

Ph.D. Dissertation Defense

Random Walk-based Large Graph Mining Exploiting Real-world Graph Properties

실세계 그래프 특징을 활용한 랜덤 워크 기반 대규모 그래프 마이닝

Jinhong Jung Ph.D. Candidate

Dept. of Computer Science & Engineering Seoul National University

Thesis Committee

문봉기 교수님 서울대학교 컴퓨터공학부 (심사위원장)

강 유교수님 서울대학교 컴퓨터공학부 (부심사위원장)

김형주 교수님

서울대학교 컴퓨터공학부

이영기 교수님 서울대학교 컴퓨터공학부

김상욱 교수님 한양대학교 컴퓨터공학부

Outline

• • Overview

- Proposed Methods
- Future Works
- Conclusion

Graphs are Everywhere! Numerous real-world phenomena are represented as graphs!

Social Network

Hyperlink Network

Protein Interaction Network

Important to analyze such graphs

- 1) Gain a better understanding of real-world events
- 2) Develop beneficial applications on top of the insight

Random Walk in Graphs

- Random walk has been extensively utilized to analyze real-world graph data
 - Random Walk with Restart (RWR)
 - Random walk: moves to one of neighbors
 - Restart: jumps back to query node s

Input: an adjacency matrix A & query node s

Output: a ranking vector *r* w.r.t. *s*

Single-source Random Walk with Restart Provides a personalized node ranking

Random Walk with Restart (1)

Input and Output of RWR

0.03 0.04 Nearby nodes, Node 4 10 higher scores 0.10 9 Node 1 0.13 12) Node 2 0.10 0.02 0.13 0.08 Node 3 0.13 8 Node 4 0.22 0.13 11) 3 Node 5 0.13 0 04 Node 6 0.05 Node 7 0.05 0.05 Node 8 0.08 6 Node 9 0.040.13 Query Node 10 0.03 More red. node Node 11 0.04 7) more relevant Node 12 0.02 0.05

6

[Tong et al., ICDM'06]

Random Walk with Restart (2) RWR is a fundamental building block on various graph mining applications

Well reflect **multi-facet relationships** with considering **global network topology**

- Applications
 - Node Ranking
 - Node embedding
 - Link Prediction
 - Recommendation
 - Anomaly detection
 - Community detection
 - Subgraph mining
 - Image segmentation

Technical Challenges (1)

Real-world graphs are massive!

- e.g., Wikipedia has 40 million articles, and Facebook has 2.41 billion users
- Limitations of previous methods for RWR
 - Exact methods ⇒ **suffer from speed & scalability**
 - Approximate methods ⇒ **too degraded quality**
 - Top-k methods ⇒ **limited applications**

Extremely challenging to satisfy all of speed, scalability, and exactness

For computing single-source RWR scores in such large-scale graphs

Technical Challenges (2)

Real-world graphs are rich in information!

- Various labels to represent complicated relationships between nodes
- Traditional random surfer does not consider such labels ⇒ Lose the identity of a labeled graph trust

Signed Networks

Knowledge Bases

Traditional Random Walk

How to reflect such labels into random walk?

What do the labels mean for random walk?

Research Goals and Importance

- Research Goals
 - G1. To devise fast, scalable, and exact methods for random walk in billion-scale graphs
 - G2. To design effective random walk models utilizing label data in labeled graphs

Research Importance

- I1. Advance our understanding of handling large graphs & random walk on labeled graphs
- I2. Enable us to analyze large-scale graphs
- I3. Lead to novel & high-quality applications based on random walk in labeled graphs

Research Problems (1)

- P1. Fast, scalable & exact RWR computation in large-scale graphs
 - To develop a novel & in-memory algorithm working on a single machine
 - Input graph and intermediate data are stored in memory

Input: an adjacency matrix **A** & query node s

Output: a ranking vector *r* w.r.t. *s*

[Tong et al., ICDM'06]

Node 4

0.13

0.10

0.13

0.22

0.13

0.05

0.05

0.08

0.04

0.03

0.04

0.02

Research Problems (2)

P2. Random walk in signed networks (+/- sign)

Effective for personalized node ranking

- Input: Signed network G (each edge has + or sign) having n nodes & Query (or seed) node s
- **Output:** Trustworthiness (ranking) scores $r \in \mathbb{R}^n$ of all nodes w.r.t. seed node *s*

Rank	Node	<i>r</i> : Trust- worthiness	r ⁺ : Positive score	r ⁻ : Negative score	
1 st	A	0.2500	0.2500	0.0000	trustful
2 nd	E	0.1487	0.1687	0.0200	
3 rd	D	0.0703	0.1416	0.0713	
4 th	С	-0.0549	0.0200	0.0750	
5 th	В	-0.1465	0.0534	0.1999	distrustful

Input: a signed network & seed node *A*

Output: the trustworthiness score vector *r* w.r.t. the seed node

Research Problems (3)

P3. Random walk in edge-labeled graphs

- Each edge has one of K categorical labels
- Effective for relational reasoning b.t.w. two nodes
 - Input: Edge-labeled graph G (each edge has one of K categorical labels) & Two nodes s and t
 - **Output:** *K* relevance scores on *t* w.r.t *s*

Main Approaches

A1. Real-world Graph Properties

e.g., Power-law degree distribution / balance theory

A2. Numerical Computing Methods

To boost the computational speed on adjacency matrices

A3. Linear Algebra & Stochastic Process

To design new random walk models in labeled graphs

Outline

Overview

Proposed Methods

- Future Works
- Conclusion

Proposed Methods

Random Walk-based Large Graph Mining Exploiting Real-world Graph Properties

Current Works (Ph.D. Course)						
Plain Graphs (No edge labels)	Signed Graphs (Two edge labels)	Edge-labeled Graphs (K edge labels)				
Fast Scalable & Exact RWR in Billion-scale Graphs	Random Walk in Signed Graphs: Personalized Ranking	Random Walk in Edge-labeled Graphs: Relational Reasoning				
BePI	SRWR	MuRWR				
[SIGMOD'17]	[ICDM'16] [KAIS'19]	[WWWJ'20]				

Proposed Methods

Random Walk-based Large Graph Mining Exploiting Real-world Graph Properties

Current Works (Ph.D. Course)						
Plain Graphs (No edge labels)	Signed Graphs (Two edge labels)	Edge-labeled Graphs (<i>K</i> edge labels)				
Fast Scalable & Exact RWR in Billion-scale Graphs	Random Walk in Signed Graphs: Personalized Ranking	Random Walk in Edge-labeled Graphs: Relational Reasoning				
BePI	SRWR	MuRWR				
[SIGMOD'17]	[ICDM'16] [KAIS'19]	[WWWJ'20]				

Introduction

Problem: Random Walk with Restart

- Input: Adjacency matrix A of a graph having n nodes & Query (or seed) node s
- □ **Output:** Relevance (ranking) scores $r \in \mathbb{R}^n$ of all nodes w.r.t. seed node *s*
- In-memory computation on a single machine
- Recursive Equation
 Linear System
 $\mathbf{r} = (1-c)\widetilde{A}^{T}\mathbf{r} + c\mathbf{q}_{s} \leftarrow Query \ vector}_{(s-th \ unit \ vector)}$ $(\mathbf{I} (1-c)\widetilde{A}^{T})\mathbf{r} = c\mathbf{q}_{s}$ $\mathbf{H}\mathbf{r} = c\mathbf{q}_{s}$
 - \Box c is called restart probability

Challenges

- Q. How to compute exact RWR scores quickly on very large graphs?
 - Iterative Methods iteratively update RWR scores until convergence
 - e.g., power iteration: $\mathbf{r}^{(t)} \leftarrow (1-c)\widetilde{\mathbf{A}}^{\mathsf{T}}\mathbf{r}^{(t-1)} + c\mathbf{q}_{\mathsf{s}}$
 - **Pros:** scale to very large-graphs $\leftarrow O(m)$ space
 - **Cons:** slow query speed $\leftarrow O(Tm)$ query time

T: # of iterations m: # of edges n: # of nodes

- Preprocessing Methods compute RWR scores directly from precomputed data
 - e.g., matrix inversion: $\mathbf{r} = c\mathbf{H}^{-1}\mathbf{q}_s$ where $\mathbf{H} = (\mathbf{I} (1 c)\widetilde{\mathbf{A}}^T)$
 - **Pros:** fast query speed $\leftarrow O(n)$ query time
 - Cons: cannot handle very large graphs $\leftarrow O(n^3)$ prep. time $O(n^2)$ space

Why Important?

I1) Why Fast & Scalable RWR computation?

Improve computational performance of various applications based on RWR in large graphs

I2) Why exact RWR computation?

 Existing approximate methods dramatically degrade the quality of applications using RWR

I3) Why all nodes' scores w.r.t. seed?

- Previous top-k approaches focus on getting top-k nodes, not their scores
- Lots of applications still rely on the scores of all nodes ⇒ e.g., anomaly detection, local clustering, subgraph mining

Proposed Method: BePI (1)

BePI (Best of Preprocessing and Iterative approaches)

- A fast and scalable method by taking the advantages of both preprocessing and iterative approaches
- Key Ideas
 - Idea 1) Exploit real-world graph structures to make it easy-to-preprocess
 - Idea 2) Incorporate an iterative method to increase the scalability
 - Idea 3) Optimize the performance of the iterative method to accelerate RWR computation speed

Real-world Graph Properties

Deadend

Deadend is a node having no out-going edges, e.g., an image in a web-document graph [Langville et al., JSC'06]

Ratio of deadend: $5 \sim 40\%$

Hub-and-spoke

- Hubs are high degree nodes, spokes are low degree nodes
- Few hubs, and a majority of spokes in real-world graphs [Kang et al., ICDM'11]

Ratio of hub: 5~20%

Proposed Method: BePI (2) Idea 1) Exploit real-world graph structures to make it easy-to-preprocess

H₁₁ is a block diagonal matrix!

$$\mathbf{Hr} = c\mathbf{q}_{s} \Leftrightarrow \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} & \mathbf{0} \\ \mathbf{H}_{21} & \mathbf{H}_{22} & \mathbf{0} \\ \mathbf{H}_{31} & \mathbf{H}_{32} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3} \end{bmatrix} = c \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{2} \\ \mathbf{q}_{3} \end{bmatrix}$$

Proposed Method: BePI (3)

- RWR is obtained by solving a linear system on the reordered matrix (r = cH⁻¹q_s)
 - Efficiently solved by handling smaller blocks

Proposed Method: BePI (4)

Apply block elimination as a preprocessing approach
Details

$$\mathbf{H}\mathbf{r}_{s} = c\,\mathbf{q}_{s} \Leftrightarrow \begin{bmatrix} \mathbf{H}_{11} & \mathbf{H}_{12} & \mathbf{0} \\ \mathbf{H}_{21} & \mathbf{H}_{22} & \mathbf{0} \\ \mathbf{H}_{31} & \mathbf{H}_{32} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \mathbf{r}_{3} \end{bmatrix} = c \begin{bmatrix} \mathbf{q}_{1} \\ \mathbf{q}_{2} \\ \mathbf{q}_{3} \end{bmatrix}$$

Block elimination \blacktriangleright $\begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \mathbf{r}_3 \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{11}^{-1}(c\mathbf{q}_1 - \mathbf{H}_{12}\mathbf{r}_2) \\ \mathbf{S}^{-1}(c\mathbf{q}_2 - c\mathbf{H}_{21}\mathbf{H}_{11}^{-1}\mathbf{q}_1) \\ c\mathbf{q}_3 - \mathbf{H}_{31}\mathbf{r}_1 - \mathbf{H}_{32}\mathbf{r}_2 \end{bmatrix}$

 $\mathbf{S}=\mathbf{H}_{22}-\mathbf{H}_{21}\mathbf{H}_{11}^{-1}\mathbf{H}_{12},$ the Schur complement of \mathbf{H}_{11}

Precompute the blue-colored matrices to make RWR computation fast!

Proposed Method: BePI (5)

- Idea 2) Incorporate an iterative method to increase the scalability
 - Hard to invert S in large graphs (dim(S) = # of hubs $\simeq 10^6$)
 - $\Box \Rightarrow Solve the system on S iteratively (GMRES)_{[Saad et al., 1986]}$

etails
$$\mathbf{r}_2 = \mathbf{S}^{-1} \underbrace{(c\mathbf{q}_2 - c\mathbf{H}_{21}\mathbf{H}_{11}^{-1}\mathbf{q}_1)}_{\triangleq \widetilde{\mathbf{q}}_2} \Leftrightarrow \mathbf{Sr}_2 = \widetilde{\mathbf{q}}_2$$

Idea 3) Optimize the performance of the iterative method to accelerate RWR speed

e.g., Preconditioning for faster convergence

The sophisticated combination of these techniques leads to fast & scalable RWR with the guarantee of exactness

Experimental Results (1)

Experimental settings

- Machine: single machine with 500GB memory
- Data: real-world large-scale graphs (up to billion-scale)
- Competitors: Bear & LU (Prep.), Power & GMRES (Iter.)

Preprocessing time

Dec 16

- BePI is significantly faster than other preprocessing methods
- Only BePI successfully scales to the largest graph (Friendster, 2.5B edges)

Experimental Results (2)

Memory requirement and query time

Competitors: Bear & LU (Prep.), Power & GMRES (Iter.)

BePI requires $130 \times$ less memory space & computes RWR $9 \times$ faster!

Proposed Methods

Random Walk-based Large Graph Mining Exploiting Real-world Graph Properties

Current Works (Ph.D. Course)						
Plain Graphs (No edge labels)	Signed Graphs (Two edge labels)	Edge-labeled Graphs (<i>K</i> edge labels)				
Fast Scalable & Exact RWR in Billion-scale Graphs	Random Walk in Signed Graphs: Personalized Ranking	Random Walk in Edge-labeled Graphs: Relational Reasoning				
BePI		MuRWR				
[SIGMOD'17]	[ICDM'16] [KAIS'19]	[WWWJ'20]				

Introduction

Problem: Personalized Ranking in Signed Networks

- Input: Signed network G (each edge has + or sign) having n nodes & Query (or seed) node s
- **Output:** Trustworthiness (ranking) scores $r \in \mathbb{R}^n$ of all nodes w.r.t. seed node *s*

Rank	Node	<i>r</i> : Trust- worthiness	r ⁺ : Positive score	r ⁻ : Negative score	
1 st	A	0.2500	0.2500	0.0000	trustful
2 nd	E	0.1487	0.1687	0.0200	
3 rd	D	0.0703	0.1416	0.0713	
4 th	С	-0.0549	0.0200	0.0750	
5 th	B	-0.1465	0.0534	0.1999	distrustfu

Input: a signed network & seed node *A*

Output: the trustworthiness score vector *r* w.r.t. the seed node

Dec 16 Random Walk-based Large Graph Mining Exploiting Real-world Graph Properties

Limitations

- Naïve approaches fail to provide proper personalized ranking in signed network G
 - RWR after removing signs from G
 - ⇒ No consideration on distrustful relationships
 - Modified RWR (M-RWR)
 - Step 1. Split G into G^+ and G^- (i.e., $G = G^+ \cup G^-$)
 - Step 2. Positive RWR scores r⁺ on G⁺ & Negative RWR scores r⁻ on G⁻
 - Step 3. Trustworthiness scores $r = r^+ r^-$

Challenges

Q. How to deal with signed edges for random walks?

Traditional random surfer only consider unsigned edges

No rules for handling signed edges

Importance

- Lead to proper personalized node ranking scores in signed network (More trustful ⇒ Higher ranking)
- Enable us to effectively analyze signed networks based on random walk (link prediction, anomaly detection, etc.)

Proposed Method: SRWR (1)

SRWR (Signed Random Walk with Restart)

- Personalized node ranking in signed networks
 - Idea 1) Introduce sign into random surfer
 - Idea 2) Adopt balance theory to signed surfer
 - The theory describes signed triangle pattern, a distinct structure in real-world signed networks
- Two methods for SRWR
 - SRWR-Iter: Iteratively computes SRWR scores
 - SRWR-Pre: Efficiently computes SRWR scores in a preprocessing manner
 - Idea 3) Exploit real-world graph structures

Proposed Method: SRWR (2) Idea 1) Introduce a sign into a random surfer to handle signed edges

Traditional random surfer

Signed random surfer (proposed)

How to change the surfer's sign? ⇒ Balance Theory

Real-world Graph Properties

Balance Theory: Real-world Signed Networks are Balanced!

There are 88~92% balanced triangles

Examples

- a) Friend of my friend is my friend! ⇒ balanced
- b) Enemy of my friend is my friend? ⇒ unbalanced
- c) Enemy of my friend is my enemy! ⇒ balanced
- d) Enemy of my enemy is my enemy? ⇒ unbalanced

Proposed Method: SRWR (3)

Idea 2) Adopt balance theory to the signed surfer

Rules from Balance Theory

- 1) Friend of my friend is my friend
- 2) Enemy of my friend is my enemy
- 3) Friend of my enemy is my enemy
- 4) Enemy of my enemy is my friend

Proposed Method: SRWR (4)

- Idea 2) Adopt balance theory to the signed surfer
 - Flip surfer's sign if she encounters negative edges

Traditional random walk Cannot identify node t

Signed random walk Consistent with balance theory

Proposed Methods: SRWR (5)

Signed Random Walk with Restart Model

- Action 1: Signed Random Walk
 - The surfer randomly moves to one of neighbors from node *u* with prob. 1 – *c*
 - She flips her sign if she encounters a **negative** edge

Action 2: Restart

- The surfer goes back to the query node *s* with prob. *c*
- Her sign should become **positive** at the query node

Start from query node *s*

Toss a biased coin $H \rightarrow$ Signed random walk $T \rightarrow \text{Restart}$

Suppose *H* appears

Do signed random walk

Count it as positive visit

Toss a biased coin again $H \rightarrow$ Signed random walk $T \rightarrow \text{Restart}$

Suppose *H* appears

Example of SRWR (3)

Do signed random walk Flip her sign due to negative edge

Count it as negative visit

Toss a biased coin again $H \rightarrow$ Signed random walk $T \rightarrow$ Restart

Suppose *T* appears

Do restart Her sign becomes positive

Repeat SRWR so many times

Measure visit probabilities := visit count/total # of trials

Probabilities on a node are used as ranking scores

Experimental Results (1)

Experimental settings

Which nodes will be connected positively or negatively?

- Data: real-world signed networks
 Signed Link Prediction
- Signed Link Prediction

SRWR shows the best link prediction performance for all the datasets

Experimental Results (2)

Edge Sign Prediction

What is the sign of the connection from s to t?

(s)---?--+(t)

SRWR outperforms other ranking models

Achieve best accuracy

Experimental Results (3)

Troll Identification in the Slashdot dataset

Blue: query user (yagu) & Red: trolls

	SRWR (proposed)		M-RWR		M-PSALSA		PSR		TR-TR	
Rank	Trust Ranking	Distrust Ranking	Trust Ranking	Distrust Ranking	Trust Ranking	Distrust Ranking	Trust Ranking	Distrust Ranking	Trust Ranking	Distrust Ranking
1	yagu*	$\mathbf{Klerck}^{\dagger}$	yagu*	dubba-d	Work+Ac	HanzoSa	yagu*	SmurfBu	yagu*	Jack+B.
2	Photon+	$\mathbf{Adolf}\mathbf{+}\mathbf{H}^{\dagger}$	Bruce+P	derago	Unknown	$\mathbf{Jerk}\mathbf{+}\mathbf{Ci}^{\dagger}$	Uruk	Dr.Seus	dexterp	inTheLo
3	Uruk	GISGEOL	CmdrTac	msfodde	afidel	NineNin	Photon+	Doctor_	Jamie+Z	Mactrop
4	$\operatorname{stukton}$	Nimrang	CleverN	cramus	heirony	Rogerbo	clump	artoo	ryanr	DiceMe
5	TTMuskr	Kafka_C	Uruk	lakerdo	bokmann	$\mathbf{SexyKel}^\dagger$	TTMuskr	Juggle	KshGodd	Einstei
6	clump	Thinkit	Photon+	p414din	ezeri	ScottKi	stukton	FreakyG	TheIndi	FinchWo
7	Bruce+P	${f CmderTa}^\dagger$	stukton	an+unor	As+Seen	qurob	RxScram	RunFatB	daoine	Penus+T
8	RxScram	$\operatorname{SteakNS}$	clump	exfuga	KillerD	bendodg	$\operatorname{charlie}$	jmpoast	Berylli	r_glen
9	CmdrTac	JonKatz	TTMuskr	kryptok	potaz	ArnoldY	ssbg	El_Muer	danhara	Roland+
10	a phor	Henry+V	RxScram	toomz	byolinu	jcr	Idarubi	Ghost+H	Degrees	sting3r

The query user is ranked 1st in our trust ranking

Many trolls are ranked high in our distrust ranking

Experimental Results (4)

Troll Identification in the Slashdot dataset

SRWR captures trolls better than other ranking models!

Proposed Method: SRWR (6) Idea 3) Exploit real-world graph structures for SRWR-Pre (Prep. Method for SRWR)

H	H	H

Dec 16 Random Walk-based Large Graph Mining Exploiting Real-world Graph Properties

Experimental Results

Experimental settings

- Machine: single machine with 500GB memory
- Data: real-world signed networks

SRWR-Pre requires 11× less memory space & computes SRWR 14× faster!

Proposed Methods

Random Walk-based Large Graph Mining Exploiting Real-world Graph Properties

Current Works (Ph.D. Course)						
Plain Graphs (No edge labels)	Signed Graphs (Two edge labels)	Edge-labeled Graphs (<i>K</i> edge labels)				
Fast Scalable & Exact RWR in Billion-scale Graphs	Random Walk in Signed Graphs: Personalized Ranking	Random Walk in Edge-labeled Graphs: Relational Reasoning				
BePI	SRWR					
[SIGMOD'17]	[ICDM'16] [KAIS'19]	[WWWJ'20]				

Introduction

Problem: Relational Reasoning in Edgelabeled Graphs

- Input: Edge-labeled graph G (each edge has one of K categorical labels) & Two nodes s and t
- **Output:** *K* relevance scores on *t* w.r.t *s*

■ Importance: increase KB's quality via knowledge completion ⇒ helpful for applications based on KB

Limitation & Challenge RWR can capture diverse relationship between two nodes

- Multiple connections considering quality
 - Multi-hops/degree/weight...
- But it cannot consider edge labels!
- How to reflect such labels into random walk?

The surfer in RWR cannot identify the relation between the nodes!

Trajectory of the random surfer

Proposed Method: MuRWR (1)

MuRWR (Multi-Labeled Random Walk with Restart)

 Random walk-based model for relevance scores in edge-labeled graphs

Key Ideas

- Idea 1) Introduce a labeled random surfer
 - Whose label at a node indicates the inferred relation
- Idea 2) Allow the surfer to change her label during random walk with some rules
- Idea 3) Exploit a data-driven approach to extract knowledge from a graph so that the surfer learns the rules
- To sum up, MuRWR is the generalization of SRWR!

K labels on edges

2 labels on edges

Proposed Method: MuRWR (2)

MURWR (Multi-Labeled Random Walk with Restart)

Random walk-based model for relevance scores in edge-labeled graphs

Experimental Results

Experimental settings

Data: real-world edge-labeled graphs

Applications: relational reasoning

What is the relation of the connection from s to t?

s - - ? - + t

	Mathala	K = 2 Accuracy					K = 18
	Methods	WikiVote	Slashdot	Epinions	Advogato	WN11	WN18
	Random	0.497	0.500	0.493	0.340	0.090	0.078
	LINE [34]	0.781	0.771	0.903	0.552	0.489	0.404
	node2vec [8]	0.779	0.765	0.905	0.586	0.426	0.401
	MRWR [30]	0.805	0.769	0.890	0.550	0.194	0.342
	SRWR [11]	0.825	0.790	0.906	-	-	-
	PRA [15]	0.813	0.804	0.913	0.683	0.580	0.556
	TransE [4]	0.793	0.802	0.902	0.644	0.617	0.653
	TransR [22]	0.800	0.757	0.874	0.672	0.609	0.530
Proposed \rightarrow	MuRWR [†]	0.830	0.820	0.929	0.727	0.641	0.689
	Improvemen	t 1%	2%	2%	6%	4%	5%

MuRWR shows the best accuracy among all tested methods!

Outline

Overview

Proposed Methods

Future Works

Conclusion

Future Works

- Further extend our approach exploiting distinct properties in real-world data
 - 1) To develop a method for fast & accurate SVD based pseudoinverse computation
 - 2) To design a method for fast & scalable signed network generation following real-world properties
 - 3) To make our methods working on graph databases or distributed systems

F1) Reordering for Rectangular Matrix

F2) Simulation of Balanced Structure

F3) Graph DB & Distributed processing

Outline

Overview

- Proposed Methods
- Future Works
- Conclusion

- Random Walk-based Large Graph Mining Exploiting Real-world Graph Properties
 - G1. To devise fast, scalable, and exact methods for random walk in large-scale graphs
 - G2. To design effective random walk models utilizing label data in labeled graphs
- **Approach:** to exploit real-world graph properties

Current Works (Ph.D. Course)						
Plain Graphs	Signed Graphs	Edge-labeled Graphs				
(No edge labels)	(Two edge labels)	(<i>K</i> edge labels)				
Fast Scalable &	Random Walk	Random Walk in				
Exact RWR in	in Signed Graphs:	Edge-labeled Graphs:				
Billion-scale Graphs	Personalized Ranking	Relational Reasoning				
BePI	SRWR	<u>MuRWR</u>				
[SIGMOD'17]	[ICDM'16] & [KAIS'19]	[WWWJ'20]				
Deadend Structure	Signed Triangle Patterns	Labeled Triangle Patterns				
Hub-and-Spoke Structure	Hub-and-Spoke Structure	(Syllogism Knowledge)				

Thank You!

Q & A

Dec 16 Random Walk-based Large Graph Mining Exploiting Real-world Graph Properties