ke

%

o
2

¥

L
Ef
&

o

2yl
Y,
(o

(

BePI: Fast and Memory-Efficient
Method for Billion-Scale
Random Walk with Restart

Jinhong Jung Namyong Park Lee Sael U Kang

Y m&‘-\»b 4“"»

ué' 3% IGpe JSERS seouL
SBY cou BERY <rou Kores M
) IIIIIIIIII ih e & UNIVERSITY N\ Reebapiversty o ISl NIVERSITY

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Introduction

Outline

Introduction

L W N -

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Introduction

Introduction

Random Walk with Restart
> Measures the relevance between nodes in a graph

> Used in many datamining applications based on graphs

g e 4
Recomm / @
endation 4 09 \ @m \, .F ~
U /(q\‘
0.2 ch 8 ' "Es‘;'.e RY) Top-k results
2

\
0. %% 6004
/ 4 -
Query @ =R) 3
User T ﬁ 0.05

o Recommendatlon o Anomaly detection o Question & Answering System
= Friends, movies, documents = Spammer, trolls, frauds ® Subgraph matching

- % r 6 & 0.8) e
————— ‘h nowledge graphs
N N 65 - [ﬁ@ﬁj »

Random Walk with Restart is an important tool for graph analysis!

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Introduction

Random Walk with Restart (1)

Measures node relevance scores using random surfer

> The surfer starts at query node s on a graph

- Random walk: moves to one of neighbors with prob. 1 — ¢
o Restart: jumps back to query node s with prob. ¢

A A

A

A

Random walk (with prob. 1 — ¢) Restart (with prob. ¢)

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Introduction

Random Walk with Restart (2)

Computes the stationary probability that the surfer
stays at each node

0.1

RWR Score
(relevance with node 2)

query node (.29
1 0.19
0.32 2 0.32
3 0.29
0.1 4 0.10
0.13 5 0.10

Restarting probability ¢ = 0.2

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Introduction

Problem Definition - RWR (1)

Given: adjacency matrix A, query node s and restart
probability ¢

Find: RWR score vector rg w.r.t. the query node s

r, = (1 —c)A'r + cq;

Input:
> A € R™™: row-normalized adjacency matrix
o s € R™!: query vector (s-th unit vector)

o ¢ € R: restart probability

Output:
° Is € R™*: RWR score vector with regard to query node s

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Introduction

Problem Definition — RWR (2)

Computing RWR is equivalent to solving a linear system

r, = (1 —c)ATr, + cq;
e (I-1=c)A)r, = cqq

& Hr = cqq

> Given H € R™", q, € R", and c, solve the linear system
to obtainrg € R™

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Introduction

Existing methods for RWR

Iterative Methods Preprocessing Methods
o |teratively update RWR scores ° Compute RWR scores directly
until convergence from precomputed data
= e.g., Power iteration =e.g., Inversion

rs(i) — (1- C)KTrS(i_l) + cq, Hr, = cqs & 1 = cH_lqS

> No preprocessing phase > Preprocessing phase (one time)
= Compute H™1

° Query phase (repetitive cost) - Query phase (repetitive cost)

" Given (g, repeat the update rule 4 Given qs, compute rg = CH_qu
until convergence

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Introduction

Challenges

Q. How can we compute RWR scores quickly on very
large graphs?

Iterative methods Preprocessing methods
> Pros: scale to very large graphs > Pros: fast RWR computation speed
= Do not need preprocessed data = Directly compute the scores from

precomputed results

> Cons: slow RWR computation speed ° Cons: cannot handle very large graphs

= The whole iterations need to be repeated = Heavy computation cost and memory
for each query node consumption due to matrix inversion

Challenge: How to devise a fast and scalable algorithm
for computing RWR scores on very large graphs?

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Outline

Proposed Method

L W N -

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method

BePI (Best of Preprocessing and Iterative approaches)

> A fast and scalable method by taking the advantages of
both preprocessing and iterative approaches

Key Ideas

o ldea 1) Exploit graph characteristics to adopt a
preprocessing approach for fast query speed

o |dea 2) Incorporate an iterative method into the
preprocessing approach to increase the scalability

> ldea 3) Optimize the performance of the iterative method
to accelerate RWR computation speed

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method

BePI (Best of Preprocessing and Iterative approaches)

> A fast and scalable method by taking the advantages of
both preprocessing and iterative approaches

Key Ideas

o ldea 1) Exploit graph characteristics to adopt a
preprocessing approach for fast query speed

o

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method —Idea 1 ur = cq,

Exploit graph characteristics to adopt a preprocessing
approach for fast query speed
> Reorder node ids to permute H based on deadend and
hub-and-spoke structures

> Apply block elimination as a preprocessing approach
Deadend Original Matrix Reordered Matrix

H Source H,, Source

c Deadend is a node having no
out-going edges |
° File or Image in web-document .
networks
o Deadends get high ids
Hi, Y I

o - i |
Non-deadends get low ids Non-deadends Deadends

Destination

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method —Idea 1 ur = cq,

Reorder node ids to permute H based on deadend and
hub-and-spoke structures

> The entries of H are concentrated by reordering nodes
based on hub-and-spoke structure [Kang et al., 11]

Hub-and-spoke

> Hubs are high degree nodes,
spokes are low degree nodes

Original Matrix & Reordered Matrix

N

> Few hubs, and a majority of
spokes in real-world graphs

> Hubs get high ids
> Spokes get low ids t

I
Spokes Hubs

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method — Idea 1

Combine deadend and hub & spoke reordering

Hnn = H117)) H12

Deadend Hub & Spoke

on Hy,

Hdn

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Apply block elimination as a preprocessing approach

'Hy; Hp, 0)[ry] 1]
HI'S = Qs < H21 sz O]z =c |92
H;; Hjz, 111K qs.
L 1 | Hif(cq —Hpr)
Block elimination » S I P 3
See Lemma 1 2| =S " (cq; —cH, Hi{q4)
I3l | cq3 —Hzyry — Hsyry |

S =H,, — H,;H{{H,, , the Schur complement of H;4

Precompute the blue-colored matrices to make RWR computation fast!

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method

BePI (Best of Preprocessing and Iterative approaches)

> A fast and scalable method by taking the advantages of
both preprocessing and iterative methods

Key Ideas

o

o |dea 2) Incorporate an iterative method into the
preprocessing approach to increase the scalability

o

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method — Idea 2

Incorporate an iterative method into the preprocessing
approach to increase the scalability
- Computing Hi{ is trivial since it is block diagonal
o But, inverting S is impractical in very large graphs
= dim(S) = # of hubs > 1 million (10°) in large graphs

= e.g., 10 million hubs in the Twitter network Hi; Hy,
e - [-1]
Iy Hii (cqs — Hyory)
— |¢-1 —1
2(=1S""(cq, — cH,1Hi{ q4) H,,
I3l | cq3 —Hzry —Hzorp

S = Hy, — HpHij Hyp

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method — Idea 2

Incorporate an iterative method into the preprocessing

approach

> Solution. Solve the linear system on S using an iterative
linear solver [Saad et al., 86]

_ Q- -1
r, = S7(cq, — cHp HiT q)
_ 1, a2
< Sr; =cq; —cHy1Hiiq =q;
" Linear solvers obtain the solution r, without inverting S

Sr, =

Introducing the linear solver increases the scalability of RWR computation!

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method

BePI (Best of Preprocessing and Iterative approaches)

> A fast and scalable method by taking the advantages of
both preprocessing and iterative methods

Key Ideas

o

> ldea 3) Optimize the performance of the iterative method
to accelerate RWR computation speed

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method —Idea 3

Optimize the performance of the iterative method to
accelerate RWR computation speed

Sr, =

> The running time of linear solvers is O(T|S|)

= |S|: number of non-zeros of S, T: number of iterations
> Optimization 1) How to decrease |S|?

= = Control hub selection ratio k in hub & spoke method
> Optimization 2) How to decrease T?

= = Exploit a preconditioner

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Hub-and-spoke
reordering
method

Original Matrix

Propose Method
Idea 3
Optimization 1

H Reordered Matrix

Y e
Spokes Hubs

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Hub-and-spoke reordering e, 1

For each iteration, select hubs with a hub selection ratio &
Disconnect the hubs and assign node ids for hubs & spokes
Repeat the above in the GCC (Giant Connected Comp.)

k = 0.07 & (# of nodes) n = 14, select [kn] = 1 hub for each iteration

6

9 5
6 8 O v
L 7

O " . Selected hub
; O

O . Spoke

(a) Step 1 (c) Step 3 O Node in GCC

According to hub selection ratio k, # of hubs changes

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Hub-and-spoke Propose Method
reordering Idea 3
method Optimization 1

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method —Idea 3 sr, =7,

Optimization 1) Reduce the number of non-zeros of S
> According to hub selection ratio k, # of hubs is different
o = # of non-zeros of sub-matrices in H changes
> = # of non-zeros of S changes (S = H,, — H,;H{{H;5)

H11 H12 H11 H12
If k increases, then | | | | | | | |

of hubs increases
H,,| increases T

H{,|&|H,| decrease |

H,,H{!H,,| decreases a lot! U

Thus, |S| decreases !!

H;, k=0.001 Hzz Hpy k =0.3 H,,

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method —Idea 3 sr, =7,

Optimization 1) Reduce the number of non-zeros of S
o Pick a hub selection ratio k that minimizes |S|

S=H;; — H21H1_11H12

P 10’ . . : :
T 147" 5 * Efficiency of the iterative method
=|H | 5| Ho;| . .
2° Hon g ') muH. on Sis improved!
O o 1 @107 : . .
§4 5 = O(T|S|) where T is # of iter.
=l N "R T R r 2 8] | . . .
B 4] 5 4 | » Space efficiency for Sis also
) o .
gl £ 4 improved!
iy 2] 1 * No loss of accuracy!
01 02 03 04 05 ° 02 04 06 e k =0.2~0.3 provides a good
Hub selection ratio (k) Hub selection ratio (k) £ in | | h
() Slachidiot (6)Blidk performance in large-scale graphs

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Proposed Method

Proposed Method —Idea 3 sr, =7,

Optimization 2) Exploit the preconditioner for the linear
systemon S

> Make the iterative method converge faster = T |
> Exploit incomplete LU decomposition as preconditioners

S~ LU
= Fast decomposition and the sparsity pattern of S is preserved
o Implicit preconditioned system

~

UL 'Sr, = U'L7'q,

> Preconditioned iterative solvers [Saad 93] solve the
implicit preconditioned system without matrix inversion

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Experiment

Outline

1
2
3. Experiment
4

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Experiment

Experimental Questions

Q1. (Space) How much memory space does BePI
requires for their preprocessed results?

Q2. (Prep. Time) How long does the preprocessing phase
of BePI take?

Q3. (Query Time) How quickly does BePI respond to an
RWR query?

Q4. (Scalability) How well does BePlI scale up?

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Experiment

Experimental Settings

Machine: single workstation with 512GB memory

Datasets: large-scale real-world graph data

n: the number of nodes

dataset n m

 m: the number of edges
Slashdot 79,120 515, 581 . .
Wikipedia 100, 312 1,627,472 * Various domain of graphs
Baidu 415, 641 3,284, 317 ,
Flickr 2,302,925 33,140, 017 * Social, web, vote, ...

LiveJournal 4,847,571 68,475,391
WikiLink 11,196, 007 340, 240, 450
Twitter 41,652,230 | 1,468,365, 182
Friendster 68, 349,466 | 2,586,147, 869

500K ~ 2B edges in graphs

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Experiment

Q1. Space Efficiency

How much memory space does BePI requires for their
preprocessed results?

105 Proposed
l ;- | BePI requires up to
107 r
10* 130x than other preprocessing

methods!

Memory usage (M
o o
N w

Only BePI preprocesses all
datasets.

—h
O—L

| 1 130X less memory space
<,

Memory space for preprocessed data

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Experiment

Q2. Preprocessing Time

How long does the preprocessing phase of BePI take?

6

107 BeP| mwm | |
210° } P |
K2 7935x _
o10% [B679x 1]
E — 1 [] [] [) [)
210% | BePl is significantly faster
2102 | than other methods in terms
10" I I of preprocessing time!

10°

A,

Preprocessing time

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Experiment

Q3. Query Time

How quickly does BePIl respond to an RWR query?

10* HoumRes
/g 3 Power mmmmm 3 2 31’(
© 10° | Bear w—m X
() > : LU 3X _
E 10~ 5x . .
= il 1 | BePlis up to 9x faster than
O i 9x - . .
S 406 L3 | other competitors in terms of
S Lo f.1° | query speed!
R AN
Qs 60’ "{','O@ ‘9/% /C}{_f 1/@% %, ./ h?);,@f /@/70'
o "% %, % %
574 !

Query time

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Preprocessing Time (sec)

Experiment

Q4. Scalability of BePI

How well does BePI scale up?

10°

104 |
10% |
10% |
101 T
100 |

1071

> Processes 100X larger graphs than other preprocessing methods
> Shows the fastest RWR computation speed among others
> Provides near linear scalability in terms of time and memory usage

: 10° : :
o.o.t.
: o . 102 |]
:] =3 2 ol | 1
P 100x " > °
™ d n € 0 ;'\«_
> = 1071 o.ot. gov°
: g £ gt BePl —— ||
< g 10 Bear —+—
BePl o 3 i g o LU
Ao Bear —+— |] = 4o Bear —+— 107 ¢ GMRES
90p® _LU 100 ‘ ey - . Power —&—
10° 107 108 10° 107 108 40¢ 107 108
Number of edges Number of edges Number of edges
(a) Preprocessing time (b) Space for preprocessed data (c) Query time

BePl shows the best performance in terms of scalability and running time!

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Conclusion

Outline

. Conclusion

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

Conclusion

Conclusion

BePI (Best of Preprocessing and lterative approaches)
o ldea 1) Exploit graph characteristics for a prep. method
o ldea 2) Incorporate an iterative method into the prep. method

o ldea 3) Optimize the performance of the iterative method

Main Results

o Fast and scalable computation for RWR in large-scale graphs

° Requires 130X less memory space & processes 100X larger
graphs than other preprocessing methods

> Computes RWR scores 9X faster than other existing methods

BEPI: FAST AND MEMORY-EFFICIENT METHOD FOR BILLION-SCALE RANDOM WALK WITH RESTART

A
70

Thank you!

Codes & datasets
http://datalab.snu.ac.kr/bepi

