

BalanSiNG: Fast and Scalable Generation of Realistic Signed Networks

EDBT/ICDT 2020

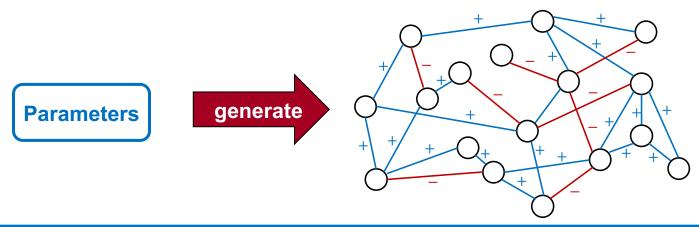
Jinhong Jung

Seoul National University Seoul, South Korea

Ha-Myung Park

Kookmin University Seoul, South Korea **U** Kang

Seoul National University Seoul, South Korea

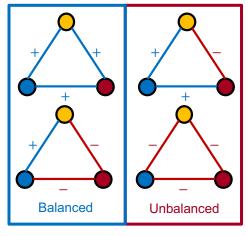

Outline

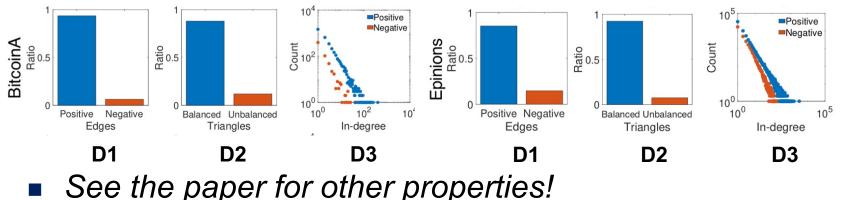
Introduction

- Proposed Method
- Experiments
- Conclusion

Research Question

- How can we efficiently generate realistic signed networks?
 - □ Graphs with signed edges (+ \Rightarrow trust, - \Rightarrow distrust)
 - Online social services (e.g., *Epinions/Slashdot*)
 - Sign prediction, ranking, anomaly detection, etc.


Given some parameters, generate synthetic signed networks following various realistic properties


BalanSiNG: Fast and Scalable Generation of Realistic Signed Networks

Desired Properties

Real-world signed networks share common tendencies on various properties

- Properties w.r.t. edge sign
 - D1) Positively skewed sign ratio
 - D2) Highly balanced triangle ratio
 - D3) Power-law degree distribution for only +/- edges

Problem Definition & Importance

Signed network generation problem

- Given n and m (target # of nodes & edges, resp.)
- To synthetically generate a signed network
 - Having $n = 2^L$ nodes and m signed edges
 - Showing the desired properties of real-world signed net.

Why important?

Mar 31

- To understand the formation of real-world networks
 - Historically profound in network science
- Extremely useful for researches on signed networks
 - Scalability evaluation, network simulation, anonymization

Related Work & Challenge

Models for unsigned networks

- Stochastic Kronecker Graph (SKG)
 - Simulate a self-similarity using Kronecker product for modeling realistic properties of unsigned networks
 - Scalable, but no consideration on forming signed edges!

Models for signed networks

- Balanced Signed Chung-Lu (BSCL)
 - Extended version of Chung-Lu model considering the formation of balanced triangles $O(d_{max}^2 m + n)$
 - Realistic, but not scalable for generating large networks!

How to efficiently generate large-scale & realistic signed networks?

Outline

Introduction

Proposed Method

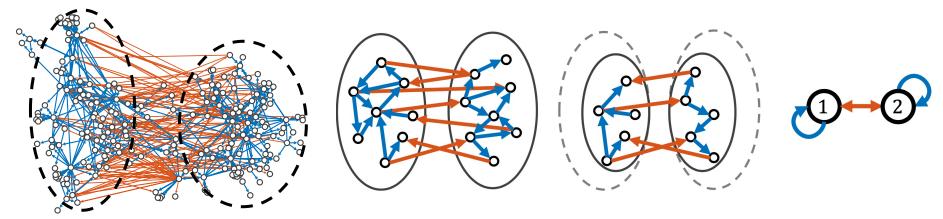
- Experiments
- Conclusion

Proposed Method

BalanSiNG (Balanced Signed Network Generator)

Novel method for generating realistic signed networks showing the desired properties

Main Approaches


Mar 31

- 1) Self-similar Balanced Structure for Signed Net.
- 2) Basic Stochastic Kronecker Signed Graph (SKSG-B)
 - For simulating self-similar balanced structure
- 3) Stochastic Kronecker Signed Graph (SKSG)
 - □ For more realistic signed networks
- 4) *BalanSiNG*, an efficient and parallel method
 While supporting SKSG

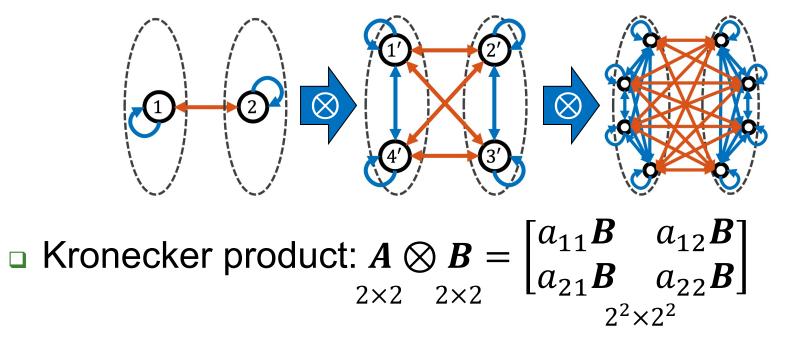
Self-similar Balanced Structure

Real-world signed networks have selfsimilar balanced structure!

- A self-similar object is (approx.) similar to a part of itself
- □ Two clusters in signed network \Rightarrow balanced structure
- □ Internally, two smaller clusters appear \Rightarrow self-similar

Real-world signed network (Congress dataset)

Mar 31


Global balanced structure

Zoomed-in balanced structure

Self-similar balanced structure

SKSG-B Model (1)

- Simulate the self-similarity with Kronecker product ⊗
 - □ Given the initial graph, double itself using \otimes at each iteration $\Rightarrow 2^l \times 2^l$ adjacency matrix

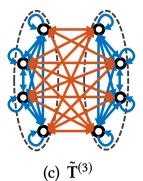
SKSG-B Model (2)

How to simulate the self-similarity?

1) Represent the self-similarity pattern

$$\mathbf{T}^{(1)} = \{+\mathcal{P}, -\mathcal{M}\} = \{ + \begin{bmatrix} p_{11} & 0 \\ 0 & p_{22} \end{bmatrix}, - \begin{bmatrix} 0 & m_{12} \\ m_{21} & 0 \end{bmatrix} \}$$

• $p_{11} = P(1, 1, +)$: prob. that edge (1, 1) is positive


□ 2) Apply Kronecker product $\mathbf{T}^{(2)} = \mathbf{T}^{(1)} \otimes \mathbf{T}^{(1)} = \{+\mathcal{P} \otimes \mathcal{P}, -\mathcal{P} \otimes \mathcal{M}, -\mathcal{M} \otimes \mathcal{P}, +\mathcal{M} \otimes \mathcal{M}\}$

3) Aggregate them according to their sign

$$\widetilde{\mathbf{T}}^{(2)} = f_b (\mathbf{T}^{(1)} \otimes \mathbf{T}^{(1)}) \leftarrow \text{Balanced sign aggregator}$$

 $=\{+(\boldsymbol{\mathcal{P}}\otimes\boldsymbol{\mathcal{P}}+\boldsymbol{\mathcal{M}}\otimes\boldsymbol{\mathcal{M}}),-(\boldsymbol{\mathcal{P}}\otimes\boldsymbol{\mathcal{M}}+\boldsymbol{\mathcal{M}}\otimes\boldsymbol{\mathcal{P}})\}$

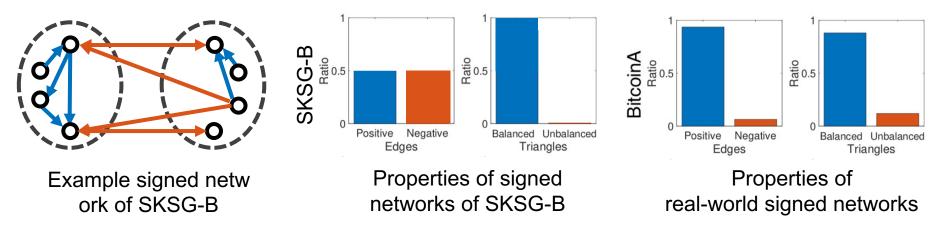
SKSG-B Model (3)

How to simulate the self-similarity?

• 4) Repeat steps 2 and 3: $\tilde{\mathbf{T}}^{(l)} = f_b(\mathbf{T}^{(1)} \otimes \tilde{\mathbf{T}}^{(l-1)})$

• $\widetilde{\mathbf{T}}^{(l)} = \{+\mathcal{P}^{(l)}, -\mathcal{M}^{(l)}\}$ has two stochastic matrices in $2^l \times 2^l$ $\square \mathcal{P}^{(l)}_{uv} = P(u, v, +)$ and $\mathcal{M}^{(l)}_{uv} = P(u, v, -)$

- How to build a signed network from $\widetilde{\mathbf{T}}^{(l)}$?
 - For each $(u, v) \in V$, randomly determine the edge
 - □ Edge: toss a coin with P(u, v) = P(u, v, +) + P(u, v, -)
 - □ Sign: positive if P(+|u, v) > P(-|u, v); otherwise, negative


• P(+|u,v) = P(u,v,+)/P(u,v)

- □ Lemma: two clusters are preserved as *l* increases!
 - See the paper for the proof for the lemma

SKSG-B Model (4)

SKSG-B returns fully balanced signed net.!

- □ 1) + edges in each group & edges b.t.w. groups
- □ 2) Δ_{+++} in each group & Δ_{+--} between groups
- Problems of SKSG-B
 - P1) Uniform sign ratio ⇒ much more positive edges
 - **P2)** Only balanced $\Delta \Rightarrow a$ few unbalanced Δ (e.g., Δ_{++-})

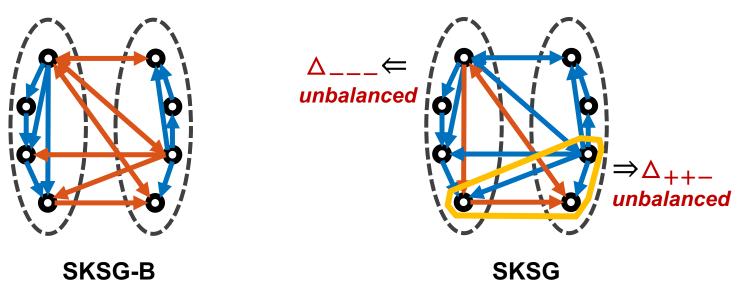
Mar 31

BalanSiNG: Fast and Scalable Generation of Realistic Signed Networks

Main ideas of SKSG

□ Weight splitting: to increase probabilities on generating positive signs with $0 \le \alpha \le 1$

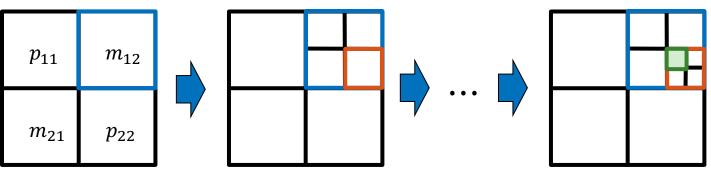
 $f_{\alpha}(\mathbf{T}) = f_{\alpha}(\{+\mathcal{P}, -\mathcal{M}\}) = \{+(\mathcal{P} + \alpha \mathcal{M}), -(1 - \alpha)\mathcal{M}\}$


- Stochastic sign determination: to make the chance of forming negative edges inside each group
 - SKSG-B: + if P(+|u,v) > P(-|u,v); otherwise, -
 - SKSG: toss a coin with P(+|u, v); Head $\rightarrow +$ or Tail $\rightarrow -$

SKSG Model (2)

Effects of SKSG

- 1) Increase # of positive edges
 - Some edges in SKSG-B become + ones in SKSG
 - □ Higher $\alpha \Rightarrow$ larger # of positive edges


2) Make the chance of forming unbalanced triangles

BalanSiNG

Efficient & scalable method following SKSG

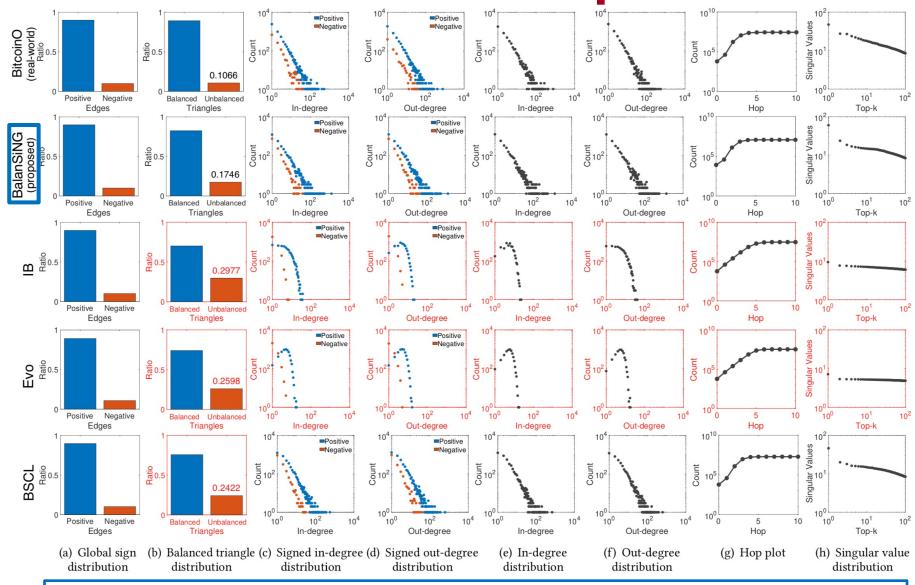
- SKSG requires $O(n^2)$ time for constructing $\widetilde{\mathbf{T}}^{(l)}$
- □ Instead of building $\widetilde{\mathbf{T}}^{(l)}$ explicitly, directly determine an edge P(u, v) and track its sign probabilities $P(u, v, \pm)$
- Main intuition: recursively select regions of adj. mat.

- Each edge is determined in $O(L) = O(\log n)$ (if $n = 2^L$)
- Each edge can be determined in parallel!
- See the paper for details and proofs!

Mar 31

Total: $O(m \log n)$

Outline

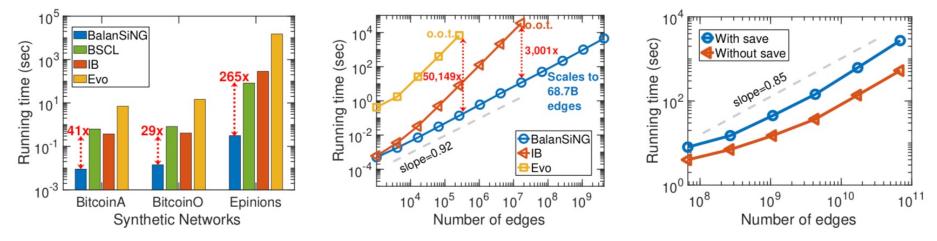

- Introduction
- Proposed Method
- Experiments
 - Conclusion

Experimental Setting

Main experimental questions

- Q1. Is BalanSiNG able to generate signed networks showing the desired properties?
- Q2. How efficient is BalanSiNG for generating largescale signed networks?
- Datasets: BitcoinA, BitcoinO, Epinions
- Competitors: IB, EBO, BSCL
- Implementation of BalanSiNG
 - Single machine: c++
 - Distributed machines: Apache Spark (17 machines)

Q1. Desired Properties


BalanSiNG outputs the most similar network to the real-world network!

19

Q2. Computational Efficiency

On both single and distributed machines

- 1) up to 265x faster for imitating input signed network on single machine
- 2) near-linear scalability w.r.t. # of edges on both single and distributed machines (scale to 68.7B edges)

(a) Generation time on a single machine (b) Data scalability on a single machine (c) Data scalability on distributed machines

BalanSiNG is efficient and scalable for generating signed networks!

Mar 31

BalanSiNG: Fast and Scalable Generation of Realistic Signed Networks

Outline

- Introduction
 Proposed Method
 Experiments
- Conclusion

Conclusion

BalanSiNG (Balanced Signed Network Generator)

- Efficient and parallel method for generating realistic signed networks
- Simulating self-similar balanced structure in real-world signed networks

Main Results

- Generate the most realistic signed networks
- Up to 265x faster for imitating input signed network
- Near-linear scalability w.r.t. # of edges on both single and distributed machines
 - Successfully scale to 68.7B edges!

Thank You! Q&A

Codes & datasets https://datalab.snu.ac.kr/balansing

Mar 31

BalanSiNG: Fast and Scalable Generation of Realistic Signed Networks