
BePI: Fast and Memory-Efficient
Method for Billion-Scale
Random Walk with Restart

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 1

Jinhong Jung Namyong Park Lee Sael U Kang

Outline
1. Introduction
2. Proposed Method
3. Experiment

4. Conclusion

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 2

Introduction Proposed Method Experiment Conclusion

Introduction
Random Walk with Restart
◦ Measures the relevance between nodes in a graph
◦ Used in many datamining applications based on graphs

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 3

Introduction Proposed Method Experiment Conclusion

◦ Anomaly detection
§ Spammer, trolls, frauds

◦ Question & Answering System
§ Subgraph matching

Random Walk with Restart is an important tool for graph analysis!

◦ Recommendation
§ Friends, movies, documents

0.2

0.05

0.1

0.1
0.09

0.05 0.01

0.01

0.04

0.050.08

Recomm
endation

Query
User

Contact

Tech	
Report

Random Walk with Restart (1)
Measures node relevance scores using random surfer
◦ The surfer starts at query node s on a graph
◦ Random walk: moves to one of neighbors with prob. 1 − 𝑐
◦ Restart: jumps back to query node s with prob. 𝑐

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 4

Introduction Proposed Method Experiment Conclusion

Random walk (with prob. 1 − 𝑐) Restart (with prob. 𝑐)

𝑆 𝑆

Random Walk with Restart (2)
Computes the stationary probability that the surfer
stays at each node

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 5

Introduction Proposed Method Experiment Conclusion

Node RWR Score
(relevance with node 2)

1 0.19
2 0.32
3 0.29
4 0.10
5 0.10

Restarting probability 𝑐 = 0.2

query node
2

1

3

5

4

0.32

0.19

0.29

0.1

0.1

Problem Definition – RWR (1)
Given: adjacency matrix 𝐀, query node s and restart
probability 𝑐
Find: RWR score vector 𝐫! w.r.t. the query node 𝑠

𝐫! = 1 − 𝑐)𝐀𝐓𝐫! + 𝑐𝐪!
Input:
◦ $𝐀 ∈ ℝ!×!: row-normalized adjacency matrix
◦ 𝐪# ∈ ℝ!×$: query vector (𝑠-th unit vector)
◦ 𝑐 ∈ ℝ: restart probability

Output:
◦ 𝐫" ∈ ℝ!×#: RWR score vector with regard to query node 𝑠

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 6

Introduction Proposed Method Experiment Conclusion

Problem Definition – RWR (2)
Computing RWR is equivalent to solving a linear system

◦ Given 𝐇 ∈ ℝ!×!, 𝐪" ∈ ℝ!, and 𝑐, solve the linear system
to obtain 𝐫" ∈ ℝ!

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 7

Introduction Proposed Method Experiment Conclusion

𝐫! = 1 − 𝑐)𝐀𝐓𝐫! + c𝐪!

⇔ 𝐈 − 1 − 𝑐)𝐀𝐓 𝐫! = 𝑐𝐪!

⇔ 𝐇𝐫! = 𝑐𝐪!

Existing methods for RWR
Iterative Methods

◦ Iteratively update RWR scores
until convergence
§ e.g., Power iteration

𝐫#
$ ← 1 − 𝑐)𝐀𝐓𝐫#

$&' + 𝑐𝐪#

◦ No preprocessing phase

◦ Query phase (repetitive cost)
§ Given 𝐪!, repeat the update rule

until convergence

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 8

Introduction Proposed Method Experiment Conclusion

Preprocessing Methods
◦ Compute RWR scores directly

from precomputed data
§e.g., Inversion

𝐇𝐫" = 𝑐𝐪" ⇔ 𝐫" = 𝑐𝐇#𝟏𝐪"

◦ Preprocessing phase (one time)
§Compute 𝐇#𝟏

◦ Query phase (repetitive cost)
§Given 𝐪", compute 𝐫" = 𝑐𝐇#𝟏𝐪"

Challenges
Q. How can we compute RWR scores quickly on very
large graphs?

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 9

Introduction Proposed Method Experiment Conclusion

Iterative methods
◦ Pros: scale to very large graphs
§ Do not need preprocessed data

◦ Cons: slow RWR computation speed
§ The whole iterations need to be repeated

for each query node

Preprocessing methods
◦ Pros: fast RWR computation speed
§ Directly compute the scores from

precomputed results

◦ Cons: cannot handle very large graphs
§ Heavy computation cost and memory

consumption due to matrix inversion

Challenge: How to devise a fast and scalable algorithm
for computing RWR scores on very large graphs?

Outline
1. Introduction
2. Proposed Method
3. Experiment

4. Conclusion

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 10

Introduction Proposed Method Experiment Conclusion

Proposed Method
BePI (Best of Preprocessing and Iterative approaches)
◦ A fast and scalable method by taking the advantages of

both preprocessing and iterative approaches

Key Ideas
◦ Idea 1) Exploit graph characteristics to adopt a

preprocessing approach for fast query speed
◦ Idea 2) Incorporate an iterative method into the

preprocessing approach to increase the scalability
◦ Idea 3) Optimize the performance of the iterative method

to accelerate RWR computation speed

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 11

Introduction Proposed Method Experiment Conclusion

Proposed Method
BePI (Best of Preprocessing and Iterative approaches)
◦ A fast and scalable method by taking the advantages of

both preprocessing and iterative approaches

Key Ideas
◦ Idea 1) Exploit graph characteristics to adopt a

preprocessing approach for fast query speed
◦ Idea 2) Incorporate an iterative method into the

preprocessing approach to increase the scalability
◦ Idea 3) Optimize the performance of the iterative method

to accelerate the RWR computation speed

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 12

Introduction Proposed Method Experiment Conclusion

Proposed Method – Idea 1
Exploit graph characteristics to adopt a preprocessing
approach for fast query speed
◦ Reorder node ids to permute 𝐇 based on deadend and

hub-and-spoke structures
◦ Apply block elimination as a preprocessing approach

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 13

Introduction Proposed Method Experiment Conclusion

Deadend
◦ Deadend is a node having no

out-going edges
◦ File or Image in web-document

networks
◦ Deadends get high ids
◦ Non-deadends get low ids Non-deadends Deadends

Original Matrix Reordered Matrix

𝐇𝐫 = 𝑐𝐪!

Source

De
st

in
at

io
n

Source

De
st

in
at

io
n

Proposed Method – Idea 1
Reorder node ids to permute 𝐇 based on deadend and
hub-and-spoke structures
◦ The entries of 𝐇 are concentrated by reordering nodes

based on hub-and-spoke structure [Kang et al., `11]

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 14

Introduction Proposed Method Experiment Conclusion

Hub-and-spoke
◦ Hubs are high degree nodes,

spokes are low degree nodes
◦ Few hubs, and a majority of

spokes in real-world graphs
◦ Hubs get high ids
◦ Spokes get low ids

Spokes Hubs

Original Matrix Reordered Matrix

𝐇𝐫 = 𝑐𝐪!

Proposed Method – Idea 1
Combine deadend and hub & spoke reordering

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 15

Introduction Proposed Method Experiment Conclusion

Deadend Hub & Spoke
on 𝐇!!

𝐇𝐫! = 𝑐𝐪! ⇔
𝐇"" 𝐇"# 𝟎
𝐇#" 𝐇## 𝟎
𝐇$" 𝐇$# 𝐈

𝐫"
𝐫#
𝐫$

= 𝑐
𝐪"
𝐪#
𝐪$

𝐇## is a block diagonal matrix!

Proposed Method – Idea 1
Apply block elimination as a preprocessing approach

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 16

Introduction Proposed Method Experiment Conclusion

𝐒 = 𝐇&& −𝐇&'𝐇''#'𝐇'& , the Schur complement of 𝐇''

Precompute the blue-colored matrices to make RWR computation fast!

𝐇𝐫! = 𝑐𝐪! ⇔
𝐇"" 𝐇"# 𝟎
𝐇#" 𝐇## 𝟎
𝐇$" 𝐇$# 𝐈

𝐫"
𝐫#
𝐫$

= 𝑐
𝐪"
𝐪#
𝐪$

𝐫"
𝐫#
𝐫$

=
𝐇""&"(𝑐𝐪" −𝐇"#𝐫#)

𝐒&𝟏(𝑐𝐪# − 𝑐𝐇#"𝐇""&"𝐪")
𝑐𝐪$ −𝐇$"𝐫" −𝐇$#𝐫#

Block elimination
See Lemma 1

Details

Proposed Method
BePI (Best of Preprocessing and Iterative approaches)
◦ A fast and scalable method by taking the advantages of

both preprocessing and iterative methods

Key Ideas
◦ Idea 1) Exploit graph characteristics to adopt a

preprocessing approach
◦ Idea 2) Incorporate an iterative method into the

preprocessing approach to increase the scalability
◦ Idea 3) Optimize the performance of the iterative method

to accelerate RWR computation speed

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 17

Introduction Proposed Method Experiment Conclusion

Proposed Method – Idea 2
Incorporate an iterative method into the preprocessing
approach to increase the scalability
◦ Computing 𝐇''&' is trivial since it is block diagonal
◦ But, inverting 𝐒 is impractical in very large graphs
§dim(𝐒) = # of hubs > 1 million (10() in large graphs
§e.g., 10 million hubs in the Twitter network

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 18

Introduction Proposed Method Experiment Conclusion

𝐫"
𝐫#
𝐫$

=
𝐇""&"(𝑐𝐪" −𝐇"#𝐫#)

𝐒&𝟏(𝑐𝐪# − 𝑐𝐇#"𝐇""&"𝐪")
𝑐𝐪$ −𝐇$"𝐫" −𝐇$#𝐫#

𝐒 = 𝐇&& −𝐇&'𝐇''#'𝐇'&

Proposed Method – Idea 2
Incorporate an iterative method into the preprocessing
approach
◦ Solution. Solve the linear system on 𝐒 using an iterative

linear solver [Saad et al., `86]

𝐫& = 𝐒#' 𝑐𝐪& − 𝑐𝐇&'𝐇''#'𝐪'

⇔ 𝐒𝐫& = 𝑐𝐪& − 𝑐𝐇&'𝐇''#'𝐪' ≜ 1𝐪&

§ Linear solvers obtain the solution 𝒓& without inverting 𝐒

𝐒𝐫& = 1𝐪&

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 19

Introduction Proposed Method Experiment Conclusion

Introducing the linear solver increases the scalability of RWR computation!

Proposed Method
BePI (Best of Preprocessing and Iterative approaches)
◦ A fast and scalable method by taking the advantages of

both preprocessing and iterative methods

Key Ideas
◦ Idea 1) Exploit graph characteristics to adopt a

preprocessing approach
◦ Idea 2) Incorporate an iterative method into the

preprocessing approach to increase the scalability
◦ Idea 3) Optimize the performance of the iterative method

to accelerate RWR computation speed

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 20

Introduction Proposed Method Experiment Conclusion

Proposed Method – Idea 3
Optimize the performance of the iterative method to
accelerate RWR computation speed

𝐒𝐫# = 4𝐪#
◦ The running time of linear solvers is 𝑂 T 𝐒
§ 𝐒 : number of non-zeros of 𝐒, T: number of iterations

◦ Optimization 1) How to decrease 𝐒 ?
§⇒ Control hub selection ratio 𝑘 in hub & spoke method

◦ Optimization 2) How to decrease T?
§⇒ Exploit a preconditioner

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 21

Introduction Proposed Method Experiment Conclusion

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 22

Introduction Proposed Method Experiment Conclusion

Propose Method
Idea 3

Optimization 1

Hub-and-spoke
reordering

method

Spokes Hubs

Original	Matrix Reordered	Matrix

Hub-and-spoke reordering
For each iteration, select hubs with a hub selection ratio 𝑘
Disconnect the hubs and assign node ids for hubs & spokes
Repeat the above in the GCC (Giant Connected Comp.)

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 23

Introduction Proposed Method Experiment Conclusion

𝑘 = 0.07 & # 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑛 = 14, select 𝑘𝑛 = 1 hub for each iteration

Selected hub

Spoke

Node in GCC

According to hub selection ratio 𝑘, # of hubs changes

[Kang et al., `11]

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 24

Introduction Proposed Method Experiment Conclusion

Propose Method
Idea 3

Optimization 1

Hub-and-spoke
reordering

method

Proposed Method – Idea 3
Optimization 1) Reduce the number of non-zeros of 𝐒
◦ According to hub selection ratio 𝑘, # of hubs is different
◦⇒ # of non-zeros of sub-matrices in 𝐇 changes
◦⇒ # of non-zeros of 𝐒 changes (𝐒 = 𝐇&& −𝐇&'𝐇''#'𝐇'&)

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 25

Introduction Proposed Method Experiment Conclusion

𝐒𝐫# = 4𝐪#

𝐇""𝐇"#

𝐇#"𝐇##

𝐇""𝐇"#

𝐇#"𝐇##

𝑘 = 0.001 𝑘 = 0.3

• If 𝑘 increases, then

• # of hubs increases

• |𝐇$$| increases ↑

• |𝐇#$|& 𝐇$# decrease ↓

• |𝐇$#𝐇##%#𝐇#$| decreases a lot! ⇓

• Thus, |𝐒| decreases !!

Proposed Method – Idea 3
Optimization 1) Reduce the number of non-zeros of 𝐒
◦ Pick a hub selection ratio 𝑘 that minimizes |𝐒|

𝐒 = 𝐇## −𝐇#"𝐇""&"𝐇"#

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 26

Introduction Proposed Method Experiment Conclusion

𝐒𝐫# = 4𝐪#

• Efficiency of the iterative method
on 𝐒 is improved!
§ 𝑂(T 𝐒) where T is # of iter.

• Space efficiency for 𝐒 is also
improved!

• No loss of accuracy!
• 𝑘 = 0.2~0.3 provides a good

performance in large-scale graphs

Proposed Method – Idea 3
Optimization 2) Exploit the preconditioner for the linear
system on 𝐒
◦ Make the iterative method converge faster ⇒ T ↓
◦ Exploit incomplete LU decomposition as preconditioners

𝐒 ≃ 6𝑳)𝑼
§ Fast decomposition and the sparsity pattern of 𝐒 is preserved

◦ Implicit preconditioned system

)𝑼&" 6𝑳&"𝐒𝐫# =)𝑼&" 6𝑳&"4𝐪#
◦ Preconditioned iterative solvers [Saad `93] solve the

implicit preconditioned system without matrix inversion

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 27

Introduction Proposed Method Experiment Conclusion

𝐒𝐫# = 4𝐪#

Outline
1. Introduction
2. Proposed Method
3. Experiment

4. Conclusion

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 28

Introduction Proposed Method Experiment Conclusion

Experimental Questions
Q1. (Space) How much memory space does BePI
requires for their preprocessed results?

Q2. (Prep. Time) How long does the preprocessing phase
of BePI take?

Q3. (Query Time) How quickly does BePI respond to an
RWR query?

Q4. (Scalability) How well does BePI scale up?

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 29

Introduction Proposed Method Experiment Conclusion

Experimental Settings
Machine: single workstation with 512GB memory
Datasets: large-scale real-world graph data

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 30

Introduction Proposed Method Experiment Conclusion

• 𝑛: the number of nodes

• 𝑚: the number of edges

• Various domain of graphs

• Social, web, vote, …

• 500K ~ 2B edges in graphs

Q1. Space Efficiency
How much memory space does BePI requires for their
preprocessed results?

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 31

Introduction Proposed Method Experiment Conclusion

BePI requires up to
𝟏𝟑𝟎× less memory space
than other preprocessing
methods!

Only BePI preprocesses all
datasets.

Proposed

Q2. Preprocessing Time
How long does the preprocessing phase of BePI take?

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 32

Introduction Proposed Method Experiment Conclusion

BePI is significantly faster
than other methods in terms
of preprocessing time!

Q3. Query Time
How quickly does BePI respond to an RWR query?

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 33

Introduction Proposed Method Experiment Conclusion

BePI is up to 9× faster than
other competitors in terms of
query speed!

Q4. Scalability of BePI
How well does BePI scale up?
◦ Processes 𝟏𝟎𝟎× larger graphs than other preprocessing methods
◦ Shows the fastest RWR computation speed among others
◦ Provides near linear scalability in terms of time and memory usage

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 34

Introduction Proposed Method Experiment Conclusion

BePI shows the best performance in terms of scalability and running time!

Outline
1. Introduction
2. Proposed Method
3. Experiment

4. Conclusion

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 35

Introduction Proposed Method Experiment Conclusion

Conclusion
BePI (Best of Preprocessing and Iterative approaches)
◦ Idea 1) Exploit graph characteristics for a prep. method

◦ Idea 2) Incorporate an iterative method into the prep. method
◦ Idea 3) Optimize the performance of the iterative method

Main Results
◦ Fast and scalable computation for RWR in large-scale graphs

◦ Requires 130× less memory space & processes 𝟏𝟎𝟎× larger
graphs than other preprocessing methods

◦ Computes RWR scores 𝟗× faster than other existing methods

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 36

Introduction Proposed Method Experiment Conclusion

Thank you!

Codes & datasets
http://datalab.snu.ac.kr/bepi

May 17 BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART 37

