node. On the other hand, SRWR-Pre is faster up to 14× than SRWR-

Iter in term of query speed since SRWR-Pre directly computes SRWR scores from

precomputed data. However, in SRWR-Pre, the values of the parameters c, β, and γ

of SRWR are �xed through the preprocessing phase (Algorithm 7); thus, SRWR-Pre

cannot change the parameters in the query phase (Algorithm 8). To obtain SRWR

scores with the di�erent values of the parameters, we need to perform the prepro-

cessing phase with the parameters again. On the contrary, SRWR-Iter easily handles

the change of the parameters in the query phase (Algorithm 6) without additional

operations such as preprocessing. One appropriate usage for our methods is that a

user uses SRWR-Iter to �nd proper parameters for a speci�c application; and then,

the user exploits SRWR-Pre with the discovered parameters to accelerate the query

speed in the application.

112

4.5 Summary

We propose Signed Random Walk with Restart, a novel model which provides

personalized trust or distrust rankings in signed networks. In our model, we intro-

duce a signed random surfer so that she considers negative edges by changing her

sign for sur�ng on signed networks. Consequently, our model provides personalized

trust or distrust rankings re�ecting signed edges. Our model is a generalized version

of Random Walk with Restart working on both signed and unsigned networks. We

also devise SRWR-Iter and SRWR-Pre, iterative and preprocessing methods to com-

pute SRWR scores, respectively. We experimentally show that SRWR achieves the

best accuracy for link prediction, predicts trolls 4×more accurately, and shows a sat-

isfactory performance for inferring missing signs of edges compared to other meth-

ods. SRWR-Pre preprocesses a signed network up to 4.5× faster, and requires 11×

less memory space than other preprocessing methods; SRWR-Pre computes SRWR

scores up to 14× faster than other methods. Future research directions include de-

veloping a learning algorithm which automatically learns the balance a�enuation

factors of our model from a given input graph.

113

Chapter 5

Relational Reasoning in Edge-labeled

Graphs

5.1 Introduction

How can we accurately infer the relation between two arbitrary nodes in edge-labeled

graphs? Understanding how nodes are related is crucial for analyzing graph data, and

many researchers have designed various relevance measures to e�ectively identify

relevance between nodes in graphs. Random Walk with Restart (RWR) [56], a random

surfer model, has been utilized for measuring relevance scores between nodes with

considering global network structure [19] and multi-faceted paths between nodes [20].

RWR has been extensively utilized in numerous graph mining applications such as

personalized ranking [56], link prediction [30], recommender systems [32], anomaly

detection [120], community detection [47], etc.

Although many networks have been modeled with multiple edge labels to rep-

resent diverse relationships between nodes [121], RWR has a limitation in inferring

the edge’s label between two nodes in edge-labeled graphs. For example, social net-

works such as Slashdot [63] represent trust or distrust for users as positive or neg-

ative edges. In knowledge graphs such as WordNet [122], concepts are associated

with predicates. Since RWR does not consider edge labels for its relevance, it cannot

identify how nodes are related with in terms of edge labels (see Figure 5.1). For rela-

tion inference on multiple edge labels, there are two main approaches: path feature

114

models such as Path Ranking Algorithm (PRA) [67] and translation models such as

TransE [92] and TransR [93]. PRA uses a surfer to exploit paths between two nodes

as features for predicting their relation. However, PRA’s reasoning focuses on rela-

tively short paths due to expensive path enumerations. On the other hand, TransE

and TransR discover latent embeddings for relations and entities under a relational

translation scenario; however, they do not take account of paths between nodes into

those embeddings. �ese limitations make the reasoning of those approaches miss

the information provided by complex multi-hop paths between the nodes.

In this work, we proposeMuRWR (Multi-Labeled RandomWalkwithRestart),

a novel random surfer model which accurately identi�es label relevance between two

nodes in an edge-labeled graph (see Figure 5.2). Our approaches are 1) to introduce a

labeled random surfer whose label indicates the relation between starting and visiting

nodes, 2) to change the surfer’s label during random walks for multi-hop reasoning

process, and 3) to learn suitable rules on how to change her label from the given

edge-labeled graph. We show that le�ing the labeled surfer move around the graph

enables our model to do accurate multi-hop relational reasoning without explicit path

enumeration, as well as to generalize RWR into edge-labeled graphs. �rough exten-

sive experiments, we show that MuRWR predicts edge labels between nodes more

accurately than existing models. Our main contributions are as follows:

• Model. We propose MuRWR (Multi-Labeled RandomWalkwith Restart),

a novel and accurate model for relation inference in edge-labeled graphs (De�-

nition 5.3). MuRWR exploits a labeled random surfer who considers edge labels

to compute e�ective relevance scores between nodes for each edge label. We

show that MuRWR is a generalized version of RWR to edge-labeled graphs

(Property 4).

115

• Algorithm. We propose how to learn the surfer’s label from an edge-labeled

graph (Lemma 5.1) and an iterative algorithm for MuRWR (Algorithm 11). We

also theoretically prove the convergence of the algorithm (�eorem 5.1).

• Experiment. Our experiments show MuRWR provides the most accurate per-

formance for relation inference (Tables 5.3 and 5.4).

�e rest of the paper is organized as follows. We provide preliminaries on a

traditional random walk based model, and formally de�ne edge-labeled graphs in

Section 5.2. We describe MuRWR and algorithms for computing MuRWR scores in

Section 5.3. A�er presenting experimental results in Section 5.5, we summarize this

work in Section 5.6. �e symbols used in this paper are in Table 5.1.

5.2 Preliminary

We provide preliminaries on relation inference in edge-labeled graphs, our target

research task, and RWR in this section. Note that we use the terms edge label and

relation interchangeably.

Edge-labeled Graphs. Many researchers from various application areas are

confronted with labeled edges which encode diverse relations between entities in

graphs [63, 122, 121, 123]. We follow the formal notations for an edge-labeled graph,

de�ned in De�nition 2.3 of Chapter 2.

Relation InferenceTask.We describe the formal problem de�nition of relation

inference handled in this paper.

Problem 2 (Relation Inference [67]). �e relation inference task is de�ned as follows:

• Given: an edge-labeled graph G = (V,E,L), and two disconnected nodes s and t ,

• Infer: the edge label from source node s to target node t among edge labels in L.

116

Table 5.1: Table of symbols used in Chapter 5.

Symbol De�nition

G input edge-labeled graph
n number of nodes in G
m number of edges in G
K number of edge labels in G
s source node
c restart probability
li i-th edge label where 1≤ i≤ K
luv label on the edge from node u to node v
←−
N v set of in-neighbors of node v
−→
N v set of out-neighbors of node v
L set of edge labels, i.e., L = {l1, · · · , lK}
A (n×n) labeled adjacency matrix of G
Ak (n×n) lk-labeled semi-adjacency matrix

A−k (n×n) lk-labeled semi-row-normalized matrix
R (n×K) relevance score matrix w.r.t. source node s

Rvi relevance score between nodes s and v for edge label li
Sk (K×K) label transition probability matrix on lk

Ski j probability that the surfer’s label changes from li
to l j through lk-labeled edge, i.e., P(li

lk−→ l j)
1(·) indicator function that returns 1 if a given predicate is true, or 0 otherwise

?

childOf𝑠 𝑢 childOf spouseOf𝑣 𝑡

Figure 5.1: Limitation of a random surfer in traditional RWR for estimating relation of
s and t . Since the surfer does not consider edge labels, it cannot identify the relation.

Note that Problem 2 is di�erent from that of belief propagation (BP) [124, 125]

that aims to classify labels on nodes not edges while the goal of MuRWR is to predict

labels on edges.

�e main challenge is to devise how to re�ect multiple edge labels on relevance

scores between nodes in edge-labeled graphs. Although RWR is able to identify rele-

vance scores between nodes, it depends only on the link structure of the graph with-

out considering labels; therefore, it cannot estimate how nodes are related in terms

of edge labels. Figure 5.1 shows an example of representing family relationships such

117

as childOf and spouseOf . �e traditional surfer in RWR does not consider edge la-

bels at all during its walks while the labeled edges should be interpreted di�erently.

�us, the information encoded in the path is ignored when measuring the relevance

between nodes s and t; RWR cannot identify which edge label should be associated

with nodes s and t . How can we make the surfer recognize edge labels to correctly

predict their relation?

5.3 Proposed Method

We propose MuRWR (Multi-Labeled Random Walk with Restart), a novel ran-

dom walk based model which measures relevance scores between a source node and

other nodes for each edge label in an edge-labeled graph. �e technical challenges

and our main ideas are as follows:

• How can we make a surfer consider the edge labels? We introduce a labeled

random surfer whose label at a node indicates the relation from the source node

to that node.

• How can the surfer infer the relation between the nodes? We allow the surfer

to change her label during random walks with rules for a multi-hop reasoning.

• How can we discover the rules? We exploit a data-driven approach to extract

knowledge from the graph so that the surfer learns the rules.

In MuRWR, the surfer’s movement from source node s to a node t is considered

as a process of reasoning about the relation from s to t . Figure 5.2 depicts howMuRWR

infers the relation from node s to node t . �e labeled surfer has one of edge-labels

such as childOf (blue-colored) or grandchildOf (red-colored) at each node except at s.

Assume we have the following rules for the surfer:

118

grand
childOf𝑠

𝑢 𝑣

𝑡

childOf

childOf

spouseOf

grand
childOf

childOf

gclOf

gclOf

(a)

𝑥

𝑦 𝑧

childOf

childOf

grand
childOf

aaaa

childOf gclOf

(b)

grand
childOf

spouseOf

grand
childOf

aaaa

gclOfgclOf

(c)

Figure 5.2: Examples of labeled walks and label transitive triangles. (a) shows how our
labeled surfer walks along the path from s to t . �e blue surfer is for childOf , the red one is
for gclOf (grandchildOf), and the black one is unlabeled. In (a), a dashed line indicates
two disconnected nodes are related with a label inferred by the surfer. (b) and (c) are
the examples of label transitive triangles used for learning the rules on how to change
the surfer’s label.

Rule 1. If childOf-surfer moves along childOf-edge, her label changes to grandchildOf .

Rule 2. If grandchildOf-surfer moves along spouseOf-edge, her label remains the

same, i.e., grandchildOf .

In Figure 5.2(a), the surfer �rst starts from source node s without any label, and

moves to node u. �en, she has childOf label at u since nodes s and u are directly

connected with childOf-edge (note that her label indicates the relation between the

source node s and the current node). A�er she moves to node v, her label changes to

grandchildOf by the �rst rule. At this time, MuRWR infers the relation from s to v as

grandchildOf as shown in Figure 5.2(a). When the surfer �nally arrives at node t , her

label is still grandchildOf by the second rule, indicating that the relation from s to t

is also inferred as grandchildOf . �us, introducing a label to the surfer enables her to

do a multi-hop relational reasoning by walking around the graph if the surfer knows

appropriate rules.

�en, how can we discover the rules for the surfer? For this, we exploit a data-

119

driven approach, which extracts knowledge embraced in the given graph. �e knowl-

edge that the surfer learns is represented as labeled transitive triangles as in Fig-

ures 5.2(b) and 5.2(c). A transitive triangle is interpreted as a syllogistic knowledge,

e.g., Figure 5.2(b) implies

childOf (x, y)︸ ︷︷ ︸
current surfer’s label

∧ childOf (y, z)︸ ︷︷ ︸
edge label

⇒ grandchildOf (x, z)︸ ︷︷ ︸
next surfer’s label

.

An intuitive example for the surfer’s learning is as follows. Suppose an untrained

surfer (black-colored) is at node x in Figure 5.2(b). �e surfer then has childOf-label at

node y since x and y are directly related with the label. Similarly, she has grandchildOf-

label at node z. �is is interpreted as: if childOf-surfer moves along childOf-edge,

her label changes to grandchildOf . �us, we enumerate transitive triangles from the

graph, and use them as training instances, called label transition observations, for the

surfer.

We �rst describe the details on label translation observations in Section 5.3.1, and

explain how to learn rules for our labeled surfer from the observations in Section 5.3.2.

�en, we formally de�ne and formulate our modelMuRWR in Sections 5.3.3 and 5.3.4,

respectively. We present the algorithms for computing MuRWR in Section 5.3.5, and

prove its convergence.

5.3.1 Label Transition Observation

We describe how to collect observations for learning the surfer’s rules from the graph

G. We �rst de�ne label transition observation as follows:

De�nition 5.1 (Label Transition Observation). A label transition observation li
lk−→ l j

is that when li-labeled surfer moves along lk-labeled edge, her label changes to l j. �

120

𝑦 𝑧

𝑥

(a) Label transitive
relationship

𝑦 𝑧

𝑥

(b) Interpretation of the
transitive triangle

𝑢 𝑣

𝑙$-labeled 𝑙%-labeled

(c) Label transition
observation

Figure 5.3: Example of how to obtain label transition observations from label tran-

sitive relationships. (a) presents a label transitive relationship. (b) shows how to interpret
the triangle to obtain the label transition observation li

lk−→ l j in (c).

A label transition observation is obtained from a label transitive triangle inter-

preted as a transition between edge labels. For example, suppose an untrained surfer

(black-colored) is at node x in Figure 5.3(a). When the surfer moves to node y, her

label should be li because x and y are directly related with label li. Similarly, her label

is l j at node z. �en we observe how the surfer’s label changes as in Figure 5.3(c):

when li-labeled surfer moves along lk-labeled edge, her label changes to l j, implying

the label transition observation li
lk−→ l j in De�nition 5.1. To collect such observations,

we enumerate all transitive triangles from the graph G using an e�cient triangle

enumeration algorithm [126].

5.3.2 Learning Label Transition Probabilities

We explain how to learn the surfer’s rules from the label transition observations. A

label transition probability is a conditional probability P(l j|li, lk) such that when li-

labeled surfer moves along lk-labeled edge, her label changes to l j. For brevity, let

P(li
lk−→ l j) denote P(l j|li, lk). We formally de�ne label transition probability matrix as

follows:

De�nition 5.2 (Label Transition Probability Matrix). Let Sk ∈ RK×K be a label tran-

sition probability matrix on edge label lk. �e (i, j)-th entry Ski j of Sk indicates the label

121

transition probability that the surfer’s label changes from li to l j through edge label lk,

i.e., Ski j =P(li
lk−→ l j). Note that

∑K
j=1 P(l j|li, lk) =

∑K
j=1 Ski j = 1. �

Given label transition observations, we aim to learn label transition probabilities

Ski j maximizing a likelihood function of making the observations. Suppose we are

given sets Dk of label transition observations represented as follows:

Dk = {xkh = (xkhs
lk−→xkht)|1≤ h≤ nk} for 1≤ k ≤ K

where nk is the number of the observations in Dk. xkh is a label transition observation

xkhs
lk−→ xkht such that xkhs,xkht ∈ L where xkhs is the surfer’s source label, and xkht is

her destination label. Let P(xkh;Sk) denote the probability of xkh with regard to the

parameter Sk, i.e., P(xkh;Sk) = Skxkhsxkht . �en, the log-likelihood function L(Sk;Dk)

is represented as follows:

L(Sk;Dk) = log
nk∏

h=1

P(xkh;Sk) =

nk∑
h=1

logP(xkh;Sk)

However, maximizing the classical likelihood L(Sk;Dk) would be unsatisfactory

since it is sensitive to noises or outliers in observations, and many networks such as

knowledge graphs would be noisy and incomplete [127]. Considering this issue, we

adopt maximum weighted likelihood estimation (MWLE) [128] that uses weights to

vary the importance of logP(xkh;Sk) for each observation. For the purpose, we de�ne

destination label weights {w j|1≤ j≤K} that weigh the importance of logP(xkh;Sk)

according to destination label xkht . �e intuition is that destination labels play a key

role in relation inference since the relation between a source node and a destination

node u is determined by the surfer’s (destination) label when she arrives at u a�er

starting from the source node. �us, our weighted log-likelihood function is de�ned

122

as follows:

WL(Sk;Dk) =

nk∑
h=1

wxkht logP(xkh;Sk) (5.1)

�e following lemma provides the result of MWLE on the weighted log-likelihood

function WL(Sk;Dk).

Lemma 5.1 (Maximum Weighted Likelihood Estimation for Label Transition Prob-

ability Matrices). �e following estimator Ŝki j maximizes the weighted log-likelihood

function WL(Sk;Dk) in Equation (5.1):

Ŝki j =
w jNki j∑K
z=1 wzNkiz

(5.2)

where Nki j =
∑nk

h=1 1(xkhs = i,xkht = j) is the count for the label transition observations

li
lk−→ l j, and 1(·) returns 1 if a given predicate is true, or 0 otherwise.

Proof. See the proof in Lemma 5.2 of Section 5.4.1.

Lemma 5.1 indicates that Ŝki j is determined by the label weight w j and the count

Nki j for the observations. Suppose all label weights {w j} are �xed to 1 (i.e., no label

weights). �en Ski j depends only on the given observations. If we set w j to a high

value, the probabilities that the surfer’s label changes to label l j increase. We select

proper {w j} that provide the best performance in the validation sets, as described in

Section 5.5.2.

5.3.3 Multi-Labeled RandomWalk with Restart

We describe our proposed model in the following de�nition:

De�nition 5.3 (Multi-Labeled Random Walk with Restart). A labeled random surfer

has label li among K edge labels at a node except at source node s. �e surfer starts from

123

source node s without any label. Suppose the surfer is currently at node u, and c is the

restart probability with 0 < c < 1. �en, the surfer performs one of the followings at

each step:

• Multi-Labeled Random Walk. �e surfer randomly moves from node u to a

neighboring node v with probability 1− c through luv-labeled edge. If her label

was li at node u, then her label changes to label l j at node v according to label

transition probability P(li luv−→ l j).

• Restart. �e surfer restarts at source node s with probability c. �e surfer becomes

unlabeled. �

MuRWR measures K probabilities at each node. Let Rui denote the probability

that li-labeled surfer is at node u a�er MuRWR from s. If Rui is higher than Ru j for

j 6= i, this indicates that li-labeled surfer frequently visits node u, implying source

node s is highly related by edge label li to node u. �us Rui is used for a relevance

score between s and u for label li.

Our model MuRWR also considers multi-faceted paths between s and u, which

is controlled by the restart probability c. If c is low, the labeled surfer visits u via

paths of various lengths since the surfer prefers random walks to restart. On the

other hand, if c is high, the surfer mainly visits u through relatively short paths due

to frequent restarts. We will empirically study the e�ect of c on relation inference in

the Experiment section (see Figure 5.6).

Note that when the unlabeled surfer moves from source node s to node u, her la-

bel becomes lsu since they are directly related with label lsu as depicted in Figure 5.2(a).

To make notations consistent, we add a dummy label ld indicating unlabeled at source

node s. �en we set label transition probabilities P(ld lsu−→lsu) to 1 for each out-neighbor

u of source node s (line 1 in Algorithm 11).

124

5.3.4 Formulation forMuRWR

We present formulations of MuRWR before proposing an algorithm for it. We derive

a recursive equation for the probabilities Rui (MuRWR scores).

Element-wise Representation. �e MuRWR scores at a node are recursively

determined by in-neighbors of the node. Figure 5.4 shows an example of the formu-

lation for MuRWR probabilities where the �gure depicts the part of a graph having

two edge labels l1 and l2. In Figure 5.4, we mark an (edge label, probability) pair on

each edge where the probability is for surfer’s choosing the corresponding edge.

Let R(t)
u1 denote the probability that l1-labeled surfer visits node u at time t a�er

starting from source node s. In order that the surfer visits node u with label l1 at time

t , her label should be changed into l1 when the surfer moves to node u from one of

in-neighbors of u. For example, when she moves from node v to node u, her label

changes to label l1 with probability R(t−1)
v1 P(l1

l1−→ l1)+R(t−1)
v2 P(l2

l1−→ l1). Considering

the restart action with c, R(t)
u1 is determined as:

R(t)
u1 = (1− c)

[
1
2

(
R(t−1)

v1 P(l1
l1−→ l1)+R(t−1)

v2 P(l2
l1−→ l1)

)
+

1
3

(
R(t−1)

w1 P(l1
l2−→ l1)+R(t−1)

w2 P(l2
l2−→ l1)

)]
︸ ︷︷ ︸

Labeled Random Walk

+c1(u = s, l1 = ld)︸ ︷︷ ︸
Restart

where 1(·) returns 1 if a given predicate is true, or 0 otherwise. Note that R(t)
u2 is also

determined similarly to the above equation. �e general equation for R(t)
ui is repre-

sented as:

R(t)
ui = (1− c)

∑
v∈←−N u

 1

|−→N v|

K∑
j=1

R(t−1)
v j P(l j

lvu−→ li)

+ c1(u = s, li = ld) (5.3)

125

𝑢(𝑙$, 1/2) 𝑤𝑣

𝐑-$
(./$), 𝐑-0

(./$) 𝐑1$
(./$), 𝐑10

(./$)𝐑2$
(.)

(𝑙0, 1/3)

Figure 5.4: Example of the formulation for the probability R(t)
u1 that l1-labeled surfer

visits node u at time t .

where←−N u is the set of in-neighbors of node u, and −→N v is the set of out-neighbors of

node v. Note that R(t)
ui is the accumulated result of MuRWR until step t with decaying

factor 1− c, as interpreted similarly in PageRank or RWR.

Matrix Representation. We represent Equation (5.3) in a matrix form using

symbols in the following de�nitions:

De�nition 5.4 (Labeled Semi-adjacency Matrix). �e lk-labeled semi-ad-jacency ma-

trix Ak is a matrix such that (u,v)-th entry Akuv of Ak is 1 if the label of the edge u→ v

is lk, or 0 otherwise. �

De�nition 5.5 (Labeled Semi-row-normalized Matrix). Let D be the out-degree diago-

nal matrix of a graph G where Duu is the out-degree of node u. �en lk-labeled semi-row-

normalized matrix Ãk is de�ned by Ãk = D−1Ak. In other words, Ãkuv = |
−→
N u|−1 = D−1

uu

if there is lk-labeled edge from node u to node v in the graph G, or 0 otherwise, where
−→
N u is the set of out-neighbors of node u. �

Based on De�nitions 5.2, 5.4 and 5.5, Equation (5.3) is rewri�en as follows:

R(t) = (1− c)
K∑

k=1

(Ã>k R(t−1)Sk)︸ ︷︷ ︸
Labeled Random Walk

+ c Qs︸︷︷︸
Restart

(5.4)

where R(t) ∈ Rn×K is an MuRWR score matrix such that each entry R(t)
ui is a score

between source node s and node u for edge label li at step t , and Qs ∈Rn×K is a single

entry matrix whose (s,d)-th entry is 1, and other entries are 0, where the index d

is for the dummy label ld . We provide the detailed derivation from Equation (5.3) to

126

Algorithm 9: Learning phase for MuRWR
Input: labeled adjacency matrix A, and label weights {w j}
Output: label transition probability matrices Sk for 1≤ k ≤ K

1: enumerate all transitive triangles in the graph G represented by A using a
triangle enumeration algorithm [126] to collect label transition observations Dk
for 1≤ k ≤ K

2: set Nki j← 0 for 1≤ i, j,k ≤ K
3: for k = 1 to K do

4: for each xkh = (xkhs
lk−→xkht) ∈Dk do

5: set i← xkhs, j← xkht , and Nki j← Nki j +1
6: end for

7: Ski j←
w jNki j∑k
z=1 wzNkiz

for 1≤ i, j ≤ K

8: end for

9: return Sk for 1≤ k ≤ K

Equation (5.4) in Lemma 5.5 of Section 5.4.2.

Note that MuRWR is a generalized version of RWR, i.e., MuRWR works on edge-

labeled graphs as well as plain graphs without edge labels, which is proved in the

following.

Property 4. MuRWR produces the same result with RWR in a plain graph.

Proof. �is case is equivalent to when the number K of edge labels is 1. �en, R(t)

and Qs are wri�en as vectors r(t) and qs in Rn×1, respectively, where n is the number

of nodes. Since K = 1, there is only one type of labeled transitive triangle; thus, S1 ∈

R1×1 = 1. �en, Equation (5.4) is exactly the same with r(t) = (1− c)Ã>r(t−1)+ cqs,

the recursive equation of RWR [56].

5.3.5 Algorithm forMuRWR

Learning Phase (Algorithm 9). Given a labeled adjacency matrix A, the learning

phase learns the label transition probability matrices Sk. We enumerate all transitive

127

Algorithm 10: Normalization phase for MuRWR
Input: labeled adjacency matrix A
Output: labeled semi-row-normalized matrices Ãk for 1≤ k ≤ K

1: for each edge label lk, construct semi-adjacency matrix Ak from
the graph G represented by A

2: compute adjacency matrix A′ =
∑

k Ak and out-degree diagonal matrix D such
that Duu =

∑
v A′uv

3: for each edge label lk, compute semi-row-normalized matrix Ãk,
i.e., Ãk = D−1Ak

4: return Ãk for 1≤ k ≤ K

Algorithm 11: Iterative Algorithm for MuRWR
Input: semi-row-normalized matrices Ãk, label transition probability matrices Sk

for 1≤ k ≤ K, source node s, restart probability c, and error tolerance ε

Output: MuRWR relevance score matrix R
1: for each node u ∈ −→N s, set Ski j← 1 where k and j are the indices

for lsu, and i is for ld , i.e., set P(ld lsu−→ lsu)= 1
2: set starting matrix Qs from source node s and R(0)←Qs
3: set step t← 0
4: repeat

5: update t← t +1
6: compute R(t)← (1− c)

∑K
k=1(Ã>k R(t−1)Sk)+ cQs

7: compute residual δ(t) = ‖R(t)−R(t−1)‖1,1
8: until δ(t) < ε

9: return MuRWR relevance score matrix R← R(t)

triangles from the graph represented by A (line 1) using a triangle enumeration al-

gorithm [126]. Based on the enumerated transitive triangles, we estimate the label

transition matrices Sk using Equation (5.2) (lines 2∼8).

Normalization Phase (Algorithm 10). �is phase produces the semi-row nor-

malized matrices Ãk for 1≤ k≤ K from the labeled adjacency matrix A a�er building

semi-adjacency matrices Ak by De�nitions 5.4 and 5.5 (lines 1∼3).

Iteration Phase (Algorithm 11). �is phase computes the MuRWR relevance

score matrix R w.r.t. source node s. We �rst set P(ld lsu−→ lsu)= 1 for each u ∈ −→N s for

the dummy label ld (line 1). A�er se�ing starting matrix Qs and initializing R(0) to

128

Qs (line 2), we repeat the update for R(t) based on Equation (5.4) until convergence

(lines 4∼8). We compute residual δ(t) between R(t) and R(t−1) which is the result from

the previous iteration (line 7) where δ(t) is measured by entry-wise L1 matrix norm,

i.e., ‖A‖1,1 =
∑

i, j |Ai j|. �is stops when δ(t) is smaller than error tolerance ε.

Convergence Analysis. We prove the convergence guarantee of the iterative

method (Algorithm 11) of MuRWR in �eorem 5.1.

�eorem 5.1 (Convergence of MuRWR). Suppose r(t) = vec(R(t)) and qs = vec(Qs)

where R(t) is the MuRWR score matrix at step t in Algorithm 11, and vec(·) is the vec-

operator which converts a matrix into a vector [129]. �en the residual δ(t) ≤ 2(1− c)t ,

and r(t) converges to r = c(I− (1− c)B̃>)−1qs where B̃> =
∑K

k=1 S>k ⊗ Ã>k and ⊗ is

Kronecker product.

Proof. Equation (5.4) is vectorized by vec(·) as follows:

vec(R(t)) = (1− c)
K∑

k=1

vec(Ã>k R(t−1)Sk)+ c(vec(Qs))

= (1− c)
K∑

k=1

(S>k ⊗ Ã>k)vec(R(t−1))+ c(vec(Qs))

⇔ r(t) = (1− c)B̃>r(t−1)+ cqs (5.5)

where B̃> =
∑K

k=1 S>k ⊗ Ã>k . �e second equation is derived by vec(ABC) = (C>⊗

A)vec(B) [129].

Residual analysis. �e residual δ(t) = ‖R(t)−R(t−1)‖1,1 is equal to ‖r(t)−r(t−1)‖1

129

since ‖A‖1,1 = ‖vec(A)‖1 [129]. �us, the residual is bounded as follows:

δ
(t) = ‖r(t)−r(t−1)‖1=‖(1− c)B̃>r(t−1)−(1− c)B̃>r(t−2)‖1

≤ (1− c)‖B̃>‖1‖r(t−1)− r(t−2)‖1

≤ (1− c)‖r(t−1)− r(t−2)‖1 ≤ ·· ·

≤ (1− c)t−1‖r(1)− r(0)‖1 = (1− c)t‖B̃>qs−qs‖1 ≤ 2(1− c)t

Note that ‖B̃>qs−qs‖1 ≤ 2 since ‖B̃>qs−qs‖1 ≤ ‖B̃>qs‖1+‖qs‖1 ≤ ‖B̃>‖1‖qs‖1+

1 ≤ 2 where ‖qs‖1 = 1, and ‖B̃>‖1 ≤ 1 by Lemma 5.6. Hence, the bound for the

residual is δ(t) ≤ 2(1− c)t .

Convergence analysis. Equation (5.5) is also represented as follows:

r(t) = (1− c)B̃>r(t−1)+ cqs

=
(
(1− c)B̃>

)2
r(t−2)+ c

(
(1− c)B̃>+ I

)
qs = · · ·

=
(
(1− c)B̃>

)t
r(0)+ c

t−1∑
j=0

(
(1− c)B̃>

) j
qs

�e spectral radius ρ((1− c)B̃>) ≤ (1− c) < 1 when 0 < c < 1 since ρ(B̃>) ≤ 1

according to Lemma 5.6 of Section 5.4.3. Hence, limt→∞((1− c)B̃>)tr(0) = 0 [115]

and limt→∞ r(k) converges as:

lim
t→∞

r(t) = c
∞∑

j=0

(
(1− c)B̃>

) j
qs = c(I− (1− c)B̃>)−1qs

∑
∞

j=0((1− c)B̃>) j is a geometric series of the matrix (1− c)B̃>, and it converges to

(I−(1−c)B̃>)−1 since the spectral radius of (1−c)B̃> is less than 1 [115]. Note that

I− (1− c)B̃> is invertible if ρ((1− c)B̃>)≤ (1− c)< 1 [115].

130

�eorem 5.1 implies that as step t increases, the residual δ(t) in Algorithm 11

monotonically decreases, and converges to zero since 0 < c < 1 as speci�ed in Def-

inition 5.3. Also, r(t) converges to a unique solution r = c(I− (1− c)B̃>)−1qs. We

analyze the time complexities of the algorithms of MuRWR in Section 5.4.4.

5.4 �eoretical Results

We provides the lemma and proofs used for modeling MuRWR and analyzing the

algorithms for MuRWR.

5.4.1 Lemma for Solution of Label Transition Probabilities

and Convexity

Lemma 5.2. �e estimator in Equation (5.2) maximizes the weighted log-likelihood

function WL(Sk;Dk) in Equation (5.1).

Proof. Our goal is to �nd Sk that maximizes the weighted log-likelihood function

WL(Sk;Dk), which is equivalent to minimizing −WL(Sk;Dk). We �rst rewrite the

probability P(xkh;Sk) as follows:

P(xkh;Sk) = Skxkhsxkht =

K∏
i=1

K∏
j=1

(Ski j)
1(xkhs=i,xkht= j)

Note that xkh is a label transition observation xkhs
lk−→ xkht such that xkhs,xkht ∈L where

xkhs is the surfer’s source label, and xkht is her destination label. �en, −WL(Sk;Dk)

131

is represented as follows:

−WL(Sk;Dk) =−
nk∑

h=1

wxkht logP(xkh;Sk)

=−
nk∑

h=1

K∑
i=1

K∑
j=1

w j1(xkhs = i,xkht = j) logSki j

=−
K∑

i=1

K∑
j=1

w j

(nk∑
h=1

1(xkhs = i,xkht = j)

)
logSki j

=−
K∑

i=1

K∑
j=1

w jNki j logSki j

where Nki j =
∑nk

h=1 1(xkhs = i,xkht = j) is the count of the label transition observa-

tions. �en, the minimization problem is represented as follows:

minimize
Ski j

−WL(Sk;Dk) =−
K∑

i=1

K∑
j=1

w jNki j logSki j

subject to Ski j ≥ 0 for 1≤ i, j ≤ K,

K∑
j=1

Ski j = 1 for 1≤ i≤ K.

(5.6)

Note that the above problem is convex (see Lemma 5.3); thus, the optimization prob-

lem is solved by the KKT theorem [99], and the solution of the problem is represented

as Equation (5.2) (details in Lemma 5.4).

Lemma 5.3. �e optimization problem in Equation (5.6) is convex.

Proof. �e objective function is convex since the negative log functions− logSki j are

convex, and the sum of non-negatively weighted convex functions is convex (i.e.,

w jNki j ≥ 0) [99]. Let C be a set of Sk satisfying the constraints, i.e., C = {Sk|Sk1=

1,Ski j≥ 0, for 1≤ i, j≤K}. For Sk1 ,Sk2 ∈C and θ1 + θ2 = 1 such that θ1,θ2 ≥ 0, let

132

Sk3 = θ1Sk1 +θ2Sk2 . �en Sk31 = (θ1Sk1 +θ2Sk2)1 = 1 indicating Sk3 ∈C. �us C is

convex by the de�nition of convex set [99].

Lemma 5.4. �e solution of the optimization problem in Equation (5.6) is represented

as Equation (5.2).

Proof. �e lagrangian L(·) of the objective function in Equation (5.6) is represented

as follows:

L(Sk,λ,ν) =−
K∑

i=1

K∑
j=1

w jNki j logSki j +
K∑

i=1

K∑
j=1

−λi jSki j +
K∑

i=1

νi

K∑
j=1

(
Ski j−1

)

where λ and ν are inequality and equality lagrange multipliers, respectively. Let Ŝki j

be the solution that minimizes Equation (5.6). λ∗ and ν∗ denote the optional points

for λ and ν, respectively. �e stationarity condition ∇Sk L(Ŝk,λ
∗,ν∗) = 0 implies the

following equation:

∂L(Ŝk,λ
∗,ν∗)

∂Ski j
=−

w jNki j

Ŝki j
−λ

∗
i j +ν

∗
i = 0⇔ Ŝki j =

w jNki j

ν∗i −λ∗i j

By the complementary slackness λ∗i jŜki j =0, primal feasibility Ŝki j ≥ 0, and dual fea-

sibility λ∗i j ≥ 0,

• Ŝki j > 0⇒ λ
∗
i j = 0⇔ Ŝki j =

w jNki j

ν∗i
> 0⇔ w jNki j 6= 0

• λ
∗
i j > 0⇒ Ŝki j = 0⇔ Ŝki j =

w jNki j

ν∗i −λ∗i j
= 0⇔ w jNki j = 0

For the case that Ŝki j > 0, ν∗i is obtained from the equality constraint
∑K

z=1 Ŝkiz = 1

133

as follows:

K∑
z=1

Ŝkiz =
∑

{z|Ŝkiz>0}

Ŝkiz =
∑

{z|Ŝkiz>0}

wzNkiz

ν∗i
= 1⇔

ν
∗
i =

∑
{z|Ŝkiz>0}

wzNkiz =
∑

{z|Ŝkiz>0}

wzNkiz +
∑

{z|Ŝkiz=0}

wzNkiz=
K∑

z=1

wzNkiz

Hence, Ŝki j = w jNki j/ν∗i = w jNki j/(
∑K

z=1 wzNkiz)

5.4.2 Lemma for Recursive Equation ofMuRWR ScoreMa-

trix

Lemma 5.5. Equation (5.3) is represented as Equation (5.4).

Proof. In Equation (5.3), let lp denote lvu. For edge v→ u,

K∑
j=1

Rv jP(l j
lvu−→ li) =

K∑
j=1

Rv jP(l j
lp−→ li) =

K∑
j=1

Rv jSp ji

where Sp ji is the label transition probability P(l j
lp−→ li). By De�nition 5.5, Ãpvu =

|−→N v|−1 = Ã>puv for all p when Ãpuv is non-zero. Hence,

∑
v∈←−N u

 1

|−→N v|

K∑
j=1

Rv jSp ji

=
∑

v∈←−N u

Ã>puv

K∑
j=1

Rv jSp ji (5.7)

Let←−N (i)
u be the set of in-neighbors of node u such that node v∈←−N (i)

u is connected

to node u with edge label li. �en,←−N u is represented as←−N u =
←−
N (1)

u ∪ ·· · ∪
←−
N (K)

u . If

there is no li-labeled edge to node u from any in-neighbor node, then←−N (i)
u is empty,

i.e.,←−N (i)
u = /0. Note that if node u is connected from node v ∈←−N (1)

u , then edge label lvu

134

is l1, i.e., in this case, lvu = lp = l1. �us, Equation (5.7) is represented as follows:

∑
v∈←−N u

Ã>puv

K∑
j=1

Rv jSp ji =
∑

v∈←−N (1)
u

Ã>1uv

K∑
j=1

Rv jS1 ji + · · ·+
∑

v∈←−N (K)
u

Ã>Kuv

K∑
j=1

Rv jSK ji

=
K∑

k=1

 ∑
v∈←−N (k)

u

Ã>kuv

K∑
j=1

Rv jSk ji

 (5.8)

Let (·)i j be (i, j)-th entry of a matrix. �en,
∑

v∈←−N (k)
u

Ã>kuv
∑K

j=1 Rv jSk ji in the

above equation is wri�en as:

∑
v∈←−N (k)

u

Ã>kuv

K∑
j=1

Rv jSk ji =
∑

v∈←−N (k)
u

Ã>kuv(RSk)vi = (Ã>k RSk)ui

�en, Equation (5.8) is represented as follows:

K∑
k=1

 ∑
v∈←−N (k)

u

Ã>kuv

K∑
j=1

Rv jSk ji

=
K∑

k=1

(Ã>k RSk)ui =

(
K∑

k=1

Ã>k RSk

)
ui

�us, Rui in Equation (5.3) is wri�en as follows:

Rui = (1− c)

(
K∑

k=1

Ã>k RSk

)
ui

+ c1(u = s, li = ld)

For 1≤ u≤ n and 1≤ i≤K where n is the number of nodes, the above equation

is represented as Equation (5.4).

135

5.4.3 Lemma for Spectral Radius in Convergence�eorem

Lemma5.6. Suppose B̃>=
∑K

k=1 S>k ⊗Ã>k where Ãk is k-th labeled semi-row-normalized

matrix, and Sk is k-th label transition probability matrix. �en, ‖B̃>‖1≤ 1, and the spec-

tral radius of B̃> is bounded as follows: ρ(B̃>)≤ 1.

Proof. According to spectral radius theorem [78], ρ(B̃>) ≤ ‖B̃>‖1 where ‖B̃>‖1 is

the maximum absolute column sum of B̃>. Since each entry of B̃> is non-negative,

‖B̃>‖1 is equal to the maximum value of the column sums of the matrix. �e column

sums are represented as follows:

(1>⊗1>)B̃> = (1>⊗1>)(
K∑

k=1

S>k ⊗ Ã>k)

=
K∑

k=1

(1>⊗1>)(S>k ⊗ Ã>k) =
K∑

k=1

1>S>k ⊗1>Ã>k

According to De�nition 5.2, the sum of each row of Sk is 1, i.e., Sk1= 1⇔ 1>S>k = 1>.

Hence,

K∑
k=1

1>S>k ⊗1>Ã>k =
K∑

k=1

1>⊗1>Ã>k = 1>⊗
K∑

k=1

1>Ã>k = 1>⊗1>
K∑

k=1

Ã>k

Note that Ã>k = A>k D−1 according to De�nition 5.4. Suppose A′ =
∑K

k=1 Ak is the

adjacency matrix of the graph G without edge labels. �en, the following holds:

1>
∑K

k=1 Ã>k = 1>
∑K

k=1 A>k D−1 = (A′1)>D−1. �e u-th row of A′1 indicates the out-

degree of node u, denoted by degu. If node u is a deadend node, then degu = 0. Other-

wise, degu > 0. Note that D is the out-degree diagonal matrix of G and D−1
uu = 1/degu

if node u is not a deadend. Otherwise, D−1
uu = 0. �us, (A′1)>D−1 = b> where u-th en-

try of b is 1 if node u is non-deadend, or 0 otherwise. Hence, (1>⊗1>)B̃>= 1>⊗b>

which is the column sum vector of B̃>, and the maximum value of the vector is less

136

than or equal to 1. �erefore, ‖B̃>‖1 ≤ 1, implying ρ(B̃>)≤ ‖B̃>‖1 ≤ 1.

5.4.4 Lemma for Complexity Analysis

Lemma 5.7. �e time complexity of Algorithms 9 and 10 is O(m1.5 +K3) where m is

the number of edges, and K is the number of edge labels.

Proof. In Algorithm 1, it takes O(m1.5) time to enumerate all transitive triangles in the

given graph G using a triangle enumeration algorithm [126] (line 1 in Algorithm 9).

Also, estimating Sk requires O(K3) time (lines 2 ∼ 8 in Algorithm 9). Algorithm 10

takes O(m) time for counting out-degrees of nodes (line 2 in Algorithm 10) and com-

puting A−k = D−1Ak for 1≤ k ≤ K (line 3 in Algorithm 10).

Lemma 5.8. �e time complexity of Algorithm 11 is O(T (Km + K3n)) where T =

log(1−c)
ε

2 indicates the number of iterations for convergence, ε is an error tolerance, m

is the number of edges, n is the number of nodes, and K is the number of edge labels.

Proof. Let mk denote the number of non-zeros in k-th semi-row normalized matrix

A−k stored in a sparse matrix format such as compressed column storage (CCS).

For each iteration, it takes O(Kmk + K2n) time to compute Ã>k R(t−1)Sk since the

sparse matrix product Ã>k R(t−1) requires O(Kmk) time, and the dense matrix product

(Ã>k R(t−1))Sk takes O(K2n) time. �us, it takes O(
∑K

k=1(Kmk +K2n)) = O(Km+

K3n) time to compute
∑K

k=1(Ã>k R(t−1)Sk) where
∑K

k=1 mk = m (line 6). Note that

when 2(1− c)t ≤ ε, R(t) converges since δ(t) ≤ 2(1− c)t by �eorem 5.1. Hence, for

t ≥ log(1−c)
ε

2 , the iteration is necessarily terminated. �us, the number of iterations

for convergence is estimated at log(1−c)
ε

2 , and the total time complexity of Algo-

rithm 11 is O((log(1−c)
ε

2)(Km+K3n)).

137

Table 5.2: Statistics of the datasets used in Chapter 5 where n is the number of nodes, m
is the number of edges, and K is the number of edge labels.

Dataset n m K Description

Epinions1 131,828 841,372 2 Signed social network
Slashdot2 79,120 515,397 2 Signed social network
WN183 40,943 151,433 18 Knowledge graph
WN114 38,588 138,887 11 Knowledge graph
WikiVote5 7,118 103,675 2 Signed voting network
Advogato6 6,541 47,135 3 Social network

1 h�p://www.trustlet.org/wiki/Extended Epinions dataset
2 h�p://dai-labor.de/IRML/datasets
3 h�ps://everest.hds.utc.fr/doku.php?id=en:transe
4 h�p://cs.stanford.edu/ danqi/data/nips13-dataset.tar.bz2
5 h�p://snap.stanford.edu/data/wiki-Vote.html
6 h�p://konect.uni-koblenz.de/networks/advogato

5.5 Experiment

We perform experiments to answer the following questions:

• Q1. Performance of Relation Inference (Section 5.5.2). How accurately

does MuRWR predict edge labels between nodes compared to other existing

methods?

• Q2. E�ects of Label Weights (Section 5.5.3). How does the label weights

w j in MuRWR a�ect the predictive performance of MuRWR for the relation

inference task?

• Q3. E�ects of Restart Probability (Section 5.5.4). How does the restart

probability c in MuRWR a�ect the inference performance of MuRWR?

• Q4. Convergence (Section 5.5.5). Does the iterative algorithm for MuRWR

converge? How does the restart probability c a�ect the convergence behavior

of the algorithm?

138

5.5.1 Experimental Settings

Datasets. �e datasets used for our experiments are summarized in Table 5.2. In

the Epinions [130] and the Slashdot [63] datasets, users rate each other positively

or negatively. �e WN11 [131] and WN18 [132] datasets are from WordNet [122],

a knowledge graph of words where an edge label is a relation between words. �e

WikiVote dataset is a signed network where users vote positively or negatively on

their candidates [133]. �e Advogato dataset is a social network where an edge label

indicates a level of trust [134].

Competitors. We compare our model MuRWR to the following methods:

• Random: Random predicts the label of a test edge randomly, which provides

the worst performance of each dataset.

• LINE [135] and node2vec [136]: We exploit well-known embedding models

LINE and node2vec as baseline methods, although they are not designed for

relation inference. Since they are designed for plain networks, we �rst extract

an embedding vector of each node using those methods in a given network

without edge labels. Next, we convert li-edge between two nodes into a train-

ing instance, i.e., the feature is the concatenation of the embeddings of those

nodes, and the label is li. We perform multinomial logistic regression based on

a so�max function to predict the edge label.

• MRWR [65] and SRWR [22]: We compare MuRWR to MRWR and SRWR

which are RWR based variants. Although MRWR is originally designed for

signed networks, it is easy to make the method work on edge-labeled graphs by

computing RWR on each subgraph containing only a speci�c edge label. Note

that SRWR cannot work on general edge-labeled graphs since it is designed

139

only for signed networks (i.e., K = 2); hence, the results of SRWR for other

edge-labeled graphs (i.e., K > 2) are omi�ed in Table 5.3 and 5.4.

• PRA [67]: PRA is a path feature model used for relation inference in edge-

labeled graphs. PRA extracts path features between two nodes using a random

surfer, and exploits those features with logistic regressors.

• TransE [92] and TransR [93]: TransE is a translation based method which

considers the relation l between nodes s and t as a translation between the cor-

responding node embeddings. Speci�cally, TransE discovers embeddings s, l,

and t minimizing f (s, l, t) = ‖s+ l− t‖2. Given nodes s and t , it predicts their

relation l that minimizes f (s, l, t). TransR models entities and relations in dis-

tinct spaces, i.e., sl = sMl and tl = tMl where Ml is projection matrix for l.

�en, TransR minimizes f (s, l, t) = ‖sl + l− tl‖2.

5.5.2 Relation Inference Task

We evaluate our proposed model MuRWR on a relation inference task de�ned as

follows: given an edge-labeled graph containing missed labels of edges, predict those

edge labels. We randomly select 500 source nodes and choose 20% of out-going edges

from each source node as a validation set which is used for selecting proper hyper-

parameters of each method. For a test set, we randomly select another 500 source

nodes and choose 20% of out-going edges from each source node. �en we remove

each selected edge s→ t , and predict the edge’s label using relevance scores w.r.t.

source node s, i.e., the predicted label l̂ is decided as follows: l̂ = argmax1≤k≤K Rtk.

We measure the prediction accuracy for the test dataset, which is de�ned as fol-

lows: accuracy = # of correct predictions/# of test edges. Also this task is considered

as multi-class classi�cation (i.e., classify the label of a test edge); thus, we measure

140

Table 5.3: Performance of relation inference in terms of accuracy. �e best method is in
bold. Our proposed model MuRWR (marked †) shows the best performance in accuracy.

Methods WikiVote Slashdot Epinions Advogato WN11 WN18

Random 0.497 0.500 0.493 0.340 0.090 0.078

LINE [135] 0.781 0.771 0.903 0.552 0.489 0.404
node2vec [136] 0.779 0.765 0.905 0.586 0.426 0.401

MRWR [65] 0.805 0.769 0.890 0.550 0.194 0.342
SRWR [22] 0.825 0.790 0.906 - - -

PRA [67] 0.813 0.804 0.913 0.683 0.580 0.556
TransE [92] 0.793 0.802 0.902 0.644 0.617 0.653
TransR [93] 0.800 0.757 0.874 0.672 0.609 0.530

MuRWR
†

0.830 0.820 0.929 0.727 0.641 0.689

Table 5.4: Performance of relation inference in terms of F1-score. �e best method is in
bold. Our proposed model MuRWR (marked †) shows the best performance in F1-score.

Methods WikiVote Slashdot Epinions Advogato WN11 WN18

Random 0.504 0.502 0.501 0.334 0.094 0.059

LINE [135] 0.524 0.592 0.706 0.479 0.204 0.202
node2vec [136] 0.519 0.583 0.673 0.532 0.256 0.206

MRWR [65] 0.703 0.661 0.809 0.698 0.149 0.131
SRWR [22] 0.742 0.730 0.822 - - -

PRA [67] 0.733 0.692 0.815 0.682 0.569 0.536
TransE [92] 0.725 0.687 0.821 0.648 0.571 0.642
TransR [93] 0.730 0.733 0.802 0.661 0.553 0.599

MuRWR
†

0.746 0.748 0.830 0.723 0.594 0.660

macro F1-score which is a multi-class classi�cation accuracy [137]. We repeat the

above procedure 10 times, and report the average accuracy over the multiple runs

for each method.

For the experiment, we select label weights w j which provide the best inference

in the validation set. To search for the label weights, we adopt the forward stepwise

selection strategy [138]. Suppose we consider three weights w1, w2, and w3 initialized

to 1. For w1, we �x other weights w2 and w3, and choose the value of w1 which

141

provides the best accuracy on the validation set when varying w1 in the range [0,2] by

step size 0.2. With the selected value of w1, we �x w3, and repeat the above procedure

for w2. We �nally perform the stepwise search for w3 with the selected values of w1

and w2.

Tables 5.3 and 5.4 show the performance of MuRWR compared to other methods.

Our model MuRWR is the most accurate in predicting edge labels for all the datasets

in terms of accuracy. Speci�cally, MuRWR obtains 0.7∼ 6.1% relative improvement

over the second best method. Also, the performance of MuRWR is higher than that

of other methods in terms of F1-score: MuRWR outperforms the second best method

by up to 0.5∼ 5.1%. Note that we cannot perform relation inference using relevance

scores measured by standard RWR as described in Section 5.1. �ese indicate that

relevance scores computed by MuRWR are e�ective for predicting edge labels.

5.5.3 E�ects of Label Weights in MuRWR

We examine the impact of label weights inMuRWR on the performance of the relation

inference task. We use MuRWR-F (a version of MuRWR where all weights {w j} are

�xed to 1) and MuRWR using the forward stepwise strategy as described above. We

measure the performance of the relation inference task in terms of accuracy and F1-

score. As seen in Figure 5.5, the inference performance of MuRWR is be�er than

that of MuRWR-F in terms of accuracy and F1-score, respectively. �is indicates that

adjusting the label weights is helpful for the performance of MuRWR in the relation

inference task.

142

MuRWRMuRWR-F

 0

 0.2

 0.4

 0.6

 0.8

 1

WikiV
ote

Slash
dot

Epinions

Advo
gato

WN11
WN18

A
cc

ur
ac

y

 0

 0.2

 0.4

 0.6

 0.8

 1

WikiV
ote

Slash
dot

Epinions

Advo
gato

WN11
WN18

F
1-

sc
or

e

Figure 5.5: E�ect of the label weights inMuRWR. �e performance of MuRWR is be�er
than that of MuRWR-F (i.e., MuRWR where all label weights are �xed to 1), verifying that
introducing the weights improves the performance of MuRWR.

5.5.4 E�ects of Restart Probability inMuRWR

We investigate the e�ect of restart probability c of MuRWR. We measure the infer-

ence performance of MuRWR in terms of accuracy varying c from 0.01 to 0.99. As

shown in Figure 5.6, the performance of MuRWR with c = 0.15∼ 0.3 is be�er than

that of MuRWR when c is too low or high. Note that c controls how far the surfer

walks from source node s. If a value of c is high, the surfer frequently jumps back

to the source node; thus, the relevance score between node s and a target node t are

highly a�ected by paths of short length from s to t , restricting the model’s complex-

ity severely. Hence, an extremely high value of c such as 0.99 has a bad in�uence on

the performance of MuRWR. On the other hand, a too low value of c such as 0.01

also does not have a positive impact on relational reasoning since such a low value

e�ectively ignores the source vertex. With a proper value of c between 0.15 and 0.3,

MuRWR provides the best performance, and outperforms other methods as shown

in Tables 5.3 and 5.4.

143

0 0.25 0.5 0.75 1
0.79

0.8

0.81

0.82

(a) Slashdot dataset

0 0.25 0.5 0.75 1
0.91

0.915

0.92

0.925

0.93

0.935

(b) Epinions dataset

0 0.25 0.5 0.75 1
0.7

0.71

0.72

0.73

(c) Advogato dataset

0 0.25 0.5 0.75 1
0.45

0.5

0.55

0.6

0.65

(d) WN11 dataset

Figure 5.6: E�ect of the restart probability c in MuRWR. �e inference performance of
MuRWR with c = 0.15∼ 0.3 is be�er than that of MuRWR when c is too low or high.

0 100 200
10

-15

10
-10

10
-5

10
0

(a) Slashdot dataset

0 100 200
10

-15

10
-10

10
-5

10
0

(b) Epinions dataset

0 100 200
10

-15

10
-10

10
-5

10
0

(c) Advogato dataset

0 100 200
10

-15

10
-10

10
-5

10
0

(d) WN11 dataset

Figure 5.7: Convergence of MuRWR. �e residual δ(t) in Algorithm 11 monotonically de-
creases in the datasets for 0 < c < 1 where c is the restart probability in MuRWR.

5.5.5 Convergence of MuRWR

We explore the convergence behavior of MuRWR described in �eorem 5.1. We vary

the restart probability c between 0.1 and 0.9, and measure the residual δ(t) in Algo-

rithm 11 until convergence with error tolerance ε = 10−14. As seen in Figure 5.7, the

residual δ(t) monotonically decreases for 0 < c < 1 as step t increases, and then, δ(t)

�nally becomes less than ε. Another observation is that a high value of c accelerates

the convergence rate for the residual δ(t), e.g., c= 0.9 makes MuRWR converge faster

than c = 0.1. �e reason is that by �eorem 5.1, δ(t) ≤ 2(1−c)t ; thus, the higher c is,

the faster the residual δ(t) goes toward zero. Note that an extremely high value of c

such as 0.99 degrades the performance of MuRWR as shown in Figure 5.6, while a too

low value of c requires many iterations to converge as shown in Figure 5.7. A value

of c between 0.15 and 0.3 provides a good trade-o� between inference performance

and the number of iterations to converge.

144

5.6 Summary

We propose MuRWR (Multi-Labeled Random Walk with Restart), a novel ran-

dom walk based model which accurately infers edge labels between nodes by com-

puting relevance scores between a source node and other nodes for each edge label

in edge-labeled graphs. We introduce a labeled random surfer to consider labeled

edges for multi-hop relational reasoning. We provide a learning procedure based on

label transitive relationships inherent in a given graph, and theoretically analyze our

method including its convergence. We also show that MuRWR is a generalized ver-

sion of RWR. Experimental results show MuRWR gives the highest accuracy in the

relation inference task. Future works include extending the method for a graph with

complex node features.

145

Chapter 6

Future Works

In this section, I describe future research works of this thesis. �e main future re-

search direction is to extend the approach exploiting various distinct properties in-

herent in real-world data to other research problems, such as pseudoinverse com-

putation and realistic signed network generation, beyond random walk in graphs.

Another promising direction is to extend the algorithms developed by this thesis to

disk-based algorithms or distributed systems since the proposed methods are based

on a single in-memory system. �is future research will enable us to e�ciently ana-

lyze much larger graphs that cannot �t in memory in a single machine.

6.1 Fast and Accurate Pseudoinverse Computation

How can we compute pseudoinverse of a sparse feature matrix e�ciently and accu-

rately for solving optimization problems? A pseudoinverse is a generalization of a

matrix inverse, which has been extensively utilized as a fundamental building block

for solving linear systems in machine learning. However, an approximate computa-

tion, let alone an exact computation, of pseudoinverse is very time-consuming due to

its demanding time complexity, which limits it from being applied to large data.

To this end, I will develop a novel incremental singular value decomposition

(SVD) based pseudoinverse method for sparse matrices. I will show that many real-

world features matrices are sparse and highly skewed. Based on this observation, I

will demonstrate that the non-zeros of the feature matrix can be concentrated so that

146

the SVD computation for pseudoinverse becomes accelerated with incremental SVD

techniques [139].

6.2 Fast and Scalable Signed Network Generation

How can we e�ciently generate large-scale signed networks following real-world

properties? Due to its rich modeling capability of representing trust relations as pos-

itive and negative edges, signed networks have spurred much interests with various

applications. Generating realistic signed networks is crucial for scalability evaluation,

network simulation, and data anonymization; however, existing models for generat-

ing signed networks do not correctly re�ect properties of real-world graphs.

For this problem, I have a plan to develop a fast, scalable, and parallelizable

method for generating large-scale signed networks following realistic properties. I

observe a self-similar balanced structure from real-world signed networks, and then

simulate the self-similarity via Kronecker product to generate realistic signed net-

works. Also, I aim to e�ciently generate very large-scale signed networks fully in

parallel [140].

6.3 Disk-based Algorithms for RandomWalk

Although I proposed several methods for random walk in real-world graphs, the pro-

posed algorithms are designed for in-memory systems, i.e., an input network and in-

termediate data produced by each proposed method are stored only in memory. �is

approach has a limitation for processing very large graphs reaching tera- or peta-

scale since such massive graphs cannot �t into memory. Hence, one future research

direction is to extend the proposed algorithms to disk-based algorithms working on

147

graph databases or distributed systems.

For the purpose, I �rst need to carefully consider how to reduce I/O cost rather

than CPU cost since the I/O cost will be the main bo�leneck when it comes to de-

signing disk-based algorithms. �erefore, one of the main technical challenges is to

minimize the size of intermediate data to be stored onto disk and reduce the number

of disk accesses as possible. For distributed systems, the main bo�leneck could be net-

work cost, especially when intermediate data to be transferred are very large. �us,

another challenge is how to avoid such intermediate data explosion for developing

algorithms in distributed systems.

148

Chapter 7

Conclusion

In this dissertation, I devise fast, scalable, and exact methods, and design e�ective

models for random walk based mining on large real-world graphs.

First, I propose BePI, a fast, memory-e�cient, and scalable algorithm for random

walk with restart computation on billion-scale graphs. BePI exploits hub-and-spoke

structures commonly appeared in real-world graphs so that it takes the advantages

of both preprocessing methods and iterative methods by incorporating an iterative

method within a block elimination approach. Consequently, BePI achieves a be�er

scalability as well as faster query time than existing methods.

Second, I design SRWR, a novel model which provides personalized rankings

based on trustworthiness in signed social networks. �e main idea is to introduce

a signed random surfer so that it considers negative edges by changing its sign for

sur�ng on signed networks. As a result, SRWR provides personalized trust or distrust

rankings re�ecting signed edges, and improves the predictive performance of various

applications in signed networks. I further develop SRWR-Pre, an e�cient method

for computing SRWR scores in signed networks. I notice that signed networks are

also sparse, and have skewed degree distribution; thus, they have the hub-and-spoke

structure. SRWR-Pre exploits this structure to boost its computational performance. I

demonstrate that SRWR-Pre is faster and more memory-e�cient than other baseline

methods.

Finally, I propose MuRWR, a novel random walk based model which accurately

149

infers edge labels between nodes by computing relevance scores between a source

node and other nodes for each edge label in edge-labeled graphs. I introduce a la-

beled random surfer to consider labeled edges for multi-hop relational reasoning. I

provide a learning procedure based on label transitive relationships representing log-

ical knowledge inherent in a given graph, and theoretically analyze MuRWR w.r.t.

learning and convergence. �ough experiments, I show that MuRWR infers missing

relations more accurately than other existing models.

As future work, I will further extend the approach exploiting distinct structures

in real-world data to other research problems, such as pseudoinverse computation

and synthetic graph generation, beyond random walk. Another direction is to make

the proposed methods working on graphs databases (e.g., Neo4j) and distributed sys-

tems (e.g., Spark).

150

References

[1] L. da Fontoura Costa, O. N. O. Jr, G. Travieso, F. A. Rodrigues, P. R. V. Boas,
L. Antiqueira, M. P. Viana, and L. E. C. Rocha, “Analyzing and modeling real-
world phenomena with complex networks: A survey of applications,” Advances

in Physics, vol. 60, no. 3, pp. 329–412, 2011.

[2] H. Kwak, C. Lee, H. Park, and S. B. Moon, “What is twi�er, a social network or
a news media?,” in Proceedings of International Conference on World Wide Web

(WWW 2010), Raleigh, North Carolina, USA, pp. 591–600, 2010.

[3] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow, “�e anatomy of the face-
book social graph,” CoRR, vol. abs/1111.4503, 2011.

[4] H. W. Park and M. �elwall, “Hyperlink analyses of the world wide web: A
review,” Journal of Computer-Mediated Communication, vol. 8, no. 4, p. 0, 2003.

[5] E. Gar�eld, “Citation indexing for studying science,” Nature, vol. 227, no. 5259,
pp. 669–671, 1970.

[6] D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller, J. Huerta-
Cepas, M. Simonovic, A. Roth, A. Santos, and K. P. Tsafou, “String v10: Protein–
protein interaction networks, integrated over the tree of life,” Nucleic Acids Re-

search, vol. 43, no. D1, pp. D447–D452, 2014.

[7] D. S. Basse� and E. Bullmore, “Small-world brain networks,” �e Neuroscientist,
vol. 12, no. 6, pp. 512–523, 2006.

[8] J. M. Montoya and R. V. Solé, “Small world pa�erns in food webs,” Journal of

�eoretical Biology, vol. 214, no. 3, pp. 405–412, 2002.

[9] S. Wasserman and K. Faust, “Social network analysis in the social and behav-
ioral sciences,” Social Network Analysis: Methods and Applications, vol. 1994,
pp. 1–27, 1994.

151

[10] R. D. Balicer, “Modeling infectious diseases dissemination through online role-
playing games,” Epidemiology, vol. 18, no. 2, pp. 260–261, 2007.

[11] S. P. Borga�i, A. Mehra, D. J. Brass, and G. Labianca, “Network analysis in the
social sciences,” Science, vol. 323, no. 5916, pp. 892–895, 2009.

[12] A.-L. Barabási, Network Science. Cambridge University Press, 2016.

[13] L. Page, S. Brin, R. Motwani, and T. Winograd, “�e pagerank citation ranking:
Bringing order to the web,” Technical report, Stanford University, 1999.

[14] L. Lovász, “Random walks on graphs: A survey,” Combinatorics, vol. 2, no. 1,
pp. 1–46, 1993.

[15] P. G. Doyle and J. L. Snell, “Random walks and electric networks,” ArXiv

Preprint Math/0001057, 2000.

[16] J. M. Kleinberg, “Hubs, authorities, and communities,” ACM Computing Surveys

(CSUR), vol. 31, no. 4es, p. 5, 1999.

[17] G. Jeh and J. Widom, “Simrank: A measure of structural-context similarity,” in
Proceedings of ACM International Conference on Knowledge Discovery and Data

Mining (KDD 2002), Edmonton, Alberta, Canada, pp. 538–543, 2002.

[18] J. Pan, H. Yang, C. Faloutsos, and P. Duygulu, “Automatic multimedia cross-
modal correlation discovery,” in Proceedings of ACM International Conference

on Knowledge Discovery and Data Mining (KDD 2004), Sea�le, Washington, USA,
pp. 653–658, 2004.

[19] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang, “Manifold-ranking based image
retrieval,” in Proceedings of ACM International Conference on Multimedia (ICM

2004), New York, NY, USA, pp. 9–16, 2004.

[20] H. Tong and C. Faloutsos, “Center-piece subgraphs: Problem de�nition and
fast solutions,” in Proceedings of ACM International Conference on Knowledge

Discovery and Data Mining (KDD 2006), Philadelphia, PA, USA, pp. 404–413,
2006.

152

[21] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of International

Conference on World Wide Web (WWW 2002), Honolulu, Hawaii, USA, pp. 517–
526, 2002.

[22] J. Jung, W. Jin, L. Sael, and U. Kang, “Personalized ranking in signed networks
using signed random walk with restart,” in Proceedings of IEEE International

Conference on Data Mining (ICDM 2016), Barcelona, Spain, pp. 973–978, 2016.

[23] S. Lee, S. Park, M. Kahng, and S. Lee, “Pathrank: A novel node ranking measure
on a heterogeneous graph for recommender systems,” in Proceedings of ACM

International Conference on Information and Knowledge Management (CIKM

2012), Maui, HI, USA, pp. 1637–1641, 2012.

[24] M. Nykl, M. Campr, and K. Jezek, “Author ranking based on personalized pager-
ank,” Journal of Informetrics, vol. 9, no. 4, pp. 777–799, 2015.

[25] H. Sayyadi and L. Getoor, “Futurerank: Ranking scienti�c articles by predicting
their future pagerank,” in Proceedings of the SIAM International Conference on

Data Mining (SDM 2009), Sparks, Nevada, USA, pp. 533–544, 2009.

[26] W. Jin, J. Jung, and U. Kang, “Supervised and extended restart in random walks
for ranking and link prediction in networks,” PloS one, vol. 14, no. 3, p. e0213857,
2019.

[27] L. Backstrom and J. Leskovec, “Supervised random walks: Predicting and rec-
ommending links in social networks,” in Proceedings of ACM International Con-

ference on Web Search and Web Data Mining (WSDM 2011), Hong Kong, China,
pp. 635–644, 2011.

[28] W. Liu and L. Lü, “Link prediction based on local random walk,” EPL (Euro-

physics Le�ers), vol. 89, no. 5, p. 58007, 2010.

[29] D. Liben-Nowell and J. M. Kleinberg, “�e link prediction problem for social
networks,” in Proceedings of ACM International Conference on Information and

Knowledge Management (CIKM 2003), New Orleans, Louisiana, USA, pp. 556–
559, 2003.

153

[30] L. Li, Y. Yao, J. Tang, W. Fan, and H. Tong, “QUINT: on query-speci�c opti-
mal networks,” in Proceedings of ACM International Conference on Knowledge

Discovery and Data Mining (KDD 2016), San Francisco, CA, USA, pp. 985–994,
2016.

[31] X. Yu, Q. Gu, M. Zhou, and J. Han, “Citation prediction in heterogeneous bib-
liographic networks,” in Proceedings of SIAM International Conference on Data

Mining (SDM 2012), Anaheim, California, USA, April 26-28, 2012, pp. 1119–1130,
2012.

[32] H. Park, J. Jung, and U. Kang, “A comparative study of matrix factorization
and random walk with restart in recommender systems,” in Proceedings of IEEE

International Conference on Big Data (BigData 2017), Boston, MA, USA, pp. 756–
765, 2017.

[33] Z. Jiang, H. Liu, B. Fu, Z. Wu, and T. Zhang, “Recommendation in heteroge-
neous information networks based on generalized random walk model and
bayesian personalized ranking,” in Proceedings of ACM International Confer-

ence on Web Search and Data Mining (WSDM 2018), Marina Del Rey, CA, USA,
pp. 288–296, 2018.

[34] P. Gupta, A. Goel, J. J. Lin, A. Sharma, D. Wang, and R. Zadeh, “WTF: the who
to follow service at twi�er,” in Proceedings of International World Wide Web

Conference (WWW 2013), Rio de Janeiro, Brazil, pp. 505–514, 2013.

[35] R. Baral and T. Li, “MAPS: A multi aspect personalized POI recommender sys-
tem,” in Proceedings of ACM International Conference on Recommender Systems

(RecSys 2016), Boston, MA, USA, pp. 281–284, 2016.

[36] C. Faloutsos, K. S. McCurley, and A. Tomkins, “Fast discovery of connection
subgraphs,” in Proceedings of ACM International Conference on Knowledge Dis-

covery and Data Mining (KDD 2004), Sea�le, Washington, USA, pp. 118–127,
2004.

[37] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast best-e�ort pat-
tern matching in large a�ributed graphs,” in Proceedings of ACM International

154

Conference on Knowledge Discovery and Data Mining (KDD 2007), San Jose, Cal-

ifornia, USA, pp. 737–746, 2007.

[38] D. Shahaf and C. Guestrin, “Connecting the dots between news articles,” in
Proceedings of ACM International Conference on Knowledge Discovery and Data

Mining (KDD 2010), Washington, DC, USA, pp. 623–632, 2010.

[39] G. Kasneci, S. Elbassuoni, and G. Weikum, “MING: mining informative en-
tity relationship subgraphs,” in Proceedings of ACM International Conference

on Information and Knowledge Management (CIKM 2009), Hong Kong, China,
pp. 1653–1656, 2009.

[40] R. Pienta, A. Tamersoy, H. Tong, and D. H. Chau, “MAGE: matching approxi-
mate pa�erns in richly-a�ributed graphs,” in Proceedings of IEEE International

Conference on Big Data (BigData 2014), Washington, DC, USA, pp. 585–590, 2014.

[41] J. Sun, H. �, D. Chakrabarti, and C. Faloutsos, “Neighborhood formation and
anomaly detection in bipartite graphs,” in Proceedings of IEEE International Con-

ference on Data Mining (ICDM 2005), Houston, Texas, USA, pp. 418–425, 2005.

[42] P. Chirita, J. Diederich, and W. Nejdl, “Mailrank: using ranking for spam detec-
tion,” in Proceedings of ACM International Conference on Information and Knowl-

edge Management (CIKM 2005), Bremen, Germany, pp. 373–380, 2005.

[43] Z. Gyöngyi, H. Garcia-Molina, and J. O. Pedersen, “Combating web spam with
trustrank,” in Proceedings of International Conference on Very Large Data Bases

(VLDB 2004), Toronto, Canada, pp. 576–587, 2004.

[44] N. Chiluka, N. Andrade, D. Gkorou, and J. A. Pouwelse, “Personalizing eigen-
trust in the face of communities and centrality a�ack,” in Proceedings of IEEE

International Conference on Advanced Information Networking and Applications

(AINA 2012), Fukuoka, Japan, pp. 503–510, 2012.

[45] D. Eswaran and C. Faloutsos, “Sedanspot: Detecting anomalies in edge
streams,” in Proceedings of IEEE International Conference on Data Mining (ICDM

2018), Singapore, pp. 953–958, 2018.

155

[46] Z. Yao, P. Mark, and M. Rabbat, “Anomaly detection using proximity graph and
pagerank algorithm,” IEEE Transactions on Information Forensics and Security

(TIFS), vol. 7, no. 4, pp. 1288–1300, 2012.

[47] H. Avron and L. Horesh, “Community detection using time-dependent person-
alized pagerank,” in Proceedings of International Conference on Machine Learn-

ing (ICML 2015), Lille, France, pp. 1795–1803, 2015.

[48] R. Andersen, F. R. K. Chung, and K. J. Lang, “Local graph partitioning using
pagerank vectors,” in Proceedings of IEEE Symposium on Foundations of Com-

puter Science (FOCS 2006), Berkeley, California, pp. 475–486, 2006.

[49] J. J. Whang, D. F. Gleich, and I. S. Dhillon, “Overlapping community detection
using seed set expansion,” in Proceedings of ACM International Conference on

Information and Knowledge Management (CIKM 2013), San Francisco, CA, USA,
pp. 2099–2108, 2013.

[50] D. F. Gleich and C. Seshadhri, “Vertex neighborhoods, low conductance cuts,
and good seeds for local community methods,” in Proceedings of ACM Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD 2012), Beijing,

China, pp. 597–605, 2012.

[51] Y. Zhou, H. Cheng, and J. X. Yu, “Graph clustering based on structural/a�ribute
similarities,” PVLDB, vol. 2, no. 1, pp. 718–729, 2009.

[52] K. Macropol, T. Can, and A. K. Singh, “RRW: repeated random walks on
genome-scale protein networks for local cluster discovery,” BMC Bioinformat-

ics, vol. 10, p. 283, 2009.

[53] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algorithm
for solving nonsymmetric linear systems,” Journal on Scienti�c and Statistical

Computing, vol. 7, no. 3, pp. 856–869, 1986.

[54] K. Shin, J. Jung, L. Sael, and U. Kang, “BEAR: block elimination approach for
random walk with restart on large graphs,” in Proceedings of ACM Interna-

tional Conference on Management of Data (SIGMOD 2015), Melbourne, Victoria,
pp. 1571–1585, 2015.

156

[55] D. F. Gleich and M. Polito, “Approximating personalized pagerank with min-
imal use of web graph data,” Internet Mathematics, vol. 3, no. 3, pp. 257–294,
2007.

[56] H. Tong, C. Faloutsos, and J. Pan, “Fast random walk with restart and its appli-
cations,” in Proceedings of IEEE International Conference on Data Mining (ICDM

2006), Hong Kong, China, pp. 613–622, 2006.

[57] P. Lofgren, S. Banerjee, A. Goel, and S. Comandur, “FAST-PPR: scaling person-
alized pagerank estimation for large graphs,” in Proceedings of ACM Interna-

tional Conference on Knowledge Discovery and Data Mining (KDD 2014), New

York, NY, USA, pp. 1436–1445, 2014.

[58] W. Xie, D. Bindel, A. J. Demers, and J. Gehrke, “Edge-weighted personalized
pagerank: Breaking A decade-old performance barrier,” in Proceedings of ACM

International Conference on Knowledge Discovery and Data Mining (KDD 2015),

Sydney, NSW, Australia, pp. 1325–1334, 2015.

[59] A. W. Yu, N. Mamoulis, and H. Su, “Reverse top-k search using random walk
with restart,” PVLDB, vol. 7, no. 5, pp. 401–412, 2014.

[60] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and M. Kitsuregawa, “Fast and exact
top-k search for random walk with restart,” PVLDB, vol. 5, no. 5, pp. 442–453,
2012.

[61] Y. Wu, R. Jin, and X. Zhang, “Fast and uni�ed local search for random walk
based k-nearest-neighbor query in large graphs,” in Proceedings of ACM Inter-

national Conference on Management of Data (SIGMOD 2014), Snowbird, UT, USA,
pp. 1139–1150, 2014.

[62] M. S. Gupta, A. Pathak, and S. Chakrabarti, “Fast algorithms for topk person-
alized pagerank queries,” in Proceedings of International Conference on World

Wide Web (WWW 2008), Beijing, China, pp. 1225–1226, 2008.

[63] J. Kunegis, A. Lommatzsch, and C. Bauckhage, “�e slashdot zoo: Mining a
social network with negative edges,” in Proceedings of International Conference

on World Wide Web (WWW 2009), Madrid, Spain, pp. 741–750, 2009.

157

[64] K. D. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: A
collaboratively created graph database for structuring human knowledge,” in
Proceedings of the ACM International Conference on Management of Data (SIG-

MOD 2008), Vancouver, BC, Canada, pp. 1247–1250, 2008.

[65] M. Shahriari and M. Jalili, “Ranking nodes in signed social networks,” Social

Network Analysis and Mining, vol. 4, no. 1, p. 172, 2014.

[66] Z. Wu, C. C. Aggarwal, and J. Sun, “�e troll-trust model for ranking in signed
networks,” in Proceedings of ACM International Conference on Web Search and

Data Mining (WSDM 2016), San Francisco, CA, USA, pp. 447–456, 2016.

[67] N. Lao, T. M. Mitchell, and W. W. Cohen, “Random walk inference and learning
in A large scale knowledge base,” in Proceedings of International Conference on

Empirical Methods in Natural Language Processing (EMNLP 2011), Edinburgh,

UK, pp. 529–539, 2011.

[68] S. Wang, R. Yang, X. Xiao, Z. Wei, and Y. Yang, “FORA: simple and e�ective
approximate single-source personalized pagerank,” in Proceedings of ACM In-

ternational Conference on Knowledge Discovery and Data Mining (KDD 2017),

Halifax, NS, Canada, pp. 505–514, 2017.

[69] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: A peta-scale graph
mining system,” in Proceedings of IEEE International Conference on Data Mining

(ICDM 2009), Miami, Florida, USA, pp. 229–238, 2009.

[70] H. Park, C. Park, and U. Kang, “Pegasusn: A scalable and versatile graph mining
system,” in Proceedings of AAAI Conference on Arti�cial Intelligence (AAAI 2018),

New Orleans, Louisiana, USA, pp. 8214–8215, 2018.

[71] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica,
“Graphx: Graph processing in a distributed data�ow framework,” in Proceed-

ings of USENIX Symposium on Operating Systems Design and Implementation

(OSDI 2014), Broom�eld, CO, USA, pp. 599–613, 2014.

[72] Y. Bu, V. R. Borkar, J. Jia, M. J. Carey, and T. Condie, “Pregelix: Big(ger) graph
analytics on a data�ow engine,” PVLDB, vol. 8, no. 2, pp. 161–172, 2014.

158

[73] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of
the internet topology,” in Proceedings of ACM Conference on Applications, Tech-

nologies, Architectures, and Protocols for Computer Communication (SIGCOMM

1999), Cambridge, Massachuse�s, USA, pp. 251–262, 1999.

[74] D. Cartwright and F. Harary, “Structural balance: a generalization of heider’s
theory.,” Psychological Review, vol. 63, no. 5, p. 277, 1956.

[75] F. Heider, “A�itudes and cognitive organization,” �e Journal of Psychology,
vol. 21, no. 1, pp. 107–112, 1946.

[76] J. Jung, K. Shin, L. Sael, and U. Kang, “Random walk with restart on large graphs
using block elimination,” ACM Transactions on Database Systems (TODS),
vol. 41, no. 2, pp. 12:1–12:43, 2016.

[77] Y. Saad, “A �exible inner-outer preconditioned GMRES algorithm,” SIAM Jour-

nal of Scienti�c Computing, vol. 14, no. 2, pp. 461–469, 1993.

[78] L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997.

[79] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, 2003.

[80] J. Jung, N. Park, L. Sael, and U. Kang, “Bepi: Fast and memory-e�cient method
for billion-scale random walk with restart,” in Proceedings of ACM Interna-

tional Conference on Management of Data (SIGMOD 2017), Chicago, Illinois, USA,
pp. 789–804, 2017.

[81] J. Jung, W. Jin, and U. Kang, “Random walk-based ranking in signed social
networks: Model and algorithms,” Knowledge and Information Systems (KAIS),
pp. 1–40, 2019.

[82] H. Tong, C. Faloutsos, and J. Pan, “Random walk with restart: Fast solutions
and applications,” Knowledge and Information Systems (KAIS), vol. 14, no. 3,
pp. 327–346, 2008.

[83] A. N. Langville and C. D. Meyer, Google’s PageRank and Beyond: the Science of

Search Engine Rankings. Princeton University Press, 2011.

159

[84] Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa, and M. Onizuka, “E�-
cient personalized pagerank with accuracy assurance,” in Proceedings of ACM

International Conference on Knowledge Discovery and Data Mining (KDD 2012),

Beijing, China, pp. 15–23, 2012.

[85] B. Bahmani, K. Chakrabarti, and D. Xin, “Fast personalized pagerank on mapre-
duce,” in Proceedings of ACM International Conference on Management of Data

(SIGMOD 2011), Athens, Greece, pp. 973–984, 2011.

[86] T. H. Kim, K. M. Lee, and S. U. Lee, “Generative image segmentation using
random walks with restart,” in Proceedings of European Conference on Computer

Vision (ECCV 2008), Marseille, France, pp. 264–275, 2008.

[87] S. Zhu, L. Zou, and B. Fang, “Content based image retrieval via a transductive
model,” J. Intell. Inf. Syst., vol. 42, no. 1, pp. 95–109, 2014.

[88] Z. Yin, M. Gupta, T. Weninger, and J. Han, “A uni�ed framework for link recom-
mendation using random walks,” in Proceedings of IEEE/ACM International Con-

ference on Advances in Social Networks Analysis and Mining (ASONAM 2010),

Odense, Denmark, pp. 152–159, 2010.

[89] D. Song and D. A. Meyer, “Recommending positive links in signed social net-
works by optimizing a generalized AUC,” in Proceedings of AAAI International

Conference on Arti�cial Intelligence, Austin, Texas, USA, pp. 290–296, 2015.

[90] J. Leskovec, D. P. Hu�enlocher, and J. M. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proceedings of International Confer-

ence on World Wide Web (WWW 2010), Raleigh, North Carolina, USA, pp. 641–
650, 2010.

[91] R. V. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propagation of trust and
distrust,” in Proceedings of International Conference on World Wide Web (WWW

2004), New York, NY, USA, pp. 403–412, 2004.

[92] A. Bordes, N. Usunier, A. Garcı́a-Durán, J. Weston, and O. Yakhnenko, “Trans-
lating embeddings for modeling multi-relational data,” in Proceedings of Ad-

vances in Neural Information Processing Systems (NIPS 2013), Lake Tahoe,

Nevada, USA, pp. 2787–2795, 2013.

160

[93] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embed-
dings for knowledge graph completion,” in Proceedings of AAAI International

Conference on Arti�cial Intelligence (AAAI 2015), Austin, Texas, USA, pp. 2181–
2187, 2015.

[94] I. Antonellis, H. Garcia-Molina, and C. Chang, “Simrank++: �ery rewriting
through link analysis of the click graph,” PVLDB, vol. 1, no. 1, pp. 408–421,
2008.

[95] S. Chakrabarti, A. Pathak, and M. Gupta, “Index design and query processing
for graph conductance search,” VLDB Journal, vol. 20, no. 3, pp. 445–470, 2011.

[96] S. Lee, S. Song, M. Kahng, D. Lee, and S. Lee, “Random walk based entity rank-
ing on graph for multidimensional recommendation,” in Proceedings of ACM

International Conference on Recommender Systems (RecSys 2011), Chicago, IL,

USA, October 23-27, 2011, pp. 93–100, 2011.

[97] K. Kim, J. Jung, J. Ryu, H. Park, J. P. Joohee, S. Jeong, U. Kang, and S. Myaeng,
“A new question answering approach with conceptual graphs,” in COnférence

en Recherche d’Informations et Applications - French Information Retrieval Con-

ference (CORIA 2017), Marseille, France, pp. 218–234, 2017.

[98] U. Kang and C. Faloutsos, “Beyond ’caveman communities’: Hubs and spokes
for graph compression and mining,” in Proceedings of IEEE International Con-

ference on Data Mining (ICDM 2011), Vancouver, BC, Canada, pp. 300–309, 2011.

[99] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2009.

[100] I. S. Du�, R. G. Grimes, and J. G. Lewis, “Sparse matrix test problems,” ACM

Transactions on Mathematical So�ware (TOMS), vol. 15, no. 1, pp. 1–14, 1989.

[101] A. N. Langville and C. D. Meyer, “A reordering for the pagerank problem,” SIAM

Journal of Scienti�c Computing, vol. 27, no. 6, pp. 2112–2120, 2006.

[102] F. Zhang, �e Schur Complement and Its Applications, vol. 4. Springer Science
& Business Media, 2006.

161

[103] M. Benzi, “Preconditioning techniques for large linear systems: A survey,” Jour-

nal of Computational Physics, vol. 182, no. 2, pp. 418–477, 2002.

[104] M. Benzi, C. D. Meyer, and M. Tuma, “A sparse approximate inverse precondi-
tioner for the conjugate gradient method,” SIAM Journal of Scienti�c Comput-

ing, vol. 17, no. 5, pp. 1135–1149, 1996.

[105] C. D. Meyer, Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

[106] M. Szell, R. Lambio�e, and S. �urner, “Multirelational organization of large-
scale social networks in an online world,” Proceedings of the National Academy

of Sciences, vol. 107, no. 31, pp. 13636–13641, 2010.

[107] B. Yang, W. K. Cheung, and J. Liu, “Community mining from signed social net-
works,” IEEE Transactions on Knowledge and Data Engineering (TKDE), vol. 19,
no. 10, pp. 1333–1348, 2007.

[108] M. Yoon, W. Jin, and U. Kang, “Fast and accurate random walk with restart on
dynamic graphs with guarantees,” in Proceedings of International Conference on

World Wide Web (WWW 2018), Lyon, France, pp. 409–418, 2018.

[109] M. Yoon, J. Jung, and U. Kang, “TPA: fast, scalable, and accurate method for
approximate random walk with restart on billion scale graphs,” in Proceedings

of IEEE International Conference on Data Engineering (ICDE 2018), Paris, France,
pp. 1132–1143, 2018.

[110] A. Mishra and A. Bha�acharya, “Finding the bias and prestige of nodes in
networks based on trust scores,” in Proceedings of International Conference on

World Wide Web (WWW 2011), Hyderabad, India, pp. 567–576, 2011.

[111] M. E. Taylor, Measure �eory and Integration. American Mathematical Society,
2006.

[112] D. A. Easley and J. M. Kleinberg, Networks, Crowds, and Markets - Reasoning

About a Highly Connected World. Cambridge University Press, 2010.

[113] J. Leskovec, D. P. Hu�enlocher, and J. M. Kleinberg, “Signed networks in social
media,” in Proceedings of International Conference on Human Factors in Comput-

ing Systems (CHI 2010), Atlanta, Georgia, USA, pp. 1361–1370, 2010.

162

[114] J. A. Davis, “Clustering and structural balance in graphs,” Human Relations,
vol. 20, no. 2, pp. 181–187, 1967.

[115] G. Strang, Linear Algebra and Its Applications. �omson, Brooks/Cole, 2006.

[116] C. F. V. Loan, “Matrix computations (johns hopkins studies in mathematical
sciences),” 1996.

[117] Y. Lim, U. Kang, and C. Faloutsos, “Slashburn: Graph compression and min-
ing beyond caveman communities,” IEEE Transactions on Knowledge and Data

Engineering (TKDE), vol. 26, no. 12, pp. 3077–3089, 2014.

[118] A. X. Zheng, A. Y. Ng, and M. I. Jordan, “Stable algorithms for link analysis,”
in Proceedings of ACM International Conference on Research and Development in

Information Retrieval (SIGIR 2001), New Orleans, Louisiana, USA, pp. 258–266,
2001.

[119] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Sci-

ence, vol. 286, no. 5439, pp. 509–512, 1999.

[120] B. Perozzi, M. Schueppert, J. Saalweachter, and M. �akur, “When recommen-
dation goes wrong: Anomalous link discovery in recommendation networks,”
in Proceedings of ACM International Conference on Knowledge Discovery and

Data Mining (KDD 2016), San Francisco, CA, USA, pp. 569–578, 2016.

[121] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen, “Distance oracles in edge-
labeled graphs,” in Proceedings of International Conference on Extending

Database Technology (EDBT 2014), Athens, Greece, pp. 547–558, 2014.

[122] G. A. Miller, “Wordnet: A lexical database for english,” Communications of the

ACM, vol. 38, no. 11, pp. 39–41, 1995.

[123] J. J. McAuley and J. Leskovec, “Learning to discover social circles in ego net-
works,” in Proceedings of Advances in Neural Information Processing Systems

(NIPS 2012), Lake Tahoe, Nevada, USA, pp. 548–556, 2012.

[124] D. Eswaran, S. Günnemann, C. Faloutsos, D. Makhija, and M. Kumar, “Zoobp:
Belief propagation for heterogeneous networks,” PVLDB, vol. 10, no. 5, pp. 625–
636, 2017.

163

[125] D. Koutra, T. Ke, U. Kang, D. H. Chau, H. K. Pao, and C. Faloutsos, “Unifying
guilt-by-association approaches: �eorems and fast algorithms,” in Proceedings

of Machine Learning and Knowledge Discovery in Databases - European Confer-

ence (ECML–PKDD 2011), Athens, Greece, pp. 245–260, 2011.

[126] M. Latapy, “Main-memory triangle computations for very large (sparse (power-
law)) graphs,” �eoretical Computer Science, vol. 407, no. 1-3, pp. 458–473, 2008.

[127] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann,
S. Sun, and W. Zhang, “Knowledge vault: A web-scale approach to probabilistic
knowledge fusion,” in Proceedings of ACM International Conference on Knowl-

edge Discovery and Data Mining (KDD 2014), New York, NY, USA, pp. 601–610,
2014.

[128] X. Wang, C. V. Eeden, and J. V. Zidek, “Asymptotic properties of maximum
weighted likelihood estimators,” Journal of Statistical Planning and Inference,
vol. 119, no. 1, pp. 37–54, 2004.

[129] A. J. Laub, Matrix Analysis - for Scientists and Engineers. SIAM, 2005.

[130] P. Massa and P. Avesani, “Controversial users demand local trust metrics: An
experimental study on epinions.com community,” in Proceedings of AAAI Inter-

national Conference on Arti�cial Intelligence (AAAI 2005), Pi�sburgh, Pennsyl-

vania, USA, pp. 121–126, 2005.

[131] R. Socher, D. Chen, C. D. Manning, and A. Y. Ng, “Reasoning with neural tensor
networks for knowledge base completion,” in Proceedings of Advances in Neural

Information Processing Systems (NIPS 2013), Lake Tahoe, Nevada, USA, pp. 926–
934, 2013.

[132] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A semantic matching energy
function for learning with multi-relational data - application to word-sense
disambiguation,” Machine Learning, vol. 94, no. 2, pp. 233–259, 2014.

[133] J. Leskovec, D. P. Hu�enlocher, and J. M. Kleinberg, “Governance in social me-
dia: A case study of the wikipedia promotion process,” in Proceedings of Inter-

national Conference on Weblogs and Social Media (ICWSM 2010), Washington,

DC, USA, 2010.

164

[134] P. Massa, M. Salve�i, and D. Tomasoni, “Bowling alone and trust decline in so-
cial network sites,” in Proceedings of IEEE International Conference on Depend-

able, Autonomic and Secure Computing (DASC 2009), Chengdu, China, pp. 658–
663, 2009.

[135] J. Tang, M. �, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: large-scale in-
formation network embedding,” in Proceedings of International Conference on

World Wide Web (WWW 2015), Florence, Italy, pp. 1067–1077, 2015.

[136] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,”
in Proceedings of ACM International Conference on Knowledge Discovery and

Data Mining (KDD 2016), San Francisco, CA, USA, pp. 855–864, 2016.

[137] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures
for classi�cation tasks,” Information Processing & Management, vol. 45, no. 4,
pp. 427–437, 2009.

[138] K. Murphy, “Machine learning: A probabilistic approach,” Massachuse�s Insti-

tute of Technology, pp. 1–21, 2012.

[139] J. Jang, D. Choi, J. Jung, and U. Kang, “Zoom-svd: Fast and memory e�cient
method for extracting key pa�erns in an arbitrary time range,” in Proceedings

of ACM International Conference on Information and Knowledge Management

(CIKM 2018), Torino, Italy, pp. 1083–1092, 2018.

[140] J. Jung, H.-M. Park, and U. Kang, “Balansing: Fast and scalable generation of re-
alistic signed networks,” in Proceedings of International Conference on Extending

Database Technology (EDBT 2020), Copenhagen, Denmark, 2020.

[141] J. Demmel, Applied Numerical Linear Algebra. SIAM, 1997.

165

Appendix

A.1 Hub-and-Spoke Reordering Method

(a) Step 1 (b) Step 2 (c) Step 3

Figure A.1: Node reordering based onhub-and-spokemethodwhen dkne= 1 where dkne
indicates the number of selected hubs at each step, and k is the hub selection ratio (0 < k < 1).
Red nodes are hubs; blue nodes are spokes that belong to the disconnected components; green
colored are nodes that belong to the giant connected component. At Step 1 in (a), the method
disconnects a hub node, and assigns node ids as shown in (b). �e hub node gets the highest
id (14), the spoke nodes get the lowest ids (1∼ 7), and the GCC gets the middle ids (8∼ 13).
�e next iteration starts on the GCC in (b), and the node ids are assigned as in (c)

SlashBurn [98, 117] is a node reordering algorithm which concentrates non-

zero entries of the adjacency matrix of a given graph based on the hub-and-spoke

structure. Let n be the number of nodes in a graph, and k be the hub selection ratio

whose range is between 0 and 1 where dkne indicates the number of nodes selected by

SlashBurn as hubs. For each iteration, SlashBurn disconnects dkne high degree nodes,

called hub nodes, from the graph; then the graph is split into the giant connected

component (GCC) and the disconnected components. �e nodes in the disconnected

components are called spokes, and each disconnected component forms a block in the

matrix as in Figures 3.2(c) and 4.6. �en, SlashBurn reorders nodes such that the hub

nodes get the highest ids, the spokes get the lowest ids, and the nodes in the GCC get

166

the ids in the middle. SlashBurn repeats this procedure on the GCC recursively until

the size of GCC becomes smaller than dkne. A�er SlashBurn is done, the reordered

adjacency matrix contains a large and sparse block diagonal matrix in the upper le�

area, as shown in Figures 3.2(c) and 4.6. Figure A.1 depicts the procedure of SlashBurn

when dkne= 1.

A.2 Time Complexity of Sparse Matrix Multiplica-

tion

Lemma A.1 (Sparse Matrix Multiplication [79]). Suppose that A and B are p×q and

q× r sparse matrices, respectively, and A has nnz(A) non-zeros. Calculating C = AB

using sparse matrix multiplication requires O(nnz(A)r).

A.3 Details of Preconditioned GMRES

Preconditioned GMRES [77, 78] computes the solution r2 of the preconditioned linear

system in Equation (3.9), M−1Sr2 = M−1q̃2, where S is incomplete LU decomposed

into L̃2 and Ũ2, and M−1 = Ũ−1
2 L̃−1

2 is a preconditioner. Algorithm 12 describes the

procedure of preconditioned GMRES. It iteratively �nds r(i)2 which minimizes the

residual ‖M−1(Sr(i)2 − q̃2)‖2 such that r(i)2 is in the i-th order preconditioned Krylov

subspace Ki represented as follows:

Ki = {M−1q̃2,(M−1S)M−1q̃2, ...,(M−1S)i−1M−1q̃2}.

Since the vectors consisting of the Krylov subspace Ki are almost linearly de-

pendent, directly �nding the solution using the vectors as basis could be unstable.

167

Algorithm 12: Preconditioned GMRES [77, 78]
Input: matrix: S, vector: q̃2, preconditioner: L̃2 and Ũ2,

error tolerance: ε

Output: solution: r2 of the preconditioned system in Equation (3.9)
1: t = Ũ−1

2 (L̃−1
2 q̃2)⇔ Ũ2\B(L̃2\F q̃2)

2: p1 = t/‖t‖2
3: for i=1:n2 do

�nd an orthonormal vector pi+1 against {p1, ...,pi} in Ki+1 using the following
iteration (lines 4∼10), called Arnoldi Iteration [78]

4: v = Ũ−1
2 (L̃−1

2 (Spi))⇔ Ũ2\B(L̃2\F(Spi))
5: for j=1:i do
6: h j,i = pT

j v
7: v = v−h j,ip j
8: end for

9: hi+1,i = ‖v‖2
10: pi+1 = v/hi+1,i
11: solve y∗← argminy ‖Hiy−‖t‖2e1‖2 using a linear least square method (e.g., QR

decomposition)
12: r(i)2 = Piy∗
13: if ‖Hiy∗−‖t‖2e1‖2 < ε then

14: r2← r(i)2 ; break
15: end if

16: end for

17: return r2

Instead, preconditioned GMRES �nds r(i)2 in a subspace generated by the orthonor-

mal vectors {p1, ...,pi} in Ki, which are iteratively computed by Arnoldi Iteration

(lines 4∼10). �e solution r(i)2 is Piy where Pi =

[
p1, ...,pi

]
is an orthonormal matrix

and y ∈Rn. �en, the partial similarity transformation of M−1S by Arnoldi Iteration

at the i-th iteration is represented as follows:

(M−1S)Pi = Pi+1Hi

where Hi is a Hessenberg matrix in R(i+1)×i and h j,k is the (j,k)-th entry of Hi. Since

the columns of Pi are orthonormal (i.e., PT
iPi = I) and r(i)2 = Piy, the original residual

168

is modi�ed as follows:

‖M−1(Sr(i)2 − q̃2)‖2⇒‖Pi+1Hiy−M−1q̃2‖2

⇒‖Hiy−PT
i+1M−1q̃2‖2⇒‖Hiy−‖M−1q̃2‖2e1‖2

Note that we exploit p1 = (M−1q̃2)/‖M−1q̃2‖2 (lines 1∼2) for the last transfor-

mation. Consequently, preconditioned GMRES �nds y∗ which minimizes the modi-

�ed residual ‖Hiy−‖M−1q̃2‖2e1‖2 using a linear least square method such as QR

decomposition (line 11); and then, it computes the solution r(i)2 based on y∗ (line 12).

Preconditioned GMRES repeats the procedure for �nding r(i)2 until the residual is less

than ε (line 13).

Note that we do not need to obtain M−1 = Ũ−1
2 L̃−1

2 if M consists of triangular

matrices. For example, when we should perform an operation in the form of z =

Ũ−1
2 (L̃−1

2 w) (lines 1 and 4), forward and backward substitutions e�ciently compute

z without matrix inversion [141], i.e., z = Ũ2\B(L̃2\Fw) where \F and \B are de�ned

as follows:

• Forward substitution \F : x = L−1b⇔ x = L\Fb where L is a lower triangular

matrix.

• Backward substitution \B: x = U−1b⇔ x = U\Bb where U is an upper trian-

gular matrix.

�e time complexity of the substitution algorithms is the same as that of matrix-

vector multiplication [141]. Hence, preconditioned GMRES e�ciently �nds r2 of the

preconditioned system without inverting L̃2 and Ũ2.

169

A.4 Detailed Description of Evaluation Metrics

We describe the details of metrics used in the link prediction and the troll identi�ca-

tion tasks. �e metrics for the sign prediction task is described in Section 4.4.5.

A.4.1 Link Prediction

• GAUC (Generalized AUC): Song et al. [89] proposed GAUC which measures the

quality of link prediction in signed networks. An ideal personalized ranking

w.r.t. a seed node s needs to rank nodes with positive links to s at the top,

those with negative links at the bo�om, and other unknown status nodes in the

middle of the ranking. For a seed node s, suppose that Ps is the set of positive

nodes potentially connected by s, Ns is that of negative nodes, and Os is that

of the other nodes. �en, GAUC of the personalized ranking w.r.t. s is de�ned

as follows:

GAUCs =
η

|Ps|(|Os|+ |Ns|)

∑
p∈Ps

∑
i∈Os∪Ns

I(rp > ri)

+

1−η

|Ns|(|Os|+ |Ps|)

 ∑
i∈Os∪Ps

∑
n∈Ns

I(ri < rn)

where η = |Ps|

|Ps|+|Ns| is the relative ratio of the number of positive edges and

that of negative edges, and I(·) is an indicator function that returns 1 if a given

predicate is true, or 0 otherwise. GAUC will be 1.0 for the perfect ranking list

and 0.5 for a random ranking list [89].

• AUC (Area Under the Curve): AUC of the personalized ranking scores r w.r.t.

170

seed node s in signed networks is de�ned as follows [89]:

AUCs =
1

|Ps||Ns|
∑
p∈Ps

∑
n∈Ns

I(rp > rn)

where Ps is the set of positive nodes potentially connected by s, and Ns is the set

of negative nodes. I(·) is an indicator function that returns 1 if a given predicate

is true, or 0 otherwise. With an ideal ranking list, AUC should be 1 represent-

ing each positive sample is ranked higher than all the negative samples. For

a random ranking, AUC will be 0.5. However, AUC is not a satisfactory met-

ric for the link prediction task in signed networks because AUC is designed for

two classes (positive and negative) while the link prediction in signed networks

should consider three classes (positive, unknown, and negative) as described in

the above.

A.4.2 Troll Identi�cation

Suppose that we have a personalized ranking R in the ascending order of the trust-

worthiness scores w.r.t. a seed node (i.e., a node with a low score is ranked high) to

have the same e�ect of searching trolls in the bo�om of the original ranking in the

descending order of those scores.

• MAP@k (Mean Average Precision): MAP@k is the mean of average precisions,

AP@k, for multiple queries. Suppose that there are l trolls to be captured. �en,

AP@k is de�ned as follows:

AP@k =
1

min(l,k)

(∑
t∈T

Precision@t

)

where Precision@t is the precision at the cut-o� t . Note that T = {t|I(R [t]) =

171

1 for 1≤ t ≤ k}where R [t] denotes the user ranked at position t in the ranking

R , and I(R [t]) is 1 if R [t] is a troll. For N queries, MAP@k is de�ned as follows:

MAP@k =
1
N

(
N∑

i=1

AP@k

)

• NDCG@k (Normalized Discount Cumulative Gain): NDCG is the normalized

value of Discount Cumulative Gain (DCG), which is de�ned as follows:

DCG@k = rel1 +
k∑

i=2

reli
log2(i)

, and NDCG@k =
DCG@k
IDCG@k

where reli is the user-graded relevance score for the i-th ranked item. �en,

NDCG@k is obtained by normalizing using Ideal DCG(IDCG) which is the DCG

for the ideal order of ranking.

• Precision@k and Recall@k: Precision@k (Recall@k) is the precision (recall) at

the cut-o� k in a ranking. Precision@k is the ratio of identi�ed trolls in top-k

ranking, and Recall@k is the ratio of identi�ed trolls in the total trolls.

• MRR (Mean Reciprocal Rank): MRR@k is the mean of the reciprocal rank (RR)

for each the top-k query response. RR is the multiplicative inverse of the rank

of the �rst correct answer. Hence, for N multiple queries, MRR@k is de�ned as

follows:

MRR@k =
1
N

N∑
i=1

1
ranki

where ranki is the rank position of the �rst relevant item in the top-k ranking.

If there is no relevant item in the ranking for the i-th query, the inverse of the

rank, ranki
−1, becomes zero.

172

A.5 Discussion onRelativeTrustworthiness of SRWR

In Section 4.3.1, we de�ne the relative trustworthiness r = r+− r− where r+ is for

positive SRWR scores, and r− is for negative SRWR ones. We show that r+ and r−

are measures, and r is a signed measure using de�nitions from measure theory [111].

We �rst introduce the de�nition of measure as follows:

De�nition A.1 (Measure [111]). A measure µ on a (�nite) set Ω with σ-algebra A is

a function µ : A → R≥0 such that

1. (Non-negativity) µ(E)≥ 0 ∀E ∈ A ,

2. (Null empty set) µ(/0) = 0,

3. (Countable additivity) µ(
⋃

∞

i=1 Ei) =
∑

∞

i=1 Ei for any sequence of pairwise disjoint

sets, E1,E2, · · · ∈ A

where σ-algebra A on Ω is a collection A ⊆ 2Ω s.t. it is nonempty, and closed under com-

plements (i.e., E ∈A⇒ Ec ∈A) and countable unions (i.e., E1,E2, · · · ∈A⇒
⋃

∞

i=1 Ei ∈

A). �e pair of (Ω,A) is called measurable space. �

In probability theory, σ-algebra A describes all possible events to be measured

as probability. Note that r+ and r− are joint probabilities of nodes and signs, i.e.,

r+u = P(N = u,S = +) and r−u = P(N = u,S = −) where N is a random variable of

nodes, and S is a random variable of the surfer’s sign. Note that N takes an item

from σ-algebra A . �e following property shows that r+ and r− are (non-negative)

measures.

Property 5. Suppose Ω is the set V of nodes, and σ-algebra A on Ω is 2Ω. Let µ+ =

P(N,S =+) and µ− = P(N,S =−). �en, both µ+ and µ− are (non-negative) measures

according to De�nition A.1.

173

Proof. For any E ∈ A , µ+(E) ≥ 0 and µ+(/0) = 0 are obviously true since P(N,S =

+) is a probability; hence, P(E,S = +) ≥ 0 and P(/0,S = +) = 0. Let (En)n∈N be a

sequence of pairwise disjoint sets where En ∈ A . Since the sets in the sequence are

mutually disjoint, the following holds:

P

(⋃
n∈N

En,S =+

)
=
∑
n∈N

P(En,S =+)

�erefore, µ+ = P(N,S =+) is a measure by De�nition A.1. Similarly, µ− = P(N,S =

−) is also a measure.

Next, we introduce the de�nition of signed measure, a generalized version of

measure by allowing it to have negative values.

De�nition A.2 (Signed Measure [111]). Given a set Ω and σ-algebra A , a signed

measure on (Ω,A) is a function µ : A → R such that

1. (Real value) µ(E) takes a real value in R,

2. (Null empty set) µ(/0) = 0,

3. (Countable additivity) µ(
⋃

∞

i=1 Ei) =
∑

∞

i=1 Ei for any sequence of pairwise disjoint

sets, E1,E2, · · · ∈ A �

Note that electric charge is a representative example of signed measure. �en,

the following lemma indicates the di�erence between two non-negative measures is

a signed measure.

Lemma A.2 (Di�erence Between Two Non-negative Measures [111]). Suppose

we are given non-negative measure µ+ and µ− on the same measurable space (Ω,A).

�en, µ = µ+−µ− is a signed measure.

174

Proof. Since µ+ and µ− are non-negative, µ is located between−∞ and ∞. Also, µ(/0)=

µ+(/0)−µ−(/0) = 0. Moreover, µ is countable additive, i.e.,

µ

(
∞⋃

i=1

Ei

)
= µ+

(
∞⋃

i=1

Ei

)
−µ−

(
∞⋃

i=1

Ei

)
=

∞∑
i=1

(
µ+(Ei)−µ−(Ei)

)
=

∞∑
i=1

µ(Ei)

Hence, µ = µ+−µ− is a signed measure according to De�nition A.2.

Lemma A.2 implies that the relative trustworthiness r = r+ − r− is a signed

measure. �e trustworthiness ru measures a degree of trustworthiness between seed

node s and node u: if ru > 0, seed node s is likely to trust node u as much as ru while

if ru < 0, s is likely to distrust u as much as ru.

175

요 약

다양한 실세계 자연 현상에서의 관계들은 소셜 네트워크, 하이퍼링크 네트워크와

단백질 상호작용 네트워크와 같이 정점과 간서의 그래프로 표현된다. 이러한 네트

워크를 분석하는 것은 실세계의 현상을 이해하는데 매우 중요하다. 다양한 그래프

분석기법중에랜덤워크라는기법이만족스러운성능과함께많은그래프마이닝응

용에널리활용되어왔다.그러나대다수의실세계그래프는그규모가굉장히크고

다양한라벨정보와함께복잡하게표현된다.전통적인랜덤워크기반의기법들은

계산량이 많이 요구되고, 랜덤 워크를 하는데 있어서 다양한 라벨 정보를 전혀 고

려하지않아라벨로표현되는그래프의고유한특성이무시되게된다.그래서이와

같이복잡하면서대규모그래프에서는랜덤워크의실질적활용이제한되어왔다.

본학위논문에서는랜덤워크기반의대규모실세계그래프분석의기술적한계

를해결하고자한다.실세계그래프는고유한구조적특징들을가지고있으며이러한

구조적특징들은속도와품질의측면에서랜덤워크의성능을향상시키는데기반이

될수있다.이러한아이디어를활용하여,대규모의라벨이없는일반적인네트워크

에서 랜덤 워크 기반의 개인화된 정점 랭킹 계산을 빠르고, 확장성 있고 정확하게

구하는기법을제안한다.또한부호화된네트워크또는지식베이스와같은라벨이

있는그래프에서개인화된정점랭킹과관계추론을위한랜덤워크기반의모델을

제안한다.

다양한실세계그래프에서광범위한실험을통해본학위논문에의해제안된

방법과모델의효과성을보인다.제안하는방법은다른경쟁기법들과비교했을때

최대 100배 더 큰 그래프를 처리할 수 있고, 최대 130배 적게 메모리를 사용하면서,

최대 9배빠른속도를보이며,결과적으로수십억규모의그래프에서랜덤워크기반

의개인화된정점랭킹을성공적으로구할수있다.또한,제안하는랜덤워크기반의

176

모델들은 부호화된 네트워크와 지식 베이스와 같은 라벨이 있는 그래프에서 부호

예측,간선예측,이상현상탐지,관계추론등의다양한응용에서다른경쟁모델들

보다더좋은예측성능을보인다.

주요어 : 그래프마이닝,그래프랜덤워크,랜덤워크와재시작모델,실세계그래프

특징,대규모그래프,부호화된네트워크,간선라벨이있는그래프

학번 : 2015-31053

177

	Abstract
	Contents
	List of Figures
	List of Tables
	Chapter Overview
	Motivation
	Research Statement
	Research Goals and Importance
	Technical Challenges
	Main Approaches
	Contributions
	Overall Impact

	Thesis Organization

	Chapter Background
	Definitions
	Notations on Graphs
	Random Walk with Restart

	Related Works
	Previous Methods for RWR in Plain Graphs
	Ranking Models in Signed Networks
	Relational Reasoning Models in Edge-labeled Graphs

	Chapter Fast and Scalable Ranking in Large-scale Plain Graphs
	Introduction
	Preliminaries
	Iterative Methods for RWR
	Preprocessing Methods for RWR

	Proposed Method
	Overview
	BePI-B: Exploiting Graph Characteristics for Node Reordering and Block Elimination
	BePI-B: Incorporating an Iterative Method into Block Elimination
	BePI-S: Sparsifying the Schur Complement
	BePI: Preconditioning a Linear System for the Iterative Method

	Theoretical Results
	Time Complexity
	Space Complexity
	Accuracy Bound
	Lemmas and Proofs

	Experiments
	Experimental Settings
	Preprocessing Cost
	Query Cost
	Scalability
	Effects of Sparse Schur Complement and Preconditioning
	Effects of the Hub Selection Ratio
	Accuracy
	Comparison with the-State-of-the-Art Method

	Summary

	Chapter Personalized Ranking in Signed Graphs
	Introduction
	Problem Definition
	Proposed Method
	Signed Random Walk with Restart Model
	SRWR-Iter: Iterative Algorithm for Signed Random Walk with Restart
	SRWR-Pre: Preprocessing Algorithm for Signed Random Walk with Restart

	Experiments
	Experimental Settings
	Link Prediction Task
	User Preference Preservation Task
	Troll Identification Task
	Sign Prediction Task
	Effectiveness of Balance Attenuation Factors
	Performance of SRWR-Pre

	Summary

	Chapter Relational Reasoning in Edge-labeled Graphs
	Introduction
	Preliminary
	Proposed Method
	Label Transition Observation
	Learning Label Transition Probabilities
	Multi-Labeled Random Walk with Restart
	Formulation for MuRWR
	Algorithm for MuRWR

	Theoretical Results
	Lemma for Solution of Label Transition Probabilities and Convexity
	Lemma for Recursive Equation of MuRWR Score Matrix
	Lemma for Spectral Radius in Convergence Theorem
	Lemma for Complexity Analysis

	Experiment
	Experimental Settings
	Relation Inference Task
	Effects of Label Weights in MuRWR
	Effects of Restart Probability in MuRWR
	Convergence of MuRWR

	Summary

	Chapter Future Works
	Fast and Accurate Pseudoinverse Computation
	Fast and Scalable Signed Network Generation
	Disk-based Algorithms for Random Walk

	Chapter Conclusion
	References
	Appendix
	Hub-and-Spoke Reordering Method
	Time Complexity of Sparse Matrix Multiplication
	Details of Preconditioned GMRES
	Detailed Description of Evaluation Metrics
	Link Prediction
	Troll Identification

	Discussion on Relative Trustworthiness of SRWR
	Abstract in Korean

