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Abstract—Given a large graph, how can we determine similar-
ity between nodes in a fast and accurate way? Random walk with
restart (RWR) is a popular measure for this purpose and has been
exploited in numerous data mining applications including rank-
ing, anomaly detection, link prediction, and community detection.
However, previous methods for computing exact RWR require
prohibitive storage sizes and computational costs, and alternative
methods which avoid such costs by computing approximate RWR
have limited accuracy.

In this paper, we propose TPA, a fast, scalable, and highly
accurate method for computing approximate RWR on large
graphs. TPA exploits two important properties in RWR: 1)
nodes close to a seed node are likely to be revisited in following
steps due to block-wise structure of many real-world graphs,
and 2) RWR scores of nodes which reside far from the seed
node are proportional to their PageRank scores. Based on these
two properties, TPA divides approximate RWR problem into
two subproblems called neighbor approximation and stranger
approximation. In the neighbor approximation, TPA estimates
RWR scores of nodes close to the seed based on scores of
few early steps from the seed. In the stranger approximation,
TPA estimates RWR scores for nodes far from the seed using
their PageRank. The stranger and neighbor approximations are
conducted in the preprocessing phase and the online phase,
respectively. Through extensive experiments, we show that TPA
requires up to 3.5× less time with up to 40× less memory space
than other state-of-the-art methods for the preprocessing phase.
In the online phase, TPA computes approximate RWR up to 30×
faster than existing methods while maintaining high accuracy.

I. INTRODUCTION

Measuring similarity score between two nodes in a graph
is widely recognized as a fundamental tool to analyze the
graph and has been used in various data mining tasks to gain
insights about the given graph [2], [4], [5]. Among many
methods [9], [14], [18] to identify similarities within graphs,
random walk with restart (RWR) [22], [23] has attracted con-
siderable attention due to its ability to account for the global
network structure from a particular user’s point of view [8]
and multi-faceted relationship between nodes in a graph [26].
RWR has been widely used in various applications across
different domains including ranking [11], [27], community
detection [31], [30], link prediction [3], graph similarity [16],
and anomaly detection [25]. While RWR greatly expands its
utility, it also brings a significant challenge on its computation
- RWR scores are different across different seed nodes, and

thus RWR needs to be recomputed for each new seed node.
To avoid enormous costs incurred by RWR computation, the

majority of existing works focus on approximate RWR com-
putation. BRPPR [6] improves RWR computation speed by
limiting the amount of a Web graph data they need to access.
NB-LIN [27] computes RWR approximately by exploiting
low-rank matrix approximation. BEAR-APPROX [24] uses a
block elimination approach and precomputes several matrices
including the Schur complement to exploit them in online
phase. FORA [29] combines two methods Forward Push
and Monte Carlo Random Walk with an indexing scheme.
Other methods such as FAST-PPR [20] and HubPPR [28]
narrow down the scope of RWR problem (computing RWR
scores from source to all nodes) by specifying a target node
(computing a single RWR score between a source and the
target node). However, those methods are not computation-
efficient enough in terms of time and memory considering the
amount of their sacrificed accuracy.

In this paper, we propose TPA (Two Phase Approximation
for random walk with restart), a fast, scalable, and highly
accurate method for computing approximate RWR scores on
billion-scale graphs. TPA exploits two important properties in
RWR: 1) nodes close to a seed node are likely to be revisited in
following steps due to block-wise structure of many real world
graphs, and 2) RWR scores of nodes which reside far from the
seed node are proportional to their PageRank scores. Based on
these two properties, TPA divides approximate RWR problem
into two subproblems, the neighbor approximation and the
stranger approximation. In the neighbor approximation, TPA
estimates RWR scores of nodes close to the seed based on
computation for few early steps from the seed. In the stranger
approximation, TPA computes approximate RWR scores for
nodes far from the seed using their PageRank scores. To divide
an RWR problem into two subproblems, we use an iterative
method, cumulative power iteration (CPI) which interprets an
RWR problem as propagation of scores from a seed node
across a graph. In CPI, ith iteration computes the distribution
of propagated scores among nodes after i steps from the seed
node. Based on CPI, the neighbor approximation handles
iterations computed in early phase, while the stranger ap-
proximation estimates iterations computed in later phase. The
stranger and neighbor approximation phases are conducted in
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Fig. 1: Performance of TPA: (a) compares the size of preprocessed data computed from preprocessing methods; (b) and (c) compare the
preprocessing time and the online time, respectively, among approximate methods; Bars are omitted if the corresponding experiments run out
of memory (> 200GB). (a) TPA uses the least amount of space for preprocessed data among preprocessing methods. (b) In the preprocessing
phase, TPA provides the fastest preprocessing speed among all preprocessing methods. (c) In the online phase, TPA computes approximate
RWR scores faster than other competitors over all datasets. Details on these experiments are presented in Section IV.

the preprocessing phase and the online phase, respectively.
Through extensive experiments with various real-world

graphs, we demonstrate the superiority of TPA over existing
methods as shown in Figure 1. The main contributions of this
paper are the followings:
• Algorithm. We propose TPA, a fast, scalable, and highly

accurate algorithm for computing approximate RWR on
billion-scale graphs (Algorithms 2 and 3). TPA efficiently
approximates RWR scores in two phases: the stranger and
the neighbor approximation phases by exploiting PageR-
ank and block-wise structure of real graphs, respectively.

• Analysis. We present an analysis of TPA in terms of time
complexity and memory requirement. We provide the
theoretical approximation bounds for TPA and analyze
reasons for the better approximation performance in prac-
tice than the theoretical bound suggested (Section III).

• Experiment. We present extensive empirical evidences
for the performance of TPA using various large real-
world graphs. We compare TPA with the state-of-the-
art approximate RWR methods. Compared with other
preprocessing methods, TPA needs 3.5× less time and
40× less memory for the preprocessing phase. In the
online phase, TPA computes approximate RWR up to
30× faster than other online methods, without sacrificing
accuracy.

The code of our method and datasets used in the paper are
available at http://datalab.snu.ac.kr/tpa. The rest of the paper
is organized as follows. In Section II, we present preliminaries
on RWR and CPI. In Section III, we describe the proposed
algorithm TPA in detail along with its theoretical analysis.
After presenting our experimental results in Section IV, we
provide a review on related works in Section V and conclude
in Section VI. The symbols frequently used in this paper
are summarized in Table I and the real-world graph data
used in our experiments are summarized in Table II. A brief

TABLE I: Table of symbols.

Symbol Definition

G input graph
n number of nodes in G
m number of edges in G
s seed node (= query node, source node)
c restart probability
ε convergence tolerance
q (n× 1) seed vector
A (n× n) adjacency matrix of G
Ã (n× n) row-normalized adjacency matrix of G

rCPI (n× 1) RWR vector from CPI
pCPI (n× 1) PageRank vector from CPI
rTPA (n× 1) approximate RWR vector

using neighbor and stranger approximation
S (n× 1) starting iteration of neighbor part in CPI
T (n× 1) starting iteration of stranger part in CPI

x(i) (n× 1) interim score vector at ith iteration in CPI
rfamily (n× 1) sum of x(i) from 0 to S − 1 iterations
rneighbor (n× 1) sum of x(i) from S to T − 1 iterations
rstranger (n× 1) sum of x(i) from T to ∞ iterations

description of each dataset is in Section IV.

II. PRELIMINARIES

In this section, we briefly review PageRank [21] algorithm
which is used in our method for approximate value compu-
tation. Then, we describe our target problem RWR [22], and
Cumulative Power Iteration (CPI) which computes RWR in
an iterative matrix-vector multiplication form.
A. PageRank
PageRank [21] is a widely used algorithm to measure impor-
tance of vertices in a graph. The intuition behind PageRank is
that a vertex is important if it is linked to by many important
vertices. In other words, a vertex with large number of in-
edges is estimated as an important vertex with high PageRank
and a vertex with few in-edges is regarded as an unimportant

http://datalab.snu.ac.kr/tpa


TABLE II: Dataset statistics: S denotes the starting iteration for
the neighbor approximation and T denotes the starting iteration
for the stranger approximation.

Dataset Nodes Edges S T

Friendster1 68,349,466 2,586,147,869 4 20
Twitter1 41,652,230 1,468,365,182 4 6

WikiLink1 12,150,976 378,142,420 5 6
LiveJournal1 4,847,571 68,475,391 5 10

Pokec1 1,632,803 30,622,564 5 10
Google1 875,713 5,105,039 5 20

Slashdot1 82,144 549,202 5 15
1 http://konect.uni-koblenz.de/

vertex charged with low PageRank. PageRank scores for all
nodes are represented as a PageRank score vector p which is
defined by the following iterative equation:

p = (1− c)Ã>p +
c

n
1

where Ã is the row-normalized adjacency matrix, c is a
restart probability, and 1 is an all-ones column vector of
length n, the number of nodes. If 0 < c < 1 and Ã is
irreducible and aperiodic, p is guaranteed to converge to a
unique solution [17].

B. Random Walk with Restart

Global view of vertex importance provided by PageRank does
not reflect individual preferences. On the other hand, RWR
measures each node’s relevance w.r.t. a given seed node s in
a graph. It assumes a random surfer who traverses the edges
in the graph and occasionally restarts at node s. In each step,
the surfer walks along edges with probability 1− c or jumps
to the seed node with probability c. The iterative equation for
an RWR score vector r is defined as follows:

r = (1− c)Ã>r + cq

where q is the seed vector with the index of the seed node
s set to 1 and others to 0. In PageRank, 1 serves the role as
a seed vector. The only difference between a random walk in
PageRank and RWR is the seed vector: with the seed vector
1, a random walk in PageRank could restart from any node
in the graph with uniform probability, while, with the seed
vector q, a random walk in RWR could restart only from the
assigned seed node.

C. CPI: Cumulative Power Iteration

Cumulative Power Iteration (CPI) interprets an RWR problem
as propagation of scores across a graph in an iterative matrix-
vector multiplication form: score c is generated from the seed
node in the beginning; at each step, scores are divided and
propagated evenly into out-edges of their current nodes with
decaying coefficient 1− c; score xv in a node v is propagated
into nv out-edged neighbors of v with value 1

nv
(1− c)xv . In

a matrix-vector multiplication form, x(i) is an interim score
vector computed from the iteration i and has scores propagated
across nodes at ith iteration as entries. When multiplied with
(1 − c)Ã>, scores in x(i) are propagated into their outgoing
neighbors, and the propagated scores are stored in x(i+1). CPI
accumulates interim score vectors x(i) to get the final result

Algorithm 1: CPI Algorithm

Input: row-normalized adjacency matrix Ã, seed nodes S,
restart probability c, convergence tolerance ε, start iteration siter,
and terminal iteration titer

Output: relevance score vector r
1: create a seed vector q from S, i.e., qs = 1/|S| for s in S

and the others are 0
2: set r = 0 and x(0) = cq
3: for iteration i = 1; i ≤ titer; i++ do
4: compute x(i) ← (1− c)(Ã>x(i−1))
5: if i ≥ siter then
6: compute r← r + x(i)

7: end if
8: if ‖x(i)‖1 < ε then
9: break

10: end if
11: end for
12: return r

rCPI as follows:
x(0) = cq

x(i) = (1− c)Ã>x(i−1) = c
(
(1− c)Ã>

)i
q

rCPI =

∞∑
i=0

x(i) = c

∞∑
i=0

(
(1− c)Ã>

)i
q

We show the correctness of CPI for RWR computation in the
following Theorem 1.

Theorem 1: rCPI is the true solution of the iterative equation
r = (1− c)Ã>r + cq.

Proof: The spectral radius of (1− c)Ã> is less than one
since Ã> is a column stochastic matrix, which implies that
limi→∞ c((1 − c)Ã>)iq = 0. Then rCPI is convergent, and
the following computation shows that rCPI obeys the steady
state equation.

(1− c)Ã>rCPI + cq

= (1− c)Ã>
(
c

∞∑
i=0

(
(1− c)Ã>

)i
q

)
+ cq

= c

∞∑
i=1

(
(1− c)Ã>

)i
q + cq

= rCPI

Note that there have been similar approaches [1], [10] as
CPI to compute RWR, but they do not provide any algorithm
in matrix-vector multiplication form. Thus, in this paper, we
reinterpret the approaches as propagation of scores in an
iterative matrix-vector multiplication form and name it CPI.
In Algorithm 1, CPI accumulates only parts of the whole
iterations using two input parameters, start iteration siter and
terminal iteration titer. With siter and titer, CPI outputs the sum
of x(i) where siter ≤ i ≤ titer. To get the exact RWR from
CPI, siter and titer are set to 0 and ∞, respectively. siter and
titer are exploited in TPA (Algorithms 2 and 3 in Section III).
At first, CPI creates a seed vector q (line 1). For PageRank,
q is set to 1

n1, and for RWR, the index of the seed node s is
set to 1 and others to 0 in q. In ith iteration, scores in x(i−1)



from the previous iteration (i−1) are propagated through Ã>

with decaying coefficient 1 − c (line 4). Then, interim score
vector x(i) is accumulated in RWR score vector r (line 6).
In Algorithm 1, CPI returns the sum of iterations from siter
to titer (line 3 and 5). Before the terminal iteration titer, CPI
could stop iterations when the score vector r is converged
with a convergence tolerance ε, and output r as a final score
vector. ‖x(i)‖1 < ε is a condition for the final score vector r
to converge (lines 8 ∼ 10). CPI could be used for PageRank
and personalized PageRank which have several seed nodes.

III. PROPOSED METHOD

CPI performs iterations until convergence (i.e., ‖x(i)‖1 < ε)
to compute the RWR score vector r. However, considerable
amount of iterations are needed for convergence and comput-
ing all the iterations is not suitable for applications which
require fast RWR computation speed. In this section, we
propose TPA which approximates RWR scores with fast speed
and high accuracy. We first divide the whole iterations in CPI
into three parts as follows:
rCPI

= rfamily + rneighbor + rstranger

= x(0) + · · ·+ x(S−1)︸ ︷︷ ︸
family part

+x(S) + · · ·+ x(T−1)︸ ︷︷ ︸
neighbor part

+x(T ) + · · ·︸ ︷︷ ︸
stranger part

S denotes the starting iteration in rneighbor, and T denotes
the starting iteration in rstranger. The family part rfamily =
x(0) + · · · + x(S−1) denotes the propagation of scores into
nearby nodes from the seed and comprises the iterations
from 0th to (S − 1)th in CPI. The neighbor part rneighbor =
x(S) + · · · + x(T−1) denotes the propagation following the
family part and comprises the iterations from Sth to (T −1)th.
Finally, the rest propagation part, the iterations from T th to
the end, is denoted as rstranger = x(T ) + · · · . S and T are
tuned to give a trade-off between accuracy and computation
time (more details in Section III-C). Based on this partition,
TPA approximates the exact RWR scores rCPI by computing
only rfamily and estimating rneighbor and rstranger.

rTPA = rfamily + r̃neighbor + r̃stranger

TPA approximates rneighbor and rstranger by the neighbor ap-
proximation phase and the stranger approximation phase, re-
spectively. In the stranger approximation phase, TPA estimates
rstranger using PageRank. In the neighbor approximation phase,
TPA approximates rneighbor using rfamily which is the only part
computed exactly. Then the neighbor approximation and the
stranger approximation are merged in the finalizing phase. The
main ideas of our proposed method are summarized as follows:

• TPA: stranger approximation approximates the
stranger part rstranger in RWR with the stranger part
pneighbor in PageRank based on the observation that the
distribution of scores in the stranger part is more affected
by the distribution of edges than location of a seed node
(Section III-A).

• TPA: neighbor approximation approximates the neigh-
bor part rneighbor using the family part rfamily taking the

Algorithm 2: Preprocessing phase of TPA

Input: row-normalized adjacency matrix Ã, restart probability c,
convergence tolerance ε, and starting iteration T of stranger part

Output: approximate stranger score vector r̃stranger
1: set seeds nodes S = {1, · · · , n} for PageRank where n is the

number of nodes
2: r̃stranger ← CPI (Ã, S, c, ε, T , ∞) # Algorithm 1

3: return r̃stranger

Algorithm 3: Online phase of TPA

Input: row-normalized adjacency matrix Ã, restart probability c,
seed node s, convergence tolerance ε, starting iteration S of
neighbor part, approximate stranger score vector r̃stranger

Output: TPA score vector rTPA
1: set a seed node S = {s} for RWR
2: rfamily ← CPI (Ã, S, c, ε, 0, S − 1) # Algorithm 1
3: r̃neighbor ←

‖rneighbor‖1
‖rfamily‖1

rfamily

4: rTPA ← rfamily + r̃neighbor + r̃stranger

5: return rTPA

advantage of block-wise structure of many real-world
graphs (Section III-B).

We describe each approximation phase with its accuracy
analysis (Section III-A and III-B), and analyze time and space
complexities of TPA (Section III-D).

A. Stranger Approximation

In the stranger approximation phase, TPA approximates the
stranger part rstranger using PageRank. PageRank score vector
pCPI is represented by CPI as follows:
pCPI

= pfamily + pneighbor + pstranger

= x′(0) + · · ·+ x′(S−1)︸ ︷︷ ︸
family part

+x′(S) + · · ·+ x′(T−1)︸ ︷︷ ︸
neighbor part

+x′(T ) + · · ·︸ ︷︷ ︸
stranger part

where x′(i) = (1 − c)Ã>x′(i−1) and x′(0) = c
n1. Note that

the only difference between rCPI and pCPI is the seed vectors,
x(0) and x′(0). Then, the stranger part rstranger in RWR is
approximated by the stranger part pstranger in PageRank.

r̃stranger = pstranger

Intuition. The amount of scores propagated into each node
are determined not only by the number of in-edges of each
node, but also by the distance from the seed node. Nodes
with many in-edges have many sources to receive scores, while
nodes close to the seed node take in high scores since scores
are decayed by factor (1−c) as iteration progresses. However,
scores (x(T ),x(T+1), · · · ) propagated in the stranger iterations
are mainly determined by the number of in-edges since nodes
receiving scores in the stranger iterations are already far
from the seed, and thus the relative difference between their
distances from the seed is too small to be considered. Note that
PageRank score vector pCPI presents the distribution of scores
determined solely by the distribution of edges. This is the main
motivation for the stranger approximation: approximate the
stranger part rstranger in RWR with pstranger in PageRank. Since
pstranger, the stranger part in PageRank is invariant regardless



of which node is selected as a seed node, TPA precomputes
r̃stranger in the preprocessing phase (Algorithm 2).

Theoretical analysis. We show the accuracy bound of the
stranger approximation in Lemma 1.

Lemma 1 (Accuracy bound for r̃stranger): Let rstranger be the
exact stranger part in CPI, r̃stranger be the approximate stranger
part via the stranger approximation, and T be the starting itera-
tion of the stranger part. Then ‖rstranger−r̃stranger‖1 ≤ 2(1−c)T .

Proof: rstranger and r̃stranger are represented as follows:
rstranger = x(T ) + x(T+1) + · · ·
r̃stranger = x′(T ) + x′(T+1) + · · ·

Then, ‖rstranger − r̃stranger‖1 is bounded as follows:
‖rstranger − r̃stranger‖1 = ‖(x(T ) + · · · )− (x′(T ) + · · · )‖1

≤
∞∑
i=T

‖x(i) − x′(i)‖1

where the interim score vectors x(i) and x′(i) at i-th iteration
in CPI are represented as follows:

x(i) = (1− c)Ã>x(i−1) = c(1− c)i(Ã>)iq
x′(i) = (1− c)Ã>x′(i−1) = c(1− c)i(Ã>)ib

where q is s-th unit vector, and b = 1
n1. Suppose (Ã>)i

is represented by
[
c
(i)
1 , · · · , c(i)n

]
where c

(i)
j is j-th column

of the matrix (Ã>)i, and n is the number of nodes. Then,
x(i) − x′(i) is represented as follows:

x(i) − x′(i) = c(1− c)i(Ã>)i(q− b)

= c(1− c)i(Ã>)i(− 1

n
,− 1

n
, · · · , n− 1

n︸ ︷︷ ︸
s-th entry

,− 1

n
, · · · )>

= c(1− c)i(− 1

n
c
(i)
1 · · ·+

n− 1

n
c(i)s · · · −

1

n
c(i)n )

=
c(1− c)i

n

∑
j 6=s

(c(i)s − c
(i)
j )

Then, ‖x(i) − x′(i)‖1 is bounded by the following inequality:

‖x(i) − x′(i)‖1 =
c(1− c)i

n
‖
∑
j 6=s

(c(i)s − c
(i)
j )‖1

≤ c(1− c)i

n

∑
j 6=s

‖c(i)s − c
(i)
j ‖1

≤ c(1− c)i

n
× 2(n− 1) ≤ 2c(1− c)i

where in the second inequality we use the fact that ‖c(i)j ‖1 = 1

and ‖c(i)s − c
(i)
j ‖1 ≤ ‖c

(i)
s ‖1 + ‖c(i)j ‖1 = 2, since Ã> as well

as (Ã>)i are column stochastic. Then, ‖rstranger− r̃stranger‖1 is
bounded as follows:

‖rstranger − r̃stranger‖1 ≤
∞∑
i=T

‖x(i) − x′(i)‖1

≤
∞∑
i=T

2c(1− c)i = 2(1− c)T

(a) Ã> on Slashdot (b) (Ã>)3 on Slashdot

(c) (Ã>)5 on Slashdot (d) (Ã>)7 on Slashdot

Fig. 2: Distribution of nonzeros in (Ã>)i on Slashdot dataset: as i
increases, (Ã>)i has more nonzeros with denser columns cs and cj .
Colorbars present the number of nonzeros.

Real-world graphs. From the proof of Lemma 1, given a
seed node s, the L1 difference ‖c(i)s − c

(i)
j ‖1 between column

c
(i)
s and other columns c

(i)
j of a matrix (Ã>)i (i = T, T +

1, · · · ) is a determining factor for accuracy of the stranger
approximation. Considering that (Ã>)i is a column stochastic
matrix, and thus, its columns c

(i)
s and c

(i)
j are unit vectors

with all non-negative entries, ‖c(i)s − c
(i)
j ‖1 becomes large

(close to its maximum 2) when c
(i)
s and c

(i)
j have their nonzero

values in the different indices from each other. Note that Ã
is a row-normalized adjacency matrix of a real-world graph
with low density [15]. As raising the matrix Ã> to the ith
power, (Ã>)i tends to be a denser matrix with denser column
vectors. We present this tendency in the Slashdot dataset in
Figure 2. Then, the dense unit vectors c

(i)
s and c

(i)
j are likely

to have nonzero values in the same indices resulting a small
value of ‖c(i)s − c

(i)
j ‖1. To show this tendency in real-world

graphs, we estimate the number of nonzeros in (Ã>)i and the
average value for Ci = 1

n

∑
j 6=s‖c

(i)
s −c

(i)
j ‖1 with 30 random

seeds s on the Slashdot and Google datasets. In Figure 3,
as i increases, the number of nonzeros increases while Ci
decreases. This shows that the stranger approximation which
approximates the stranger iterations x(i) with high i values
(i ≥ T ) would lead to smaller errors in practice than the
bound suggested in Lemma 1. However, setting T , the starting
iteration of the stranger approximation, with too high values
leads to high errors in TPA since high values for T lead to
high errors in the neighbor approximation. The reasons will
be discussed concretely in Section III-C. Through extensive
experiments (Section IV-C), we present the high accuracy of
the stranger approximation in real-world graphs.



B. Neighbor Approximation
In the online phase, the remaining parts rfamily and rneighbor
need to be computed based on an assigned seed node.
Even though we need to compute only T iterations
(x(0), · · · ,x(T−1)) in the online phase with the help of
the stranger approximation, calculating T iterations are still
demanding in terms of running time. To handle this issue,
TPA introduces the second approximation phase, the neighbor
approximation. The neighbor approximation reduces running
time further by limiting computation to the family part rfamily,
and estimates the neighbor part rneighbor by scaling rfamily as
follows:

r̃neighbor =
‖rneighbor‖1
‖rfamily‖1

rfamily =
(1− c)S − (1− c)T

1− (1− c)S
rfamily

With restart probability c, the L1 norms of rfamily and rneighbor
only depend on S and T , the starting numbers of the neigh-
bor iterations and the stranger iterations, respectively (see
Lemma 2).

Lemma 2 (L1 norms of rfamily and rneighbor): ‖rfamily‖1 and
‖rneighbor‖1 are 1−(1−c)S and (1−c)S−(1−c)T , respectively.

Proof: The family part rfamily and the neighbor part
rneighbor are represented as follows:

rfamily = x(0) + x(1) + · · ·+ x(S−1)

rneighbor = x(S) + x(S+1) + · · ·+ x(T−1)

where x(i) = c(1−c)i(Ã>)iq. Then ‖rfamily‖1 and ‖rneighbor‖1
are represented as follows:

‖rfamily‖1 = ‖x(0) + x(1) + · · ·+ x(S−1)‖1 =

S−1∑
i=0

‖x(i)‖1

‖rneighbor‖1 = ‖x(S) + x(S+1) + · · ·+ x(T−1)‖1 =

T−1∑
i=S

‖x(i)‖1

Note that all entries of x(i) are non-negative. Since Ã> is a
column stochastic matrix, (Ã>)i is also a column stochastic
matrix. Hence, ‖(Ã>)iq‖1 = ‖q‖1 = 1 and ‖x(i)‖1 = ‖c(1−
c)i(Ã>)iq‖1 = c(1− c)i. Then ‖rfamily‖1 and ‖rneighbor‖1 are
written as follows:

‖rfamily‖1 =

S−1∑
i=0

c(1− c)i = 1− (1− c)S

‖rneighbor‖1 =

T−1∑
i=S

c(1− c)i = (1− c)S − (1− c)T

In the online phase, TPA computes rfamily at first, and esti-
mates rneighbor based on the neighbor approximation. Finally,
TPA merges rfamily, r̃neighbor and r̃stranger, and computes the
approximate RWR score vector rTPA (Algorithm 3).

Intuition. In many real-world graphs, nodes inside a com-
munity are densely inter-connected to each other than to nodes
in other communities. This is an important property of real-
world graphs called block-wise, community-like structure and
widely exploited in graph mining [25], [27]. Our intuition for
the neighbor approximation comes from this property. Based
on block-wise structure, scores started from one community
are likely to be propagated into nodes in the same community
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Fig. 3: Number of nonzeros and Ci of (Ã>)i: as i increases, the
number of nonzeros increases while Ci decreases.

repeatedly for a while. Then we could assume that the nodes
which receive scores in the early iterations (the family part)
would receive scores again in the following iterations (the
neighbor part). Furthermore, the nodes which have more in-
edges thus receive more scores in the early iterations would
receive more scores than other nodes in the following itera-
tions. Note that scores propagated in the following iterations
would be smaller than scores in the early iterations since scores
are decayed by the decaying coefficient (1 − c) as iterations
progress. Based on this assumption, we maintain ratios of
scores among nodes in rfamily and scale the scores with
‖rneighbor‖1
‖rfamily‖1 to reflect the smaller amount of scores in rneighbor.

This is the main motivation for the neighbor approximation
based on block-wise structure of real-world graphs.

Theoretical analysis. We show the accuracy bound for the
neighbor approximation in Lemma 3, and the total accuracy
bound for our proposed method TPA in Theorem 2.

Lemma 3 (Accuracy bound for r̃neighbor): Let rneighbor be the
exact neighbor part in CPI, and r̃neighbor be the approximate
neighbor part via the neighbor approximation. Then ‖rneighbor−
r̃neighbor‖1 ≤ 2(1− c)S − 2(1− c)T .

Proof: For brevity, let Ã> → Ā, cq → q̄ and rfamily =
q̄+(1−c)Āq̄+· · ·+((1−c)Ā)S−1q̄→ f . We set T = kS for
simplicity of proof. Then rneighbor and r̃neighbor are represented
as follows:
rneighbor =((1− c)Ā)Sq̄ + · · ·+ ((1− c)Ā)2S−1q̄

+ ((1− c)Ā)2Sq̄ + · · ·+ ((1− c)Ā)3S−1q̄

+ · · ·
+ ((1− c)Ā)(k−1)Sq̄ + · · ·+ ((1− c)Ā)kS−1q̄

=((1− c)Ā)Sf + · · ·+ ((1− c)Ā)(k−1)Sf

r̃neighbor =
‖rneighbor‖1
‖rfamily‖1

rfamily

=
(1− c)S − (1− c)T

1− (1− c)S
f

Note that (1−c)S−(1−c)T
1−(1−c)S could be expressed as follows:

(1− c)S − (1− c)T

1− (1− c)S
=

(1− c)S(1− (1− c)(k−1)S)
1− (1− c)S

= (1− c)S + · · ·+ (1− c)(k−1)S



Then r̃neighbor is presented as follows:
r̃neighbor = (1− c)Sf + · · ·+ (1− c)(k−1)Sf

Then rneighbor − r̃neighbor is written as follows:
rneighbor − r̃neighbor

= (1− c)S(ĀSf − f) + (1− c)2S(Ā2Sf − f)

+ · · ·
+ (1− c)(k−1)S(Ā(k−1)Sf − f)

=

k−1∑
i=1

(1− c)iS(ĀiSf − f)

Hence, ‖rneighbor − r̃neighbor‖1 is bounded as follows:

‖rneighbor − r̃neighbor‖1 ≤
k−1∑
i=1

(1− c)iS‖(ĀiSf − f)‖1

≤
k−1∑
i=1

(1− c)iS(‖ĀiSf‖1 + ‖f‖1)

= 2‖f‖1
k−1∑
i=1

(1− c)iS

= 2
(1− c)S(1− (1− c)(k−1)S)

1− (1− c)S
‖f‖1

= 2
(1− c)S − (1− c)kS

1− (1− c)S
(1− (1− c)S)

= 2(1− c)S − 2(1− c)T

Note that ‖ĀiSf‖1 = ‖f‖1 since Ā is a column stochastic
matrix; thus, ĀiS is also a column stochastic matrix .

Real-world graphs. From the proof of Lemma 3, ‖(ĀiSf−
f)‖1 (i = 1, · · · , k−1) is a decisive factor for the accuracy of
the neighbor approximation. f has the distribution of scores
among nodes after the family iterations (x(0), · · · ,x(S−1)).
Multiplying f with ĀS means that scores in f are propagated
S steps further across a given graph. As shown in Figure 4, if
the graph has an ideal block-wise, community-wise structure,
scores in f would be mainly located in nodes around a seed
node, which belong to the same community as the seed. During
the next S steps, scores in f would be propagated into the
nodes belonging to the same community again, without leaking
into other communities. Then, the distribution of scores in
ĀSf would be similar to that in f . To show that block-wise
structure of real-world graphs also brings the similar effects,
we compare ‖(ĀSf − f)‖1 of real-world graphs (WikiLink,
LiveJournal, Pokec, Google, and Slashdot) with that of random
graphs. Random graphs have the same numbers of nodes and
edges as the corresponding real-world graphs, while having the
random distribution of edges rather than block-wise structure.
Restart probability c is set to 0.15 and S is set to 5 for all the
datasets as described in Table II. As shown in Figure 5, real-
world graphs have lower ‖(ĀSf − f)‖1 values than random
graphs across all datasets. This means that the distribution
of scores (ĀSf ) after S steps is similar to the previous
distribution (f ) in real-world graphs with the help of block-
wise structure. By this process, the neighbor approximation
succeeds in achieving high accuracy for real-world graphs.

Fig. 4: Neighbor approximation with an ideal block-wise structure:
with an ideal block-wise structure, f and ĀSf have similar distribu-
tions.
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Fig. 5: Comparing ‖(ĀSf − f)‖1 between real-world and random
graphs: ĀSf and f have closer values in real-world graphs with
block-wise structures than those in random graphs across all datasets.

Based on Lemmas 1 and 3, we present the total accuracy
bound for TPA in Theorem 2. Note that TPA achieves higher
accuracy in practice than the bound suggested in Theorem 2
as discussed in this section. We show high accuracy of TPA
in real-world graphs experimentally in Section IV-C.

Theorem 2 (Accuracy bound for TPA): Let rCPI be the exact
RWR score vector from CPI, and rTPA be the approximate
RWR score vector from TPA. Then ‖rCPI−rTPA‖1 is bounded
as follows:

‖rCPI − rTPA‖1 ≤ 2(1− c)S

Proof: Note that rCPI and rTPA are represented as follows:
rCPI = rfamily + rneighbor + rstranger

rTPA = rfamily + r̃neighbor + r̃stranger

Then ‖rCPI − rTPA‖1 is bounded as the following inequality:
‖rCPI − rTPA‖1 = ‖rneighbor − r̃neighbor + rstranger − r̃stranger‖1

≤ ‖rneighbor − r̃neighbor‖1 + ‖rstranger − r̃stranger‖1
≤ 2(1− c)T + 2(1− c)S − 2(1− c)T

= 2(1− c)S

Note that ‖rneighbor − r̃neighbor‖1 ≤ 2(1 − c)S − 2(1 − c)T by
Lemma 3 and ‖rstranger− r̃stranger‖1 ≤ 2(1− c)T by Lemma 1.

According to Theorem 2, the accuracy of TPA is bounded by
S, the starting iteration of the neighbor approximation. Note
that S also determines the scope of rfamily, thus the amount of
computation needed in the online phase. TPA trades off the
accuracy and the online computation cost using S.



C. Selecting S and T

We set the starting iteration S of the neighbor approximation
considering accuracy and speed since S gives a tradeoff
between them. If we set S to a large value, computation time
for rfamily in the online phase escalates sharply. Otherwise,
when we set S to a small value, error increases since a portion
of exact computation decreases.

When we set the starting iteration T of the stranger approx-
imation to a small value, error increases sharply. Intuitively,
with small T , the effect of PageRank becomes higher than that
of a seed node. Theoretically, we discussed the reason with
the error bound of the stranger approximation in Section III-A.
Otherwise, when we choose a large T , scores of nodes far
from the seed, the latter part of rneighbor such as x(T−1) and
x(T−2), are estimated by the family part rfamily in the neighbor
approximation. Nodes far from the seed are likely to belong to
different communities from that of the seed node. Considering
that the neighbor approximation assumes that nodes visited
in the family part and in the neighbor part belong to the
same community by block-wise structure of real-world graphs,
errors for the neighbor approximation increase significantly.
Thus we need to choose T with a value which minimizes the
total errors for TPA. We show the effects of S and T on the
speed and accuracy of TPA in Section IV-D.

D. Complexity analysis for TPA

We analyze the time and space complexities of TPA. First, we
evaluate the time complexity of CPI since TPA is based on
CPI.

Lemma 4 (Time Complexity of CPI): At each iteration, CPI
takes O(m) where m is the number of edges in a given graph.
In total, CPI takes O(m log(1−c)(

ε
c )) time where log(1−c)(

ε
c )

indicates the number of iterations needed for convergence.
Proof: CPI computes x(i) = (1− c)(Ã>x(i−1)) for each

iteration, and takes O(m) time where m is the number of
nonzeros in Ã. CPI stops the iteration with convergence when
‖x(i)‖1 = c(1− c)i < ε. Then the number of iterations to be
converged is log(1−c)(

ε
c ) and the total computation time is

O(m log(1−c)(
ε
c )).

Theorem 3 (Time Complexity of TPA): TPA takes
O(m log(1−c)(

ε
c )) in the preprocessing phase and O(mS)

in the online phase where S is the starting iteration of the
neighbor approximation.

Proof: In the preprocessing phase, TPA computes PageR-
ank using CPI which takes O(m log(1−c)(

ε
c )) time. In the

online phase, TPA computes rfamily which runs S iterations in
CPI; thus, it requires O(mS) time.
According to Theorem 3, the preprocessing cost and the online
cost of TPA mainly depend on the number of iterations
conducted in CPI. Since only the family part is computed in
the online phase, TPA demands much smaller costs compared
to other state-of-the-art methods as shown in Figure 1.

Theorem 4 (Space complexity of TPA): TPA requires O(n+
m) memory space where n and m are the numbers of vertices
and edges, respectively.

Proof: TPA requires O(n) memory space for an approx-
imate stranger score vector r̃stranger and O(m) memory space
for a row-normalized adjacency matrix Ã.
Theorem 4 indicates that the space cost of TPA mainly
depends on n +m, node and edge sizes of the given graph.
As shown in Figure 1(a), TPA requires reasonable memory
space, and thus, succeeds in processing billion-scale graphs.

IV. EXPERIMENTS

In this section, we experimentally evaluate the performance
of TPA compared to other approximate RWR methods. We
aim to answer the following questions:
• Q1 Performance of TPA. How much does TPA enhance

the computational efficiency compared with its competi-
tors? (Section IV-B)

• Q2 Accuracy of TPA. How much does TPA reduce
the approximation error in real-world graphs from the
theoretical error bound? (Section IV-C)

• Q3 Effects of parameters. How does the starting itera-
tion S of the neighbor approximation affect the accuracy
and speed of TPA? How does the starting iteration T of
the stranger approximation affect the accuracy of TPA?
(Section IV-D)

A. Setup
1) Datasets
We use 7 real-world graphs to evaluate the effectiveness and
efficiency of our method. The datasets and their statistics are
summarized in Table II. Among them, Friendster, Twitter,
LiveJournal, Pokec, and Slashdot are social networks, whereas
WikiLink and Google are hyperlink networks.
2) Environment
All experiments are conducted on a workstation with a sin-
gle core Intel(R) Xeon(R) CPU E5-2630 @ 2.2GHz and
200GB memory. We compare TPA with five state-of-the-
art approximate RWR methods, BRPPR [6], NB-LIN [27],
BEAR-APPROX [24], HubPPR [28], and FORA [29], all of
which are described in Section V. All these methods including
TPA choose an implementation showing a better performance
between MATLAB and C++. We set the restart probability c
to 0.15. The starting iteration S of the neighbor approximation
and the starting iteration T of the stranger approximation is
set differently for each graph as noted in Table II to gain
the best performance of TPA. The convergence tolerance
ε for CPI is set to 10−9. For each dataset, we measure
the average value for 30 random seed nodes. To show the
best performance, parameters of each competitor are set as
follows: the drop tolerance of BEAR-APPROX and NB-LIN
is set to n−1/2 and 0, respectively; the threshold to expand
nodes in RPPR and BRPPR is set to 10−4; parameters for
the result quality guarantee of HubPPR and FORA are set
to values (1/n, 1/n, 0.5) as suggested in their papers [28],
[29]. We obtained the source codes of HubPPR from the
authors, which are optimized to compute an approximate RWR
score vector. By querying all nodes in a graph as the target
nodes, HubPPR computes an approximate RWR score vector.
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Fig. 6: Recall of top-k RWR vertices: except NB-LIN, all methods show similarly high recall on the four datasets. Note that TPA requires
less computation time and memory space than other methods, while maintaining the similar recall. Lines are omitted if corresponding
experiments run out of memory (> 200GB).

BePI [12], the state-of-the-art exact RWR method, is used to
provide the ground truth RWR values in all experiments. We
compare the computational efficiency between TPA and BePI
in Appendix A.

B. Competitors

Under the environmental settings described above, in the
preprocessing phase, we estimate the preprocessing time and
the size of preprocessed data of each method. In the online
phase, we estimate the computation time and the accuracy of
approximate RWR scores computed from each method. From
Figures 1 to 6, TPA runs faster than other methods, while
requiring less memory space and maintaining high accuracy.

1) Speed

We examine the running time of TPA in the preprocessing
phase and the online phase, respectively. Running time is
measured in wall-clock time. In the preprocessing phase,
TPA computes PageRank using CPI to get r̃stranger; BEAR-
APPROX precomputes several matrices required in the on-
line phase; NB-LIN computes low-rank approximation and
inversion of some small size matrices; HubPPR precomputes
and indexes auxiliary information for selected hub nodes that
are often involved in RWR processing; FORA precomputes a
number of random walks from nodes, and stores the destina-
tion of each walk. As shown in Figure 1(b), TPA performs
preprocessing faster than other preprocessing methods by up
to 3.5×. Even though FORA shows relatively fast computation
speed in the preprocessing phase, it requires up to 40× larger
memory space and up to 30× more online computation time
than TPA. Note that the preprocessing phase is executed only
once for a graph and the online phase is executed every
time for a new seed node. Then the superior performance of
TPA for online computation has more significant effects in
terms of total computation efficiency. Under 200GB memory
capacity, BEAR-APPROX and NB-LIN fail to preprocess the
datasets from Pokec and WikiLink, respectively, due to out
of memory error. In the online phase, TPA computes an
approximate RWR vector up to 30× faster than other methods.
Although BEAR-APPROX takes similar online time as TPA

in the Google dataset, BEAR-APPROX takes 5923× more
preprocessing time than TPA does for the same dataset. On
the contrary, TPA maintains superior speed compared to all
other methods in both phases.

2) Memory Usage

To compare memory efficiency, we measure how much mem-
ory each method requires for the preprocessed data. As shown
in Figure 1(a), compared with other preprocessing methods,
TPA requires up to 40× less memory space across all the
datasets. This result shows the superior scalability of TPA.
Under 200GB memory capacity, BEAR-APPROX and NB-
LIN consume a significant memory space, thus, are feasible
only on the small datasets (LiveJournal, Pokec, Google, and
Slashdot). Although HubPPR and FORA succeed in prepro-
cessing billion-scale graphs, they require a significant memory
space for the preprocessed data. Note that HubPPR and FORA
trade off the online computation time against the size of
preprocessed data [28], [29]. Thus, when they manipulate the
size of preprocessed data smaller than the memory presented
in Figure 1(a), they would require more online computation
time than the one presented in Figure 1(c) which is already
up to 30× more than TPA.

3) Accuracy

In most applications of RWR, the typical approach is to
return the top-k ranked vertices of RWR vector. For instance,
in Twitter’s ”Who to Follow” recommendation service [7],
the top-500 ranked users in RWR will be recommended.
Therefore, it is important to measure the accuracy of the top-
k results to examine the accuracy of an approximate RWR
vector. We first calculate the exact top-k vertices using BePI,
then evaluate the top-k results of each method by measuring
their recall with respect to the exact top-k. For brevity, we
show the result on Twitter, WikiLink, Pokec, and Slashdot;
results on other graphs are similar. As shown in Figure 6,
all methods except NB-LIN provide high recall around 0.99
across all datasets. Note that as shown in Figure 1, TPA
requires less computation time and smaller memory space than
other methods, while maintaining the similar accuracy.



TABLE III: Error statistics: we measure L1 norm errors of the neighbor approximation r̃neighbor, the stranger approximation r̃stranger, and the final
approximate RWR score vector rTPA with regard to the exact score vectors rneighbor, rstranger, and rCPI, respectively. Then we compare the L1
norm errors with their theoretical error bounds, respectively. The theoretical error bounds for r̃neighbor, r̃stranger and rTPA are 2(1−c)S−2(1−c)T ,
2(1− c)T , and 2(1− c)S , respectively. Percentage denotes the ratio of L1 norm error in real-world graphs with regard to the theoretical error
bound. S denotes the starting iteration of the neighbor approximation and T denotes the starting iteration of the stranger approximation. Both
neighbor approximation and stranger approximation lower errors significantly from their theoretical error bounds by exploiting characteristics
of real-world graphs.

Dataset Neighbor Approximation Stranger Approximation TPA

Theoretical
bound: (A)

Actual
error:

(B)

Percentage:
(B/A)

Theoretical
bound: (A)

Actual
error:

(B)

Percentage:
(B/A)

Theoretical
bound: (A)

Actual
error:

(B)

Percentage:
(B/A)

Slashdot 0.7127 0.3367 47.24% 0.1747 0.0861 49.27% 0.8874 0.0505 5.69%
Google 0.8099 0.3377 41.70% 0.0775 0.0451 58.19% 0.8874 0.1805 20.33%
Pokec 0.4937 0.3041 61.59% 0.3937 0.1011 25.68% 0.8874 0.1946 21.93%

LiveJournal 0.4937 0.2711 54.91% 0.3937 0.1456 36.98% 0.8874 0.2555 28.79%
WikiLink 0.1331 0.0739 55.51% 0.7543 0.2097 27.80% 0.8874 0.2370 26.71%
Twitter 0.2897 0.1953 67.43% 0.7543 0.0349 4.63% 1.0440 0.1015 9.73%

Friendster 0.9665 0.4479 46.34% 0.0775 0.0419 54.06% 1.0440 0.0675 6.46%

C. TPA in Real-world Graphs

In Section III, we analyze the error bounds of the neighbor
approximation and the stranger approximation theoretically
and elaborate how the approximations achieve lower errors
than the theoretical bounds in real-world graphs. The stranger
approximation uses the increased density of adjacency matri-
ces of real-world graphs as the matrices are raised to the ith
power. With the help of block-wise structure of real-world
graphs, the neighbor approximation results in low error in
practice. In Table III, we compare the errors of the neighbor
approximation and the stranger approximation in real-world
graphs with their theoretical bounds, respectively. S and T
used in each dataset are described in Table II. The neighbor
approximation lowers the error up to 42% and the stranger
approximation lowers the error up to 5% from their theoret-
ical error bounds, respectively. This results show that both
approximations exploit the characteristics of real-world graphs
effectively. One interesting point is that the total error of TPA
is significantly lower than the sum of errors of the neighbor
approximation and the stranger approximation. E.g., in the
Slashdot dataset, the neighbor and stranger approximations
lower errors to the half of the suggested theoretical bounds,
but the total experimental error of TPA decreases to 6%
of its theoretical upper bound. This presents the stranger
approximation and the neighbor approximation complement
each other effectively. The neighbor approximation could not
consider nodes which are not visited in the family iterations
since it approximates the neighbor iterations only based on
the family iterations. On the other hand, the stranger approx-
imation could not consider the effect of seed node since it
precomputes PageRank in the preprocessing phase without any
information about which node would be a seed node. Merged
with the stranger approximation, the neighbor approximation
acquires information about nodes across whole graphs, stored
in PageRank. On the other hand, merged with the neighbor
approximation, the stranger approximation has a chance to put
more priority on the seed node. TPA compensates the weak
points of each approximations successfully.

D. Effects of Parameters
We discuss the effects of two parameters S and T in this
subsection. We first investigate the effects of S, the starting
iteration of the neighbor approximation, on the performance of
TPA. We measure online computation time and L1 norm error
of TPA varying S. During this experiment, T is fixed to 10.
As shown in Figure 7, as S increases, online time increases
sharply while L1 norm error decreases since a portion of the
exact computation rfamily increases. Thus, S is selected to a
proper number considering the tradeoff between accuracy and
running time of TPA.

Next, we examine the effects of T , the starting iteration
of the stranger approximation, on the accuracy of TPA. We
measure L1 norm errors of the neighbor approximation, the
stranger approximation, and TPA, respectively, varying T .
Note that S is fixed to 5 during this experiment. In Figure 8, as
T increases, L1 error of the neighbor approximation increases,
that of the stranger approximation decreases, and that of
TPA decreases at first and then rebounds from T = 10.
With small T , the stranger approximation applies to nodes
close to the seed, then, the nodes are estimated by their
PageRank scores and the effects of their close distances from
the seed are ignored. This leads to high L1 norm error of the
stranger approximation. On the other hand, with large T , the
neighbor approximation applies to nodes far from the seed.
The nodes which reside far from the seed are likely to belong
to different communities from that of the seed. However, by
the neighbor approximation, such nodes are estimated as the
same community members as the seed. Then, L1 norm error
of the neighbor approximation becomes high. Thus T is set
to a value which minimizes the total L1 norm error of TPA.

V. RELATED WORKS

In this section, we review previous approximate methods
for RWR. To avoid enormous costs incurred by RWR compu-
tation, many efforts have been devoted to estimating RWR in
a cost-efficient way while sacrificing little accuracy. Gleich et
al. [6] introduced boundary restricted personalized PageRank
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Fig. 7: Effects of S: with small S, TPA runs fast with high L1 norm
error. On the other hand, with large S, TPA takes long computation
time with low L1 error.
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Fig. 8: Effects of T : as T increases, L1 norm error of the neighbor
approximation (NA) increases, that of the stranger approximation
(SA) decreases, and that of TPA decreases at first and then rebounds
from T = 10.

(BRPPR) which improves speed by limiting the amount of
graph data that need to be accessed. BRPPR iteratively divides
the vertices of a graph into an active and an inactive set.
At each iteration, the set of active vertices is expanded to
include more vertices that are likely to have a high RWR
score. BRPPR expands nodes until the total rank on the frontier
set of nodes is less than κ. Proposed by Tong et al. [27],
NB-LIN exploits linear correlations across rows and columns
of the adjacency matrix in many real-world graphs. NB-LIN
computes low-rank approximation of the adjacency matrix and
uses it to estimate RWR score vector based on the Sherman-
Morrison lemma. NB-LIN divides whole computation into
the preprocessing phase and online phase, and yields faster
response time in the online phase. Shin et al. extended their
exact RWR method BEAR [13], [24] to an approximate
RWR method BEAR-APPROX which drops non-zero entries
whose absolute value is smaller than the drop tolerance in
its preprocessed matrix. Forward Push [1] computes RWR by
propagating residuals across a graph until all the residuals
become smaller than a given threshold. Proposed by Wang
et al. [29], FORA first performs Forward Push with early
termination, and subsequently runs random walks. FORA
utilizes Forward Push to significantly cut down the number
of required random walks while satisfying the same result
quality guarantees of random walks. FORA precomputes

a number of random walks in the preprocessing phase to
further improve computation efficiency. Other methods such
as FAST-PPR [20], BiPPR [19] and HubPPR [28] narrow
down the scope of RWR problem by specifying a target
node. BiPPR processes an RWR query through a bi-directional
search on the input graph. HubPPR precomputes indexes in
the preprocessing phase and approximates RWR with the
help of precomputed indexes in the bi-directional way. We
compare our method with HubPPR since HubPPR is the most
recent study with the best performance among bi-directional
methods [28]. Our proposed TPA outperforms all methods
described above by providing a better cost-efficiency.

VI. CONCLUSION

In this paper, we propose TPA, a fast and accurate method
for computing approximate RWR. TPA is based on cumulative
power iteration (CPI) which interprets RWR problem as
propagation of scores from a seed node across a graph. To
avoid long computation time, TPA divides the whole itera-
tions of CPI into three parts (family, neighbor, and stranger
parts), and estimates the neighbor part and the stranger part
using our proposed approximation methods called neighbor
approximation and stranger approximation, respectively. With
the help of two approximation phases, TPA quickly computes
only the family part in the online phase, and then approximates
RWR with high accuracy. Our evaluation shows that TPA
outperforms other state-of-the-art methods in terms of speed
and memory-efficiency, without sacrificing accuracy. Future
works include extending TPA into a disk-based RWR method
to handle huge, disk-resident graphs.
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APPENDIX

A. Comparison with BePI
BePI [12] is the state-of-the-art exact RWR method which pre-
computes several matrices required by the online phase in the
preprocessing phase and computes RWR scores by exploiting
the precomputed matrices in the online phase. As shown in
Figure 9, TPA and BePI take the similar preprocessing time,
while TPA is up to 96× faster than BePI in the online phase.
Considering that the preprocessing phase is executed only
once for a graph and the online phase is executed everytime
for a new seed node, the superior performance of TPA for
online computation brings significant advantages for users who
put more priority on speed than accuracy. Moreover, TPA
requires up to 168× less memory space for preprocessed data
than BePI. Note that while TPA outperforms BePI in terms
of computation time and memory usage, TPA computes the
approximate RWR scores and BePI results in the exact RWR
scores.


	Introduction
	Preliminaries
	PageRank
	Random Walk with Restart
	CPI: Cumulative Power Iteration

	Proposed Method
	Stranger Approximation
	Neighbor Approximation
	Selecting S and T
	Complexity analysis for TPA

	Experiments
	Setup
	Datasets
	Environment

	Competitors
	Speed
	Memory Usage
	Accuracy

	TPA in Real-world Graphs
	Effects of Parameters

	Related Works
	Conclusion
	References
	Appendix
	Comparison with BePI


