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Abstract
How can we augment a dynamic graph for improving the
performance of dynamic graph neural networks? Graph aug-
mentation has been widely utilized to boost the learning per-
formance of GNN-based models. However, most existing ap-
proaches only enhance spatial structure within an input static
graph by transforming the graph, and do not consider dy-
namics caused by time such as temporal locality, i.e., recent
edges are more influential than earlier ones, which remains
challenging for dynamic graph augmentation. In this work,
we propose TIARA (Time-aware Random Walk Diffusion),
a novel diffusion-based method for augmenting a dynamic
graph represented as a discrete-time sequence of graph snap-
shots. For this purpose, we first design a time-aware random
walk proximity so that a surfer can walk along the time di-
mension as well as edges, resulting in spatially and tempo-
rally localized scores. We then derive our diffusion matrices
based on the time-aware random walk, and show they become
enhanced adjacency matrices that both spatial and temporal
localities are augmented. Throughout extensive experiments,
we demonstrate that TIARA effectively augments a given dy-
namic graph, and leads to significant improvements in dy-
namic GNN models for various graph datasets and tasks.

Introduction
Dynamic graphs represent various real-world relationships
that dynamically occur over time. Learning such dynamic
graphs has recently attracted considerable attention from
machine learning communities (Skarding, Gabrys, and Mu-
sial 2021; Han et al. 2021), and plays a crucial role in diverse
applications such as link prediction (Yang et al. 2021; Pareja
et al. 2020), node or edge classification (Xu et al. 2019;
Pareja et al. 2020), time-series traffic forecasting (Wu et al.
2020; Guo et al. 2019), knowledge completion (Jung, Jung,
and Kang 2021), and pandemic forecasting (Panagopoulos,
Nikolentzos, and Vazirgiannis 2021). Over the last years,
many researchers have put tremendous effort into develop-
ing interesting methods by sophisticatedly fusing GNNs and
recurrent neural networks (RNN) or attention mechanisms
for continuous-time (Xu et al. 2020; Rossi et al. 2020) and
discrete-time (Seo et al. 2018; Pareja et al. 2020; Yang et al.
2021) dynamic graphs.
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With the astonishing progress of GNNs, diverse augmen-
tation techniques (Zhao et al. 2022; Yoo, Shim, and Kang
2022) have been proposed to increase the generalization
power of GNN models, especially on a static graph. Previ-
ous approaches mainly transform the topological structure of
the input graph. For example, drop-based methods stochasti-
cally remove a certain number of edges (Rong et al. 2020) or
nodes (Feng et al. 2020) at each training epoch in a similar
manner to dropout regularization. On the contrary, diffusion
methods (Klicpera, Weißenberger, and Günnemann 2019)
insert additional edges having weights scored by graph dif-
fusions such as Personalized PageRank (Tong, Faloutsos,
and Pan 2006), thereby augmenting a spatial locality around
each node and improving graph convolution.

However, the aforementioned techniques assume to aug-
ment data within a static graph, and dynamic graph augmen-
tation problem has not yet been comprehensively studied.
Unlikely static graphs, dynamic graphs change or evolve
over time by their nature; thus, dynamic graph augmenta-
tion needs to simultaneously consider temporal dynamics as
well as spatial structure. More specifically, as verified in pre-
vious works (Rossi et al. 2020; Shin 2017; Lee, Shin, and
Faloutsos 2020), real-world dynamic graphs exhibit tempo-
ral locality indicating that graph objects such as nodes and
triangles tend to be more affected by more recent edges than
older ones, i.e., edges closer to a specific object in time are
more likely to provide important information. Naively ap-
plying a static augmentation method to each time step can-
not consider such a temporal locality.

In this work, we propose TIARA (Time-aware Random
Walk Diffusion), a novel diffusion-based augmentation
method for a discrete-time dynamic graph which is repre-
sented by a temporal sequence of graph snapshots. TIARA
aims to augment both spatial and temporal localities of each
graph snapshot. For this purpose, we design a time-aware
random walk that a surfer randomly moves around nodes
or a time-axis to measure spatially and temporally localized
scores. We then derive time-aware random walk diffusion
from the scores, and interpret it as the combination of spatial
and temporal augmenters. Our diffusion matrices are used as
augmented adjacency matrices for any dynamic GNN mod-
els in discrete-time domain. We further adopt approximate
techniques such as power iteration and sparsification to re-
duce a heavy cost for computing the diffusion matrices.



Our contributions are summarized as follows:

• Method. We propose TIARA, a novel and model-
agnostic method for dynamic graph augmentation us-
ing time-aware random walks. TIARA strengthens not
only a spatial locality but also a temporal locality of a
dynamic graph so that dynamic GNNs perform better.

• Analysis. We analyze how TIARA augments both spa-
tial and temporal localities (Theorem 1) and complex-
ities of TIARA (Theorem 2) in real dynamic graphs.

• Experiments. We demonstrate that TIARA effectively
augments a given dynamic graph, and leads to consis-
tent improvements in GNNs for temporal link predic-
tion and node classification tasks.

The code of TIARA and the datasets are publicly available
at https://github.com/dev-jwel/TiaRa.

Related Work
Augmentation for Static GNNs. Graph augmenta-
tion (Zhao et al. 2022) aims to reduce over-fitting for
training GNN models by modifying an input graph. DropE-
dge (Rong et al. 2020) or DropNode (Feng et al. 2020)
randomly drop edges or nodes at each epoch. These aug-
ment the diversity of the input graph by creating different
copies sampled from the graph. GDC (Klicpera, Weißen-
berger, and Günnemann 2019) adds new edges weighted
by a graph diffusion derived from node proximities. GDC
boosts a spatial locality of the graph so that a GNN can
consider adjacent nodes as well as distant ones during their
convolutions, enhancing its representation power. However,
most of existing methods are limited to augment dynamic
graphs because they do not consider temporal properties.

GNNs and Augmentation for Dynamic Graphs. Dy-
namic graphs (Kazemi et al. 2020) are categorized as:
discrete-time dynamic graphs (DTDG) and continuous-time
dynamic graphs (CTDG) where a DTDG is represented as
a sequence of graph snapshots with multiple discrete time
steps while a CTDG is represented as a set of temporal edges
whose time-stamps have continuous values. It is straight-
forward to convert a CTDG to a DTDG by distributing the
continuous-time edges into multiple bins in chronological
order, but the reverse is not possible because continuous-
time values are generally lacked in most DTDGs (Yang et al.
2021), i.e., models for DTDGs can be applied to CTDGs, but
the reverse is rather limited. Hence, we narrow our focus to
representation learning on DTDGs.

Dynamic GNNs have rapidly advanced under the frame-
work that closely integrates GNNs and temporal sequence
models such as RNNs to capture spatial and temporal re-
lations on dynamic graphs (Skarding, Gabrys, and Musial
2021). GCRN (Seo et al. 2018) uses a GCN to produce
node embeddings on each graph snapshot, and then for-
wards them to an LSTM for modeling temporal dynamics.
STAR (Xu et al. 2019) utilizes a GRU combined with spatial
and temporal attention. DySat (Sankar et al. 2020) employs a
self-attention strategy to aggregate spatial neighborhood and
temporal dynamics. EvolveGCN (Pareja et al. 2020) evolves
the parameters of GCNs using RNNs. To consider hierar-

chical properties in real graphs, HTGN (Yang et al. 2021)
extends the framework to hyperbolic space.

As a related method, MeTA (Wang et al. 2021) adaptively
augments a temporal graph based on predictions of a tem-
poral graph network, which perturbs time and removes or
adds edges. However, it is difficult to employ MeTA for the
aforementioned DTDG models because MeTA is designed
for CTDGs requiring continuous-time values.

Preliminaries
Random Walk with Restart (RWR). Our work is related
to RWR which measures node similarity scores that are spa-
tially localized to seed node s (Nassar, Kloster, and Gleich
2015), i.e., scores of nearby nodes highly associated to s are
high while those of distant nodes are low. Diffusion methods
such as GDC exploit RWR to augment a spatial locality.

Let xs be a vector of RWR scores w.r.t. the seed node s.
Given a row-normalized adjacency matrix Ã and a restart
probability α, the vector xs is represented as follows:

xs = (1− α)Ã>xs + αis ⇔ xs = αL−1is ⇔ xs = Lrwris

where L = In−(1−α)Ã> is the random-walk normalized
Laplacian matrix, and is is the s-th unit vector. Notice that
Lrwr = αL−1 is a column-stochastic transition matrix inter-
preted as a diffusion kernel that diffuses a given distribution
such as is on the graph through RWR.

Problem Formulation. A discrete-time dynamic graph
(DTDG) G is represented as a sequence {G1, · · · ,GT } of
snapshots in a chronological order where T is the number of
time steps (Skarding, Gabrys, and Musial 2021). Each snap-
shot Gt = (V, Et,Ft) is a graph with a shared set V of nodes
and a set Et of edges at time t where n = |V| is the number
of nodes. Ft ∈ Rn×d is an initial node feature matrix where
d is a feature dimension, and At ∈ Rn×n denotes the sparse
and self-looped adjacency matrix of Gt. The node represen-
tation learning on the dynamic graph G aims to learn a func-
tion FΘ(·) parameterized by Θ and produce hidden node
embeddings Ht ∈ Rn×d for each time t, represented as:

Ht = FΘ(Ãt,Ft,Ht−1) (1)

where Ãt is a normalized adjacency matrix of At, and Ht−1

contains the latest hidden embeddings before time t. The
above framework of Equation (1) is generally adopted in ex-
isting methods (Seo et al. 2018; Pareja et al. 2020; Yang et al.
2021) for learning DTDGs where FΘ(·) is usually designed
by the combination of GNNs and RNNs.
Problem 1 (Dynamic Graph Augmentation). Given a tem-
poral sequence {A1, · · · ,AT } of G, the problem is to gen-
erate a sequence of new adjacency matrices improving the
performance of a model FΘ(·).

Proposed Method
We depict the overall framework of TIARA in Figure 1.
Given {A1, · · · ,AT } of a dynamic graph G, our TIARA
aims to produce a time-aware random walk diffusion matrix
X̃t ∈ Rn×n for each time step t using two diffusion based
modules, called spatial and temporal augmenters.



Time step

Spatial
Augmenter

Temporal
Augmenter

𝐀!

𝓢!

𝓧$ "

𝓣! ⊕

𝓧$!TIARA

Spatial
Augmenter

Temporal
Augmenter

𝐀#

𝓢#

𝓣# ⊕

𝓧$ #TIARA

Spatial
Augmenter

Temporal
Augmenter

𝐀$%!

𝓢$%!

𝓣$%! ⊕

𝓧$ $%!TIARA

Spatial
Augmenter

Temporal
Augmenter

𝐀$

𝓢$

𝓣$ ⊕

𝓧$ $TIARA

⋯⋯

Dynamic Graph Neural Networks

1 2 𝑇 − 1 𝑇⋯⋯

Figure 1: Overall architecture of TIARA. Given the adjacency matrix At at time t, TIARA outputs a time-aware random walk
diffusion matrix X̃t combined with spatial augmenter St and temporal augmenter Tt after sparsification.

The spatial augmenter enhances a spatial locality of At

using random walks, resulting in a spatial diffusion matrix
St. The temporal augmenter receives the previous X̃t−1 that
contains information squashed from the initial time to t− 1,
and then disseminates it through St at the current t. This
leads to a temporal diffusion matrix Tt in which a temporal
locality is magnified. Finally, TIARA linearly combines St

and Tt, and sparsifies to form X̃t. We replace each adjacency
matrix At with X̃t for the inputs of dynamic GNN models.
If necessary, we simply use edges of the graph represented
by X̃t without weights, or make the graph undirected by us-
ing (X̃t + X̃>t )/2 after the sparsification.

Time-aware Random Walk with Restart
It is limited to directly employ RWR in a dynamic graph
because RWR measures only spatially localized scores in a
single static graph. In this section, we extend RWR to Time-
aware RWR (TRWR) so that TRWR produces node-to-node
scores which are spatially and temporally localized.

One idea for TRWR is to virtually connect identical nodes
from Gt to Gt+1 for each time step t (Huang, Sun, and Wang
2021) as shown in Figure 2. Then, a random surfer not only
moves around the current Gt but also jumps to the next Gt+1;
thus, the surfer becomes time-aware. In the beginning, the
surfer starts from a seed node s at the initial time step (e.g.,
t = 1). After a few movements, suppose the surfer is at node
u in Gt. Then, it takes one of the following actions:

• Action 1) Random walk. The surfer randomly moves to
one of the neighbors from node u in the current graph Gt
with probability 1− α− β.

• Action 2) Restart. The surfer goes back to the seed node
s in Gt with probability α.

• Action 3) Time travel. The surfer does time travel from
node u in Gt to that node in Gt+1 with probability β.

where α and β are called restart and time travel probabilities,
respectively, and 0 < α+ β < 1. Note that we do not allow
the surfer to move backward from Gt+1 to Gt because the
future information at time t + 1 should be prevented when
we make a prediction at time t.
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Figure 2: Illustration of how a time-aware random surfer
moves around a dynamic graph where dashed arrows indi-
cate virtually connected edges along the time-axis.

Through TRWR, the vector xt ∈ Rn of stationary proba-
bilities that the surfer visits each node from the seed node s
in Gt is recursively represented as follows:

xt,s = (1− α− β)Ã>t xt,s︸ ︷︷ ︸
Random walk

+ αis︸︷︷︸
Restart

+βxt−1,s︸ ︷︷ ︸
Time travel

(2)

where is is the s-th unit vector of size n. Ãt is a row-
normalized matrix of At (i.e., Ãt = D−1

t At where At is
a self-looped adjacency matrix and Dt is a diagonal out-
degree matrix of At). If t = 0, we define x0,s as is.

In the above equation, the random walk part propagates
scores of xt,s over Ãt. The restart part makes the scores
spatially localized around the seed node s, which is con-
trolled by α. The time travel part injects scores of the previ-
ous xt−1,s to make xt,s temporally localized, which is con-
trolled by β. Notice TRWR extends RWR to a discrete-time
dynamic graph, i.e., β = 0 leads to RWR scores on each
graph snapshot without considering temporal information.

Time-aware Random Walk Diffusion Matrices
In Equation (2), xt,s ∈ Rn×1 is a column vector of a prob-
ability distribution w.r.t. a seed node s. For all seeds s ∈ V,



we horizontally stack {xt,s} to form Xt ∈ Rn×n such that
xt,s is the s-th column of Xt, i.e., xt,s = Xtis. We call Xt

a time-aware random walk diffusion matrix at time t. The
derivation of Xt starts by moving the term of the random
walk to the left side in Equation (2) as follows:(

In − (1− α− β)Ã>t
)
xt,s = αis + βxt−1,s

Let Lt := In − (1 − α − β)Ã>t where In is an n × n
identity matrix, and xt−1,s = Xt−1is as described above.
Thus, xt,s is written as the following:

xt,s = L−1
t (αis + βXt−1is)

=
(
αL−1

t In + βL−1
t Xt−1

)
is = Xtis (3)

where Xt = αL−1
t In+βL−1

t Xt−1 for t > 0, and X0 = In

because x0,s is defined as is.
Spatial and Temporal Augmenters. We obtain the recur-

rence relation of Xt from Equation (3), and further rearrange
it to interpret the process as follows:

Xt = αL−1
t In + βL−1

t Xt−1

=
α

α+ β

[
(α+ β)L−1

t In

]
+

β

α+ β

[
(α+ β)L−1

t Xt−1

]
In the above, we set Lrwr

t = (α + β)L−1
t which is the

diffusion kernel by RWR on the graph Gt where its restart
probability is α+ β. Let γ = β/(α+ β) where 0 < γ < 1;
then, Xt is represented as follows:

Xt = (1− γ) (Lrwr
t In)︸ ︷︷ ︸
St

+γ (Lrwr
t Xt−1)︸ ︷︷ ︸

Tt=StXt−1

(4)

where St is a spatial diffusion matrix, and Tt is a temporal
diffusion matrix.

The meaning of St is the result of diffusing the s-th col-
umn is of In through Lrwr

t for each node s. This is inter-
preted as the augmentation of a spatial locality of each node
through RWR within Gt. On the other hand, Tt is the re-
sult of diffusing xs,t−1 of Xt−1 through Lrwr

t for each node
s. Note that xs,t−1 contains the probabilities that the surfer
visits each node starting from node s during the travel from
the initial time to t− 1. Thus, it spreads the past proximities
of xs,t−1 in the current Gt through Lrwr

t , which consequently
reflects the temporal information to Gt.

The final diffusion matrix Xt is a convex combination be-
tween St and Tt w.r.t. γ, which is denoted by ⊕ in Figure 1.
Notice that Xt is a column stochastic transition matrix for
every time step t, which is proved in (Lee and Jung 2022),
implying that as an augmented adjacency matrix, Ãt can be
replaced with X>t for the input of GNNs in Equation (1).

Interpretation. We further analyze how Xt reflects the
spatial and temporal information of the input dynamic graph.
For this purpose, we first obtain the closed-form expression
of Xt which is described in Theorem 1.
Theorem 1. The closed-form expression of Xt is:

Xt = (1− γ)

(
t−2∑
i=0

γiLrwr
t  t−i

)
+ γt−1Lrwr

t  1 (5)

where Lrwr
j  i =Lrwr

j Lrwr
j−1· · ·Lrwr

i for j>i, and Lrwr
i  i =Lrwr

i .

Proof. It is proved by mathematical induction, and the de-
tailed proof is described in (Lee and Jung 2022).

In the theorem, Lrwr
j  i indicates a random walk diffusion

traveling from former time i toward latter time j. According
to Equation (5), Xt is concisely represented as:

Xt∝

Augmentation of spatial and temporal localities︷ ︸︸ ︷
γ0Lrwr

t + γ1Lrwr
t  t−1 +· · ·+ γt−2Lrwr

t  2 +
γt−1

1−γL
rwr
t  1︸ ︷︷ ︸

⇐= Emphasized · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Decayed =⇒

Note that Xt is more affected by the information close to
time t than that passed from the distant past. The influence
of Lrwr

t  k is decayed by γ as time k is further away from
time t, while it is emphasized as time k is near to time t
where the ratio γ is interpreted as a temporal decay ratio.
This explanation is consistent with the temporal locality, i.e.,
the tendency that recent edges are more influential than older
ones. Combined with the spatial diffusion Lrwr

t , the result of
Xt augments both spatial and temporal localities in Gt.

Discussion. TIARA is a generalized version of GDC with
PPR kernel to dynamic graphs since TIARA with β = 0 spa-
tially augments data within a single Gt at each time, which is
exactly what GDC does. However, GDC does not consider
temporal information for its augmentation, and it performs
worse than TIARA as shown in Tables 2 and 3.

Algorithm for TIARA

Most graph diffusions involve heavy computational cost, es-
pecially for a large graph, and result in a dense matrix. The
computation of Xt also exhibits the same issue, and thus we
adopt approximate techniques to alleviate the problem. In-
cluding the approximate strategies, the procedure of TIARA

is summarized in Algorithm 1 where X̃0 is set to In.
Power iteration. The main bottleneck for obtaining Xt is

to compute the matrix inversion L−1
t of Lrwr

t in Equation (4),
which requires O(n3) time. Instead of directly calculating
the inversion, we use power iteration (lines 9∼15) based on
the following (Yoon, Jung, and Kang 2018):

L−1
t =

∞∑
k=0

ck
(
Ã>t

)k
u

K∑
k=0

ck
(
Ã>t

)k
where c = 1−α−β, and K is the number of iterations. Let
M

(k)
t be the result after k iterations; then, it is recursively

represented as follows:

M
(k)
t = In + cÃ>t M

(k−1)
t

where M
(0)
t = In and M

(K)
t u L−1

t . Note Ãt is a normal-
ized adjacency matrix (line 1) in which self-loops are added,
as traditional GNNs usually do. The approximate error is
bounded by ck, and converges to 0 as k →∞ (Lee and Jung
2022). After that, we set Lrwr

t ←(1− c)M(K)
t (line 13).

At a glance, each iteration seems to take O(n3) time for
the matrix multiplication, but it is much faster than that since
each snapshot Gt is sparse in most cases. More specifically,



only a few nodes form edges at each time step in real graphs.
We call such nodes activated where Vt is the set of activated
nodes at time t, and nt = |Vt|. In each Gt, a surfer can move
only between activated nodes, i.e., only pairs of nodes in Vt
are diffused. As seen in Table 1, the average n̄t of nt over
time is smaller than n except the Brain dataset.

This allows us to do the power iteration on the sub-matrix
ÃVt ∈ Rnt×nt of Ãt for nodes in Vt where mt is the num-
ber of non-zeros of ÃVt . Then, an iteration takes O(mtnt)
time for a sparse matrix multiplication. Note mt is linearly
proportional to nt in real graphs, i.e., mt = Ctnt where Ct

is a constant. Let m̄t be the average number of edges over
time. As seen in Table 1, C̄t = m̄t/n̄t is smaller than n̄t.
Thus, each iteration takes O(n2

t ) time in average; overall, it
takes O(n2

tK + nK) time and O(n2
t + n) space for Lrwr

t
(as only nt nodes are diffused). More details are provided in
(Lee and Jung 2022).

Sparsification. Another bottleneck is that Xt is likely to
be dense by repeatedly multiplying StXt−1 (line 4) as time
t increases where St = Lrwr

t . This could be problematic in
terms of space as well as running time, especially for graph
convolutions since Xt is used as an adjacency matrix. To
alleviate this issue, we adopt a sparsification technique sug-
gested in (Klicpera, Weißenberger, and Günnemann 2019).
As established in Theorem 1, the graph structure of Xt is
spatially and temporally localized, which allows us to drop
small entries of Xt, resulting in the sparse X̃t. For this, we
use a filtering threshold ε to set values of Xt below ε to zero
(line 6). This strategy has two advantages. First, it keeps X̃t

sparse at each time. Second, it reduces the cost for process-
ing StX̃t−1 as St and X̃t−1 are sparse. After the sparsifica-
tion, we normalize X̃t−1 (line 7) column-wise. As shown in
Figure 4, this sparsification makes the augmentation process
fast and lightweight with tiny errors while it does not harm
predictive accuracy too much, or can even improve.

Theorem 2 (Complexity Analysis). For each time step t,
TIARA takes O(ntn/ε + n2

tK) time on average, and pro-
duces X̃t consuming O(n/ε) space where n is the number
of total nodes, nt is the number of activated nodes at time t,
K is the number of iterations, and ε is a filtering threshold.

Proof. The proof is provided in (Lee and Jung 2022).

Discussion. Theorem 2 implies that TIARA is faster than
O(n3), and uses space less than O(n2) for storing X̃t in
most real dynamic graphs. Nevertheless, its time complex-
ity can reach O(n2) for a graph such as the Brain dataset;
thus, for larger graphs, its scalability can be limited. How-
ever, TIARA is based on matrix operations which are easy-
to-accelerate using GPUs, and other diffusion methods such
as GDC lie at the same complexity. Furthermore, there are
extensive works of efficient RWR computations (Andersen,
Chung, and Lang 2006; Jung et al. 2017; Shin et al. 2015;
Wang et al. 2017; Hou et al. 2021) and accelerated multipli-
cations of sparse matrices (Srivastava et al. 2020), which can
make TIARA scalable. In this work, we focus on effectively
augmenting a dynamic graph, and leave further computa-
tional optimization on the augmentation as future work.

Algorithm 1: TIARA at time t

Require: adjacency matrix At, previous time-aware diffusion ma-
trix X̃t−1, restart probability α, time travel probability β, num-
ber K of iterations, filtering threshold ε

Ensure: time-aware diffusion matrix X̃>t
1: Ãt ← D−1

t At where Dt = diag(At1)
2: Lrwr

t ← POWER-ITERATION(Ãt, α, β, K)
3: St ← Lrwr

t . Spatial augmenter
4: Tt ← StX̃t−1 . Temporal augmenter
5: Xt ← (1− γ)St + γTt where γ = β/(α+ β)

6: X̃t ← filter entries of Xt if their weights are < ε

7: normalize X̃t column-wise
8: return X̃>t
9: function POWER-ITERATION(Ãt, α, β, K)

10: set c← 1− α− β and M
(0)
t ← In

11: for k ← 1 to K do
12: M

(k)
t ← In + cÃ>t M

(k−1)
t

13: Lrwr
t ← (1− c)M(K)

t where M
(K)
t u L−1

t

14: normalize Lrwr
t column-wise and return Lrwr

t

15: end function

Table 1: Summary of datasets. n and m are the total numbers of
nodes and edges, resp. T and L are the numbers of time steps and
labels, resp. n̄t and m̄t are the average numbers of activated nodes
and edges over time, resp. C̄t = m̄t/n̄t. The first 3 data are used
for link prediction, and the others are for node classification.

Datasets n m T L bn̄tc C̄t

BitcoinAlpha 3,783 31,748 138 2 105 2.2
WikiElec 7,125 212,854 100 2 354 6.0
RedditBody 35,776 484,460 88 2 2,465 2.2

Brain 5,000 1,955,488 12 10 5,000 32.6
DBLP-3 4,257 23,540 10 3 782 3.0
DBLP-5 6,606 42,815 10 5 1,212 3.5
Reddit 8,291 264,050 10 4 2,071 12.8

Experiment
In this section, we evaluate TIARA to show its effectiveness
for the augmentation problem for dynamic graphs.

Experimental Setting
Datasets. Table 1 summarizes 7 public datasets used in
this work. BitcoinAlpha is a social network between bit-
coin users (Kumar et al. 2016, 2018b). WikiElec is a vot-
ing network for Wikipedia adminship elections (Leskovec,
Huttenlocher, and Kleinberg 2010). RedditBody is a hyper-
link network of connections between two subreddits (Kumar
et al. 2018a). For node classification, we use the following
datasets evaluated in (Xu et al. 2019). Brain is a network
of brain tissues where edges indicate their connectivities.
DBLP-3 and DBLP-5 are co-authorship networks extracted
from DBLP. Reddit is a post network where two posts were
connected if they contain similar keywords.

Baseline augmentation methods. We compare TIARA
to the following baselines. NONE indicates the result of a
model without any augmentation. DROPEDGE is a drop-
based method randomly removing edges at each epoch.
GDC is a graph diffusion-based method where we use PPR



Table 2: Temporal link prediction accuracy (AUC) where NONE is a result without augmentation, and N (or H) indicates
improvement (or degradation) compared to None. TIARA shows consistent improvement across most models and datasets.

AUC
BitcoinAlpha WikiElec RedditBody

GCN GCRN EGCN GCN GCRN EGCN GCN GCRN EGCN
NONE N57.3±1.6N N80.3±6.0N N58.8±1.1N N59.9±0.9N N72.1±2.4N N66.9±3.7N N77.6±0.4N N88.9±0.3N N77.6±0.2N

DROPEDGE H56.3±1.0N H73.9±2.2N H57.4±0.9N H50.1±1.0N H56.0±9.3N H47.9±6.4N H73.0±0.4N H77.0±1.7N H71.9±0.7N
GDC N57.5±1.6N H77.3±6.5N H57.4±1.2N N62.8±0.8N H67.9±1.0N H63.1±0.7N H74.6±0.0N H86.4±0.3N H73.8±0.3N

MERGE N66.8±2.6N N93.1±0.4N N61.0±9.2N N60.6±1.7N H68.4±3.2N H60.7±1.3N H69.7±0.7N N89.8±0.5N N80.3±0.5N

TIARA N76.0±1.3N N94.6±0.8N N77.2±1.4N N69.0±1.2N N73.4±2.2N N69.1±0.3N N80.8±0.6N N90.2±0.4N N82.0±0.1N

for this as our approach is based on random walks. MERGE
is a simple baseline merging adjacency matrices from time
1 to t when training a model at time t. We apply DROPE-
DGE and GDC to each snapshot since they are designed for
a static graph.

Baseline GNNs. We use GCN (Kipf and Welling 2017),
GCRN (Seo et al. 2018) and EvolveGCN (Pareja et al.
2020), abbreviated to EGCN, for performing dynamic graph
tasks. We naively apply a static GCN to each graph snap-
shot for verifying how temporal information is informative.
We choose GCRN and EvolveGCN, lightweight and popu-
lar dynamic GNN models showing decent performance, to
observe practical gains from augmentation. We adopt GCN
layers for GCRN’s graph convolution. We use the imple-
mentation of (Rozemberczki et al. 2021) for GCRN and
EGCN. Note that any GNN models following Problem 1 can
utilize TIARA because our approach is model-agnostic.

Training details. For each dataset, we tune the hyper-
parameters of all models on the original graph (marked as
NONE) and augmented graphs separately through a combi-
nation of grid and random search on a validation set, and re-
port test accuracy at the best validation epoch. For TIARA,
we fix K to 100, search for ε in [0.0001, 0.01], and tune α
and β in (0, 1) s.t. 0 < α + β < 1. We use the Adam opti-
mizer with weight decay 10−4, and the learning rate is tuned
in [0.01, 0.05] with decay factor 0.999. The dropout ratio is
searched in [0, 0.5]. We repeat each experiment 5 times with
different random seeds, and report the average and standard
deviation of test values. We use PyTorch and DGL (Wang
et al. 2019) to implement all methods. All experiments were
done at workstations with Intel Xeon 4215R and RTX 3090.

Details about the experimental setting are provided in
(Lee and Jung 2022).

Temporal Link Prediction Task
This aims to predict whether an edge exists or not at time
t + 1 using the information up to time t. As a standard set-
ting (Pareja et al. 2020), we follow a chronological split
with ratios of training (70%), validation (10%), and test
(20%) sets. We sample the same amount of negative sam-
ples (edges) to positive samples (edges) for each time, and
use AUC as a representative measure. We set the number of
epochs to 200 with early stopping of patience 50.

As shown in Table 2, TIARA consistently improves the
performance of dynamic GNN models such as GCRN and

EGCN compared to NONE (i.e., without augmentation)
while static augmentations of DROPEDGE and GDC do not.
TIARA also outperforms the static methods on all models
and datasets. This indicates it is not beneficial to only spa-
tially augment the graphs for this task. TIARA even im-
proves static GCN, which is competitive with EGCN, imply-
ing that effectively and temporally augmented data can even
make static GNNs learn dynamic graphs well. In addition,
MERGE also improves the accuracy of the tested models on
many datasets. This confirms the need to utilize temporal
information when it comes to dynamic graph augmentation
in this task. However, MERGE performs worse than TIARA
in most cases because TIARA can effectively augment both
spatial and temporal localities at once while MERGE does
not have a mechanism to enhance such localities.

Node Classification Task
This is to classify a label of each node where a graph and fea-
tures change over time. Following (Xu et al. 2019), we split
all nodes into training, validation, and test sets by the 7:1:2
ratio. We feed node embeddings HT of each model forward
to a softmax classifier, and use Macro F1-score because la-
bels are imbalanced in each dataset. We set the number of
epochs to 1, 000 with early stopping of patience 100.

Table 3 shows TIARA consistently improves the accura-
cies of GNNs on most datasets. Especially, TIARA signif-
icantly enhances the accuracies on the Brain dataset as an-
other diffusion method GDC does, but TIARA shows better
accuracy than GDC, implying it is effective to augment a
temporal locality for the performance. For the other datasets,
TIARA slightly improves each model, but it overall performs
better than other augmentations. Note GCN and EGCN are
worse than a random classifier of 1/L score (0.25 for L=4)
in the Reddit where L is the number of labels, and all tested
augmentations fail to beat the score, implying even these
augmentations could not boost a poor model in this task.

Effect of Hyperparameters
We analyze the effects of temporal decay ratio γ and filtering
threshold ε that mainly affect TIARA’s results. We fix the
numberK of iterations to 100 for the power iteration, which
leads to sufficiently accurate results for Lrwr

t .
Effect of the temporal decay ratio γ. As TIARA’s hy-

perparameters, α and β should be analyzed, but our prelim-
inary experiments showed that patterns vary by models and



Table 3: Node classification accuracy (Macro F1-score) where NONE is a result without augmentation, and N (or H) indicates
improvement (or degradation) compared to None. TIARA shows consistent improvement across most models and datasets.

Macro F1
NBrain NReddit NDBLP-3 NDBLP-5

NGCN NGCRN NEGCN NGCN NGCRN NEGCN NGCN NGCRN NEGCN NGCN NGCRN NEGCN

NONE N44.7±0.8 N66.8±1.0 N43.4±0.7 N18.2±2.9 N40.4±1.6 N18.6±2.3 N53.4±2.6 N83.1±0.6 N51.3±2.7 N69.6±0.9 N75.4±0.7 N68.5±0.6

DROPEDGE H35.2±1.7 N67.8±0.6 H39.7±1.8 N19.4±0.8 H40.3±1.4 H18.0±2.7 N55.8±1.9 N84.3±0.6 N52.4±1.7 N70.5±0.5 N75.6±0.7 H68.0±0.7
GDC N63.2±1.2 N88.0±1.5 N67.3±1.3 H17.5±2.3 N41.0±1.6 H18.5±2.8 N53.4±2.1 N84.7±0.5 N52.8±2.2 N70.0±0.7 N75.5±1.2 N69.1±1.0

MERGE H34.4±3.4 H63.2±1.6 N53.0±0.9 N19.3±3.0 H39.6±0.8 N20.4±3.0 N54.9±3.1 H83.0±1.4 N53.3±1.2 N70.8±0.4 H74.5±0.8 N69.7±1.6

TIARA N68.7±1.2 N91.3±1.0 N72.0±0.6 N18.4±3.0 N41.5±1.5 N21.9±1.6 N57.5±2.2 N84.9±1.6 N56.4±1.8 N71.1±0.6 N77.9±0.4 N70.1±1.0
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Figure 3: Effect of the temporal decay ratio γ.

datasets in the changes of α and β. Instead, we narrow our
focus to γ in Equation (4) where γ = β/(α + β). For this
experiment, we vary γ from 10−5 to 1−10−5 by tweaking α
and β s.t. α+β is fixed to 0.6. Figure 3 shows that too small
or large values of γ can degrade link prediction accuracy ex-
cept GCRN with TIARA in BitcoinAlpha. This implies that
it is important to properly mix spatial and temporal informa-
tion about the performance, which is controlled by γ.

Effect of the filtering threshold ε. Figure 4 shows the
effects of ε in terms of approximate error, time, space, and
accuracy of link prediction in BitcoinAlpha and WikiElec.
We fix α and β to 0.25, and vary ε from 10−7 to 10−2 for
this experiment.

We measure the approximate error ‖∆λt‖= ‖λt− λ̃t‖2
of eigenvalues where λt and λ̃t are vectors of eigenvalues
of Xt (i.e., ε = 0) and X̃t, respectively, as similarly ana-
lyzed in (Klicpera, Weißenberger, and Günnemann 2019).
The right y-axis of Figures 4(a) and (b) is the error, and the
left y-axis is the number |At| of edges in At. As time t in-
creases, the errors (red and blue lines) remain small, and do
not explode, implying errors incurred by repeated sparsifica-
tions are not excessively accumulated over time. Rather, the
errors tend to be proportional to |At| at each time.

Figures 4 (c) and (d) show the space measured by
∑

t |X̃t|
(left y-axis) and the augmentation time (right y-axis) of
TIARA by ε between 10−7 and 10−2. As the strength of
sparsification increases (i.e., ε becomes larger), the produced
non-zeros and the augmentation time decrease. On the other
hand, most of the accuracies remain similar except ε=10−2
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Figure 4: Effect of the filtering threshold ε.

as shown in Figures 4(e) and (f). Note it is not effective to
truncate too many entries (e.g., ε= 10−2), or too dense X̃t

can worse the performance as GCN in WikiElec. Thus, the
sparsification with proper ε such as 10−3 or 10−4 provides a
good trade-off between error, time, space, and accuracy.

Conclusion
In this work, we propose TIARA, a novel and model-
agnostic diffusion method for augmenting a dynamic graph
with the purpose of improvements in dynamic GNN models.
We first extend Random Walk with Restart (RWR) to Time-
aware RWR so that it produces spatially and temporally lo-
calized scores. We then formulate time-aware random walk
diffusion matrices, and analyze how our diffusion approach
augments both spatial and temporal localities in the dynamic
graph. As graph diffusions lead to dense matrices, we fur-
ther employ approximate techniques such as power iteration
and sparsification, and analyze how they are effective for
achieving a good trade-off between error, time, space, and
predictive accuracy. Our experiments on various real-world
dynamic graphs show that TIARA aids GNN models in pro-
viding better performance of temporal link prediction and
node classification tasks.
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