

Time-aware Random Walk Diffusion to Improve Dynamic Graph Learning

Jon-whi Lee and Jinhong Jung

Jeonbuk National University

AAAI 2023

Outline

□ Introduction

■ Motivation

☐ Proposed Method

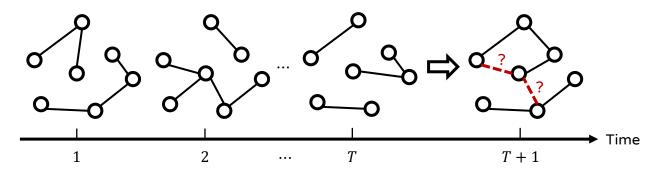
□ Experiments

□ Conclusion

Research Question

☐ Real-world graphs change over time!

- Learning dynamic graphs is important in link prediction,
 traffic forecasting, temporal knowledge completion, etc.
- As a sequence of graph snapshots (discrete-time dynamic graph)



Link prediction on a dynamic graph

☐ Data Augmentation is essential for ML models

• How can we augment a dynamic graph to improve dynamic graph learning?

Problem Definition

Dynamic graph learning aims to learn

$$\mathbf{H}_t = \mathcal{F}_{\Theta}(\mathbf{A}_t, \mathbf{F}_t, \mathbf{H}_{t-1})$$

- \circ \mathcal{F}_{Θ} is a dynamic GNN model with parameter Θ
- \circ A_t is an adjacency matrix of a dynamic graph G at time t
- \circ \mathbf{F}_t and \mathbf{H}_t are node features and hidden embeddings, resp.

☐ Dynamic graph augmentation **⑥**

- Input: a sequence $\{A_1, \dots, A_T\}$ of adjacency matrices in \mathcal{G}
- Output: a new sequence $\{X_1, \cdots, X_T\}$ of augmented adjacency matrices
 - \circ We want the new adjacency matrices to improve the performance of a model $\mathcal{F}_{\Theta}(\cdot)$

Previous Approaches

- ☐ Most existing methods mainly transform spatial structure of a single static graph
 - Drop-based methods
 - e.g., randomly drop a few of edges or nodes at each epoch
 - Diffusion-based methods
 - e.g., add new edges weighted by graph diffusion

☐ However, those aren't suitable for dynamic graphs

Naively applying a static method to each graph snapshot could not capture temporal dynamics!

Outline

☐ Introduction

■ Motivation

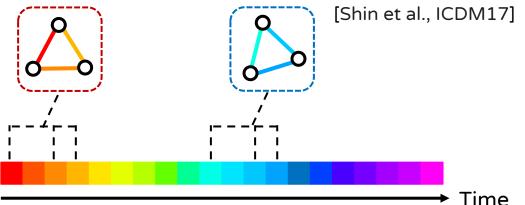
☐ Proposed Method

□ Experiments

□ Conclusion

Motivation (1)

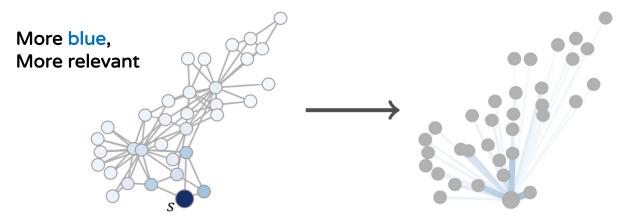
- Dynamic graph augmentation
 - Consider temporal dynamics as well as spatial structure
 - Inspired from temporal and spatial localities
- ☐ Temporal locality
 - Objects (e.g., triangle) tend to be more affected by more recent edges than older ones in real dynamic graphs
 - e.g., triangles with edges close in time than with edges far in time



Motivation (2)

☐ Spatial locality

- Objects (e.g., node) tend to be more affected by nearby nodes than distant ones
- Graph diffusion using RWR enhances spatial locality
 - Random Walk with Restart (RWR) uses a random surfer who does random walk or restart from seed node s
 - \circ \Rightarrow Node-to-node proximity (diffusion) scores spatially localized to s



Diffusion scores w.r.t. seed node s

Diffusion scores ⇒ edge weights
[Klicpera et al., NeurIPS19]

Research Challenges

☐ Previous work ignores temporal locality

 But, newly augmented edges need to be more affected by more recent edges

☐ Graph diffusion enhances spatial locality

 But, it leads to a fully dense adjacency matrix that can degrade computational efficiency

Challenges:

- Q1. How can we augment spatio-temporal locality?
- Q2. How can we avoid to generate dense matrices while preserving enhanced data?

Outline

☐ Introduction

■ Motivation

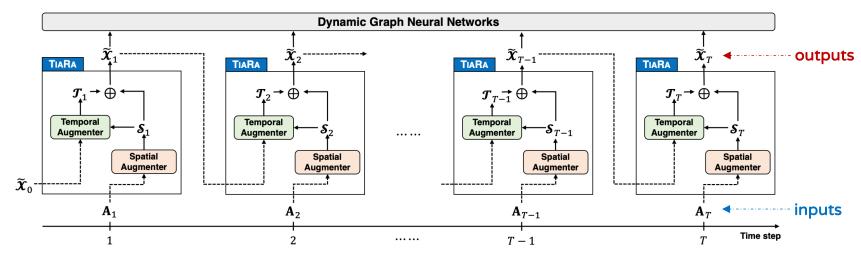
☐ Proposed Method

□ Experiments

□ Conclusion

Proposed Method

- ☐ TiaRa (Time-aware Random Walk Diffusion)
 - Aims to enhance spatio-temporal locality!



□ Our approaches

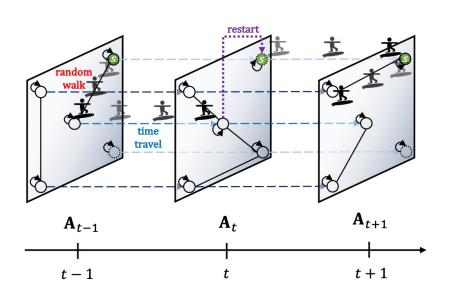
- 1) Make a random surfer time-aware (TRWR)
- 2) Derive spatio-temporally diffusion matrices from TRWR
- 3) Sparsify the diffusion matrices for efficiency

Feb 2023 1

Time-aware RWR (TRWR)

☐ Virtually connect nodes toward the future

- Then, the surfer also can travel along the time axis
 - Not backward since future (test) data should be prevented
- Leads to diffusion scores spatio-temporally localized
 - Now, we can insert new edges based on the diffusion scores!



Classical RWR [Tong et al., ICDM06]

$$\mathbf{x}_{s} = (1-\alpha)\widetilde{\mathbf{A}}^{\mathsf{T}}\mathbf{x}_{s} + \alpha\mathbf{i}_{s}$$
 Diffusion Random walk Restart scores w.r.t. s

Time-aware RWR

at time t

$$\mathbf{x}_{t,s} = (1 - \alpha - \beta) \boldsymbol{\mathcal{A}}_t^\mathsf{T} \mathbf{x}_{t,s} + \alpha \mathbf{i}_s + \beta \mathbf{x}_{t-1,s}$$
 Diffusion Random walk Restart Time travel scores w.r.t. s

Diffusion Matrix of TRWR

Details

\square Diffusion matrix \mathcal{X}_t of TRWR is represented as:

$$m{\mathcal{X}}_t = (1-\gamma) (m{\mathcal{L}}_t^{\mathrm{rwr}} m{I}_n) + \gamma (m{\mathcal{L}}_t^{\mathrm{rwr}} m{\mathcal{X}}_{t-1})$$
Spatial augmenter Temporal augmenter \mathcal{S}_t

Notations

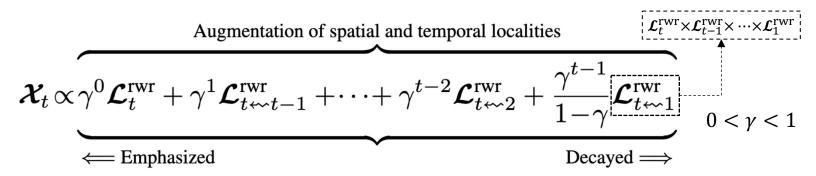
- $X_t = \{x_{t,s}\}$ contains diffusion scores of TRWR w.r.t. all nodes s
- $\circ \gamma = \beta/(\alpha + \beta)$ is a ratio of temporal locality
- \circ $\mathcal{L}_t^{\mathrm{rwr}}$ is a diffusion matrix of RWR at only time t

lacksquare In other words, $oldsymbol{\mathcal{X}}_t$ is a linear combination of $oldsymbol{\mathcal{S}}_t$ and $oldsymbol{\mathcal{T}}_t$

Diffusion Matrix of TRWR

Details

☐ Theorem for dynamic graph augmentation



- Can capture temporal locality as well as spatial locality
 - \circ $\mathcal{L}_t^{\mathrm{rwr}}$ indicates a matrix in which a spatial locality is enhanced
 - \circ \mathcal{X}_t is more affected by more recent data than older ones where a temporal locality is enhanced
 - Old information is decaying over time by γ (temporal decay ratio)
 - See the detailed proof in the paper!

Sparsification and Its Effects

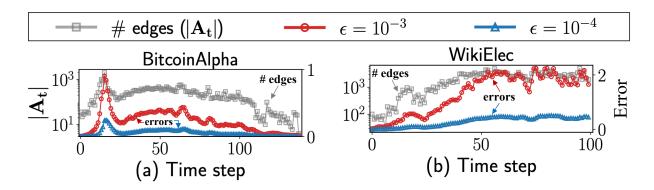
\square Set elements of \mathcal{X}_t less than ϵ to zero

 As scores are localized, very tiny entries are unlikely to affect the performance [Klicpera et al., NeurIPS19]

□ Analytical results

- # of non-zeros of X_t becomes $O(n/\epsilon)$
 - Where n is # of nodes, and it's much smaller than $O(n^2)$
- Its approximation errors don't explode over time
 - Less affected by previous errors; rather, it is

 # of edges



Outline

☐ Introduction

■ Motivation

☐ Proposed Method

□ Experiments

□ Conclusion

Experimental Setup

- ☐ Baseline augmentation methods
 - DropEdge, GDC, and Merge
- ☐ Dynamic GNN models
 - GCN, GCRN and EvolveGCN (EGCN)
- □ Datasets

		# time		
	# nodes	# edges	steps	# labels
Datasets	n	m	T	L
BitcoinAlpha	3,783	31,748	138	2
WikiElec	7,125	212,854	100	2
RedditBody	35,776	484,460	88	2
Brain	5,000	1,955,488	12	10
DBLP-3	4,257	23,540	10	3
DBLP-5	6,606	42,815	10	5
Reddit	8,291	264,050	10	4

Temporal Link Prediction

☐ Aims to predict if an edge appears in the future

- Augment the adjacency matrix at each time
- Train a GNN with data from time 1 to t-1
- Predict test edges time t

Augmention baseline improvementdegradation

AUC	BitcoinAlpha			WikiElec			RedditBody		
	GCN	GCRN	EGCN	GCN	GCRN	EGCN	GCN	GCRN	EGCN
None	57.3±1.6	80.3±6.0	58.8±1.1	59.9±0.9	72.1±2.4	66.9±3.7	77.6±0.4	88.9±0.3	77.6±0.2
DROPEDGE GDC MERGE	√56.3±1.0 △57.5±1.6 △66.8±2.6	73.9±2.2 77.3±6.5 93.1±0.4	▼57.4±0.9 ▼57.4±1.2 ▲61.0±9.2	▼50.1±1.0 ▲62.8±0.8 ▲60.6±1.7	756.0±9.3 767.9±1.0 768.4±3.2	*47.9±6.4 *63.1±0.7 *60.7±1.3	73.0±0.4 74.6±0.0 69.7±0.7	777.0±1.7 86.4±0.3 89.8±0.5	71.9±0.7 73.8±0.3 80.3±0.5
TIARA	^76.0±1.3	^94.6±0.8	^77.2±1.4	▲69.0±1.2	^73.4±2.2	▲69.1±0.3	^80.8±0.6	⁴90.2±0.4	▲82.0±0.1

TiaRa consistently improves the performance of dynamic GNNs, and outperforms other augmentation methods

Node Classification

☐ Aims to classify a label of a node

- A graph and features change over time
- ullet Train a GNN with training nodes from time 1 and t
- Classify test nodes at time t

Augmention

improvementdegradation

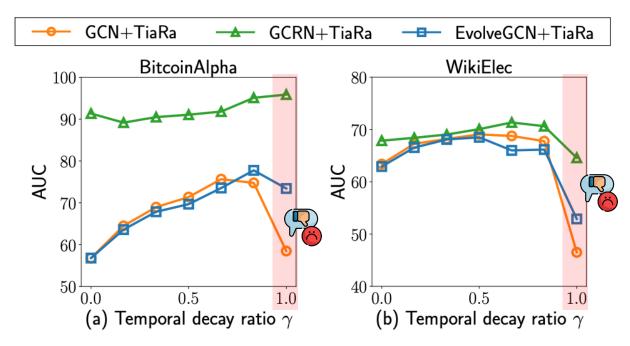
Ma E1		Brain		Reddit		DBLP-3		DBLP-5					
	Macro F1	GCN	GCRN	EGCN	GCN	GCRN	EGCN	GCN	GCRN	EGCN	GCN	GCRN	EGCN
υ	None	44.7±0.8	66.8±1.0	43.4±0.7	18.2±2.9	40.4±1.6	18.6±2.3	53.4±2.6	83.1±0.6	51.3±2.7	69.6±0.9	75.4±0.7	68.5±0.6
	DropEdge	▼35.2±1.7	67.8±0.6	39.7±1.8	19.4±0.8	₹40.3±1.4	▼18.0±2.7	▲55.8±1.9	▲84.3±0.6	▲52.4±1.7	▲70.5±0.5	75.6±0.7	68.0±0.7
ם מ	GDC	▲63.2±1.2	▲88.0±1.5	▲67.3±1.3	17.5±2.3	▲41.0±1.6	18.5±2.8	▲53.4±2.1	▲84.7±0.5	▲52.8±2.2	↑70.0±0.7	75.5±1.2	▲69.1±1.0
_	Merge	₹34.4±3.4	63.2±1.6	▲53.0±0.9	▲19.3±3.0	*39.6±0.8	▲20.4±3.0	▲54.9±3.1	*83.0±1.4	▲53.3±1.2	⁴70.8±0.4	74.5±0.8	▲69.7±1.6
	TIARA	▲68.7±1.2	▲91.3±1.0	72.0±0.6	18.4±3.0	41.5±1.5	^21.9±1.6	▲57.5±2.2	▲84.9±1.6	56.4±1.8	71.1±0.6	77.9±0.4	⁴70.1±1.0

TiaRa also works on the node classification task!

Effect of Hyperparameters (1)

\square Effect of temporal decay ratio γ

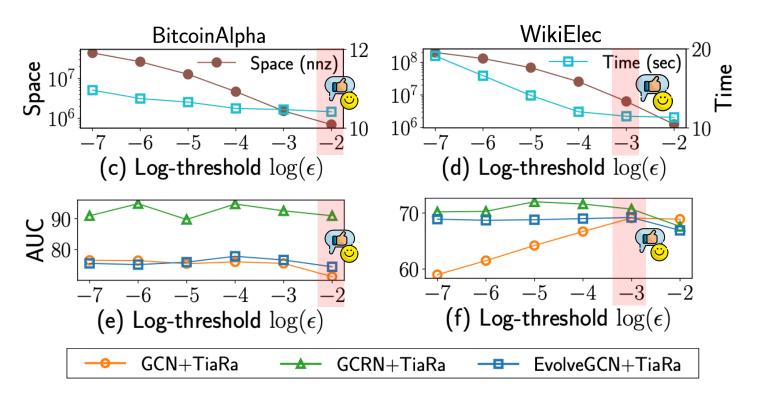
- Mostly, AUC decreases drastically when $\gamma \rightarrow 1$
- Using the information of all time steps is a poor choice
- Important to properly mix spatial & temporal information



Effect of Hyperparameters (2)

\Box Effect of filtering threshold ϵ

Large ϵ improves efficiency while keeping accuracy



Sparsification makes TiaRa efficient and paractically usable!

Feb 2023 2

Outline

☐ Introduction

■ Motivation

☐ Proposed Method

□ Experiments

□ Conclusion

Conclusion

☐ TiaRa (Time-aware Random Walk Diffusion)

- 1) Make a random surfer time-aware (TRWR)
- 2) Derive spatio-temporally diffusions from TRWR
- 3) Sparsify the diffusion matrices for efficiency

☐ Aids dynamic GNNs in providing better accuracy

- Temporal locality as well as spatial locality are caputred
- Sparsification makes TiaRa efficient & paractically usable

TiaRa improves the performance of dynamic GNNs

Feb 2023 23

Thank You

Jong-whi Lee

Code: https://github.com/dev-jwel/TiaRa

Appendix

Computation of TiaRa

lacksquare Computing the augmented adjacency matrix $oldsymbol{\mathcal{X}}_t$

- Use Power iteration
 - Avoid matrix inversion
 - Repeatedly multiply the adjacency matrix
 - Guarantee convergence to the final answer

```
Algorithm 1: TIARA at time t
```

Require: adjacency matrix \mathbf{A}_t , previous time-aware diffusion matrix $\tilde{\mathbf{X}}_{t-1}$, restart probability α , time travel probability β , number K of iterations, filtering threshold ϵ

Ensure: time-aware diffusion matrix $\tilde{\mathcal{X}}_t^{\top}$

```
1: \tilde{\mathcal{A}}_t \leftarrow \mathbf{D}_t^{-1} \mathbf{A}_t where \mathbf{D}_t = \operatorname{diag}(\mathbf{A}_t \mathbf{1})
 2: \mathcal{L}_t^{\text{rwr}} \leftarrow \text{Power-Iteration}(\tilde{\mathcal{A}}_t, \alpha, \beta, K)
 3: S_t \leftarrow \mathcal{L}_t^{\text{rwr}}
                                                                                                              ▷ Spatial augmenter
 4: \mathcal{T}_t \leftarrow \mathcal{S}_t \mathcal{X}_{t-1}
                                                                                                         ▷ Temporal augmenter
  5: \mathcal{X}_t \leftarrow (1 - \gamma)\mathcal{S}_t + \gamma \mathcal{T}_t where \gamma = \beta/(\alpha + \beta)
 6: \mathcal{X}_t \leftarrow filter entries of \mathcal{X}_t if their weights are < \epsilon
 7: normalize \mathcal{X}_t column-wise
  8: return \mathcal{X}_t
 9: function POWER-ITERATION(\tilde{A}_t, \alpha, \beta, K)
                 set c \leftarrow 1 - \alpha - \beta and \mathbf{M}_t^{(0)} \leftarrow \mathcal{I}_n
10:
                 \begin{array}{c} \mathbf{for} \ k \leftarrow 1 \ \mathbf{to} \ K \ \mathbf{do} \\ \mathbf{M}_t^{(k)} \leftarrow \mathbf{\mathcal{I}}_n + c \tilde{\mathbf{\mathcal{A}}}_t^{\top} \mathbf{M}_t^{(k-1)} \end{array}
11:
12:
                 \mathcal{L}_t^{\text{rwr}} \leftarrow (1-c)\mathbf{M}_t^{(K)} \text{ where } \mathbf{M}_t^{(K)} \cong \mathbf{L}_t^{-1}
13:
                 normalize \mathcal{L}_t^{\text{rwr}} column-wise and return \mathcal{L}_t^{\text{rwr}}
14:
15: end function
```

Computational Complexity

☐ Time complexity of TiaRa

- $O(n_t n/\epsilon + n_t^2 K)$ time at each time step
 - n_t : # of activated nodes (forming edges at time t)
 - n: # of total nodes
 - ϵ : filtering threshold (typically, 10^{-2} or 10^{-3})
 - ∘ *K*: # of power iteration
- Takes O(n) time in real-world dynamic graphs
 - $\circ n_t \ll n$, and ϵ^{-1} and K are constant
- Takes $O(n^2)$ time in dense graphs $(n_t = n)$

☐ Space complexity of TiaRa

■ Takes $O(n/\epsilon)$ space for augmentation at each time step

Datasets	n	$\lfloor ar{n}_t floor$
BitcoinAlpha	3,783	105
WikiElec	7,125	354
RedditBody	35,776	2,465
Brain	5,000	5,000
DBLP-3	4,257	782
DBLP-5	6,606	1,212
Reddit	8,291	2,071

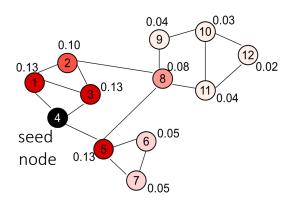
RWR Diffusion Matix $\mathcal{L}_t^{\text{rwr}}$

☐ The term is derived from the equation of TRWR

$$\mathbf{x}_{t,s} = (1 - \alpha - \beta) \mathbf{A}_t^\mathsf{T} \mathbf{x}_{t,s} + \alpha \mathbf{i}_s + \beta \mathbf{x}_{t-1,s}$$

$$\Rightarrow (\mathbf{I}_n - (1 - \alpha - \beta) \mathbf{A}_t^{\mathsf{T}}) \mathbf{x}_{t,s} = \alpha \mathbf{i}_s + \beta \mathbf{x}_{t-1,s}$$

- Suppose $\mathbf{L}_t = \mathbf{I}_n (1 \alpha \beta) \mathbf{A}_t^{\mathsf{T}}$
- Then, $\mathcal{L}_t^{\text{rwr}} = (\alpha + \beta) \mathbf{L}_t^{-1}$
 - \circ RWR scores of all pairs of nodes with restart probability $\alpha + \beta$



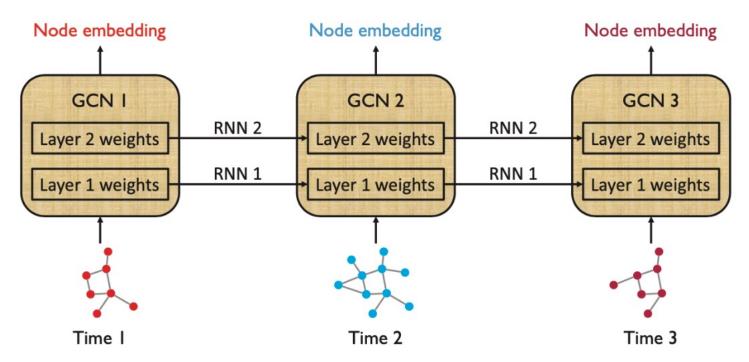
	Node 4	[Tong et al.,
Node 1	0.13	ICDM06]
Node 2	0.10	
Node 3	0.13	
Node 4	0.22	
Node 5	0.13	
Node 6	0.05	
Node 7	0.05	
Node 8	0.08	
Node 9	0.04	
Node 10	0.03	
Node 11	0.04	
Node 12	0.02	

Input: an adjacency matrix Output: RWR scores w.r.t. seed

Dynamic Graph Learning

☐ Dynamic Graph Neural Networks

- Combined with GCNs and RNNs (e.g., GCRN, EvolveGCN)
- Formally expressed as a learnable function $\mathcal{F}_{\Theta}(\cdot)$



Overview of EvolveGCN

[Pareja et al., AAAI20]