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Motivation (1)
• Traditional deep learning models have focused on 

grid data (e.g., image, video, text, and audio)
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Grid structure
(Multi-dimensional array)

ML tasks on image data

ML tasks on audio data



Motivation (2)
• CNN works well on such grid-typed data

◦ End-to-end learning: jointly learn hidden features and 
a supervised task (e.g., classification)
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Motivation (3)
• Traditional models such as CNN do not work on 

non-grid graph structured data
◦ Traditional convolution assumes grid structure
◦ There are tremendous graph structured data 

4

Friendship Hyperlink Gene

Knowledge Point cloud 3D mesh

Non-grid graphs

Molecule



Question
• How can we perform various ML tasks on graph 

structured data? 
◦ Like CNN, how can we jointly learn latent features and 

a supervised task in a graph?
◦ ⇒ Graph convolutional networks (GCN) can do this!

5Feature extraction Supervised task
Graph

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong



Representation Level
• Three representation levels in graph learning

◦ Latent feature vector for a node, an edge, or a graph
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Applications of GCN
• Numerous applications in various research fields!
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Problem Definition
• Input

◦ Undirected graph 𝐺 = (𝒱, ℰ) where 𝐀 is adj. matrix
◦ Initial node feature matrix 𝐗 ∈ ℝ-×/
§ 𝑛: number of nodes & 𝑑: feature dimension
§ e.g., bag-of-words feature vector extracted from the title/abstract 

of papers in citation networks

• Output
◦ Final node feature matrix 𝐙 ∈ ℝ-×/ through multiple 

layers

• Target task: semi-supervised node classification
◦ Predict the label of a node among multiple classes
§ e.g., paper category (stat.ML, cs.LG, ...)

◦ Small number of training nodes is given
8
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Challenges for Graph Conv.
• C1. No fixed node ordering

◦ ⇒ Result in different convolution for the same graph

• C2. Arbitrary number of node neighbors
◦ ⇒ Complex topological structure compared to grid
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Different node ordering produces 
different adjacency matrix

Convolution in 
a grid structure

How to do convolution 
in a graph?

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong



Taxonomy and Coverage
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Graph Convolutional Networks

Node-level Edge-level Graph-level

Basic GCN Advanced GCN

GCN
(ICLR 2017)

GraphSAGE
(NIPS 2017)

GAT
(ICLR 2018)

JK
(ICML 2018)

APPNP
(ICLR 2019)

GDC
(NeurIPS 2019)

Covered!

Node-level GCN models

[Wu et. al. 2020]



Notations
• Graphs

◦ 𝐺 = (𝒱, ℰ); 𝒱 & ℰ: sets of nodes and edges, resp.
◦ 𝒩6: set of neighboring nodes of node 𝑖

• Matrices and vectors
◦ 𝐀 ∈ ℝ-×-: adjacency matrix of graph 𝐺
§ 8𝐀 ∈ ℝ-×-: normalized adjacency matrix (e.g., 8𝐀 = 𝐃:;/=𝐀𝐃:;/=)
§ 𝐃 ∈ ℝ-×-: diagonal degree matrix

◦ 𝐗 ∈ ℝ-×/: input node feature matrix
◦ 𝐇 ∈ ℝ-×/: trained node embedding matrix
§ 𝐡6: node embedding of node 𝑖 (i.e., 𝑖-th row vector of 𝐇)

◦ 𝐖 ∈ ℝ/×/: trainable weight matrix

• Scalars
◦ 𝑛 & 𝑚: # of nodes and edges, resp.; 𝑑: feature dimension
◦ 𝐶: number of classes (or labels)
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Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017] 

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]
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GCN [ICLR’17]
• Main idea: Let’s generalize convolution to graph

◦ Transform input information with trainable weights
◦ Propagate the information of neighboring nodes 
◦ Aggregate the information at each node
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h6: input activation (scalar) at pixel 𝑖
Lh6: transformed activation at pixel 𝑖

𝐡6: input feature (vector) at node 𝑖
M𝐡6: transformed feature at node 𝑖

hN
LhN⇒ h;

Lh;

⇒ h=
Lh=

⇒

𝐡N
M𝐡N

⇒

𝐡=
M𝐡=

⇒ 𝐡O
M𝐡O⇒

𝐡P ⇒ M𝐡PM𝐡; ⇐ 𝐡;

𝐡R ⇒ M𝐡R
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Update Rule for GCN
• Graph convolution

◦ Transform input information with trainable weights
◦ Propagate the information of neighboring nodes 
◦ Aggregate the information at each node

𝐡6
ST; = 𝜎 𝐡6

(S)𝐖N
(S) + W

X∈𝒩Y

1
𝑐6X
𝐡X
(S)𝐖;

(S)

14

Neighborhood aggregation

Feature transformation ⇒ shared over all nodes

Non-linear activator 
(e.g., ReLU)

↑
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𝐡N

𝐡= 𝐡O

𝐡P
𝐡;

𝐡R

𝐡6
(S) ∈ ℝ;×/: node feature at layer 𝑙
𝐖∗

(S) ∈ ℝ/×/: trainable weight matrix
𝒩6 : set of neighboring nodes of node 𝑖
𝑐6X: normalization constant 

⇒ invariance to 
node permutation     
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Vectorized From for GCN (1)
• Update rule for all nodes

𝐇(ST;) = 𝜎 𝐇(S)𝐖N
(S) + 8𝐀𝐇(S)𝐖;

(S)

◦ 𝐇(S) = 𝐡;
S ; … ; 𝐡-

S ∈ ℝ-×/: node feature matrix

◦ 8𝐀 ∈ ℝ-×-: (sparse) normalized adj. matrix (i.e., 8𝐀6X = 𝑐6X:;)

• Choice of normalization constant
◦ 8𝐀 such that largest eigenvalue 𝜆abc = 1
§ Why? Guarantees 𝐇(S) is not exploded after consecutive graph 

convolutions 

◦ In [ICRL’17], 𝑐6X = |𝒩6| |𝒩X| ⇒ 8𝐀 = 𝐃:
e
f𝐀𝐃:

e
f

§ Why? Derived from 1st-order approx. of graph spectral filters
15

Graph 
normalization
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Vectorized From for GCN (2)
• Compact update rule for all nodes

◦ Add a self-loop edge explicitly at each node

• 𝐇(ST;) = 𝜎 𝐇(S)𝐖N
(S) + 8𝐀𝐇(S)𝐖;

(S)

◦ With 8𝐀 = 𝐃:
e
f𝐀𝐃:

e
f

◦ 𝐃 is a diagonal degree matrix 
of the original graph

• 𝐇(ST;) = 𝜎 g𝐀𝐇(S)𝐖(S)

◦ With g𝐀 = g𝐃:
e
f(𝐀 + 𝐈)g𝐃:

e
f

◦ g𝐃 is a diagonal degree matrix 
of the self-loop added graph
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GCN Architecture (𝐿 layers)
• Input: raw node feature matrix 𝐗 ∈ ℝ-×/

normalized adjacency matrix g𝐀 ∈ ℝ-×-

• Output: final node embeddings 𝐙 ∈ ℝ-×j
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𝐗 → 𝐇(N)

𝜎 g𝐀𝐇(;)𝐖(=) → 𝐇(=)𝜎 g𝐀𝐇(N)𝐖(;) → 𝐇(;)

𝐇(l) → 𝐙

Loss



Node Classification with GCN
• Node classification is multi-class classification

◦ Predict a node’s label among multiple classes
◦ 𝒱m: set of training nodes having labels
◦ 𝑌6o: 1 if node 𝑖 has label 𝑐, or 0 otherwise.
◦ 𝐶: number of classes

• Given the final node embedding 𝐙 ∈ ℝ-×j of GCN,  
compute row-wise softmax, i.e, 𝐅 = softmax(𝐙)

• Minimize multi-class cross entropy loss

ℒ = − W
6∈𝒱z

W
o{;

j

𝑌6o log 𝐅6o
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Experimental Result
• Semi-supervised node classification

◦ 2-layer GCN, i.e., 𝐅 = softmax(GCN= GCN; 𝐗 ∈ ℝ-×j

19



Learned Representations
• Visualization of hidden node embeddings

◦ Where a color indicates a class

20

Trained Representations



Discussion on GCN
• Pros

◦ P1. Make ML tasks on graphs easy
§ Enable us to do end-to-end learning on graphs

◦ P2. Invariance to node permutation
§ Due to weight sharing over all nodes

◦ P3. Efficient computation 
§ Time ∝ 𝑂(𝑚) where 𝑚 is # of edges
§ Model param. ∝ 𝑂(𝑑=)

• Cons
◦ C1. Shallow propagation (2~3 layers)
§ Small # of neighboring nodes is used
§ Residual can be helpful

◦ C2. Only indirect support for 
edge features (limited domain)

◦ C3. Naïve neighborhood aggregation

𝐇(ST;) = 𝜎 g𝐀𝐇(S)𝐖(S) + 𝐇(S)

21
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Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017] 

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]
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GraphSAGE [NIPS’17]
• Assumption of GCN’s neighborhood aggregation

◦ Just simple weighted average of neighbors’ features. 
It this the best? Can we do better?

GCN�s aggregation: 𝐡6
ST; = 𝜎 W

X∈𝒩Y∪6

1
𝑐6X
𝐡X
(S)𝐖(S)

• Main idea: Let’s generalize the aggregation!
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a differentiable function!
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GraphSAGE
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• GCN’s (basic) neighborhood aggregation 

𝐡6
ST; = 𝜎 W

X∈𝒩Y∪6

1
𝑐6X
𝐡X
(S)𝐖(S)

• GraphSAGE’s neighborhood aggregation

𝐡𝒩Y

(ST;) = AGGREGATES 𝐡X
(S)|∀𝑗 ∈ 𝒩6

𝐡6
ST; = 𝜎 CONCAT 𝐡6

(S), 𝐡𝒩Y

(ST;) 𝐖(S)

AGGREGATES ⋅
↓



GraphSAGE’s Algorithm
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• Input & output formats are the same as GCN

𝐡6
(N) ← 𝐱6 ∀𝑖 ∈ 𝒱

For 𝑙 = 0⋯𝐿 − 1 do
For 𝑖 ∈ 𝒱 do

𝐡𝒩Y

(ST;) = AGGREGATES 𝐡X
(S)|∀𝑗 ∈ 𝒩6

𝐡6
ST; = 𝜎 CONCAT 𝐡6

(S), 𝐡𝒩Y

(ST;) 𝐖(S)

𝐡6
(ST;) ← 𝐡6

ST; /||𝐡6
ST; ||= ∀𝑖 ∈ 𝒱

𝐳6 ← 𝐡6
(m) ∀𝑖 ∈ 𝒱 Explicit normalization is added since 

graph normalization could be 
omitted in the aggregation!

⇑



GraphSAGE Variants
• How to define AGGREGATES ⋅ ?

◦ Mean aggregator
§ Nearly equivalent to GCN’s aggregation

MEAN 𝐡X
(S)|∀𝑗 ∈ 𝒩6 =

1
|𝒩6|

W
X∈𝒩Y

𝐡X
(S)

◦ LSTM aggregator
§ Apply LSTM to random permutation 𝜋 of neighbors

LSTM 𝐡X
(S) ∀𝑗 ∈ 𝜋(𝒩6

◦ Pool aggregator
§ Apply elementwise max-pooling over neighbors’ features

max 𝜎 𝐡X
S 𝐖���� ∀𝑗 ∈ 𝜋(𝒩6

26



Inductive Capability
• Transductive: training algorithm sees the features 

of all nodes, including test nodes (but, not labels)
• Inductive: it doesn’t have access to test nodes

◦ Test nodes are dynamically inserted into training graphs 
◦ Test graphs are disjoint and completely unseen

• Same aggregation parameters are shared for all nodes
◦ Can generalize to unseen nodes (or graphs)!

27
train with snapshot new node arrives generate embedding 

for new node

zu
Use 
shared 
aggregator

←



Experimental Result
• Node classification performance of GraphSAGE

◦ Performed in inductive setting (i.e., test nodes are unseen 
at training step)

◦ Unsupervised GraphSAGE: uses an unsupervised loss as in 
DeepWalk (similar embeddings for connected nodes)

◦ Supervised GraphSAGE: uses the supervised loss for node 
classification

28



Discussion on GraphSAGE
• Pros

◦ P1. Generalized neighborhood aggregators
§ Mean, LSTM, and max-pool

◦ P2. Complex aggregator is better than simple one
§ LSTM/max-pool > GCN/Mean

◦ P3. Effective for inductive node classification

• Cons
◦ C1. Shallow propagation (2 layers)
◦ C2. Do not know which aggregator is proper
§ Require a lot of experiments to search for it

◦ C3. Fixed importance of edges for neighborhood feature 
aggregation
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Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017] 

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]
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GAT [ICLR’17]
• Assumption of previous models

◦ Weights of edges are fixed by graph normalization
◦ Can we learn edge weights more suitable for a task?

GCN�s aggregation: 𝐡6
ST; = 𝜎 W

X∈𝒩Y

1
𝑐6X
𝐡X
(S)𝐖(S)

• Main idea: let’s learn edge weights via attention
◦ Graph attention networks (GAT)
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Graph Attention
• Suppose we compute attention on edge (𝑖, 𝑗)

◦ Node 𝑖 has hidden (activation) feature 𝐡6

• Step 1. transform features with weight matrix 𝐖
M𝐡6 = 𝐡6𝐖

• Step 2. compute attention coefficient
◦ 𝒂 ∈ ℝ=/ is a shared trainable weight vector

𝑒6X = 𝒂£ CONCAT(M𝐡6, M𝐡X)

• Step 3. compute attention probability

𝛼6X = softmaxX 𝑒6X =
exp(𝑒6X)

∑¦∈𝒩Y
exp 𝑒6¦

32



Multi-head Attention
• Aim to obtain multiple attention scores per edge

𝐡6� = CONCAT
;§¦§¨

𝜎 W
X∈𝒩Y

𝛼6X¦ 𝐡X𝐖¦

◦ 𝑘-th head attention 𝛼6X¦ is computed with 𝐖¦ by graph 
attention

33GAT with 3-head attention



Experimental Result
• Node classification performance of GAT

◦ Transductive setting (2-layer GAT with 8 heads)
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Experimental Result
• Node classification performance of GAT

◦ Inductive setting (3-layer GAT with (4,6) heads)
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Discussion on GAT
• Pros

◦ P1. Increased learning power via multi-head attention
◦ P2. Effective for both transductive and inductive settings

• Cons
◦ C1. Shallow propagation (2~3 layers)
◦ C2. Larger model complexity 
◦ C3. Slower than GCN or GraphSAGE
§ Due to multi-head attention 
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Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017] 

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]
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Limitation of Basic GCNs
• Basic GCNs shows the best performance when their 

depth is shallow
◦ GCN [ICLR’17]: 𝟐 layers
◦ GraphSAGE [NIPS’17]: 𝟐 layers
◦ GAT [ICLR’18]: 𝟐~𝟑 layers
◦ With two GCN layers, only 

2-hop neighbors are considered

• Deep layers degrade 
the GCNs’ performance
◦ Learning power of GCN is limited
◦ Why?

38

Tr
ai

ni
ng

 lo
ss

Epoch

[Le et al., ICCV’19]



Over-smoothing Problem (1)
• Node representations are over-smoothed as the 

layer depth increases
◦ ⇒ Become undistinguishable as the depth increases

• Main cause: averaging aggregation
◦ It loses its focus on the local neighborhood

39
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Over-smoothing Problem (2)
• Visualization on node representation of GCN

◦ Zachary’s karate club network (2 labels)
◦ Point = node embedding t-SNE projected onto 2D space

40

⇒ Become similar 
to each other
[Li et al., AAAI’18]



Analysis on GCN (1)
• Analyzed the behavior of neighborhood aggregation

◦ Why does deep GCN produce over-smoothen embeddings?

• Influence distribution of a node 
◦ ∀𝑦 ∈ 𝒱, influence score of node 𝑦 on node 𝑥
§ How much a change in 𝐡®

(N) affects 𝐡¯
(¦) in the last layer

• Random walk distribution of a node
◦ ∀𝑦 ∈ 𝒱, probability that a surfer visits node 𝑦 through 𝑘

steps starting at node 𝑥

41



Analysis on GCN (2)
• Influence distribution of node 𝑥 in 𝑘-layer GCN 
⇔𝑘-step random walk distribution of the node
◦ Example where a square node is target node 𝑥
◦ GCN’s feature modeling can be described by the random 

walk in graphs!

42
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Why Over-smoothing?
• Real-world graphs are scale-free!

◦ There are a few hub nodes in real-world graphs
§ Disconnected nodes are reachable by a small number of steps (via hubs)
§ Random walks converge rapidly to an almost-uniform distribution 

◦ Small 𝑘 is enough for smoothing RW distribution!
◦ 𝑘-layer GCN is closely related to 𝑘-step random walk
§ Node representations will be representative of the global graph (degree)

43Power-law degree distribution 6 step random walks Over-smoothness

start!

hubs

Real World Random



JK [ICML’18]
• Propose JK (Jumping Knowledge) networks

◦ Observation. Small 𝑘 will capture local structure while large 
𝑘 will capture global structure

◦ Main idea: Let’s adaptively mix the result of each 
neighborhood aggregation!

44
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Experimental Result
• Node classification performance of JK

◦ Transductive setting

◦ Inductive setting
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Discussion on JK
• Pros

◦ P1. Theoretical analysis on GCN’s over-smoothing 
§ Connected with random walk in graphs

◦ P2. Capture various structural information
§ From local to global, via aggregation at the last layer

• Cons
◦ C1. Do not know which aggregator is proper
§ Require a lot of experiments to search for it

◦ C2. Number of layers is still limited
§ Up to 6 layers, i.e., 6-hop neighbors are considered
§ Hard to know which # of layers is suitable (needs experiments)
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Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017] 

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]
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APPNP [ICLR’19]
• GCN’s propagation ∝ simple random walk in graphs

◦ Produce probability distribution representing global 
properties such as node degree
§ e.g., PageRank (similar to simple RW) obtains global importance over 

all nodes

◦ Personalized PageRank is a random walk model for 
computing node scores personalized to given seed nodes

• Main idea: Let’s propagate information like 
Personalized PageRank
◦ To preserve local information during propagation 

48



Personalized PageRank (1)
• Personalized node-to-node scores

◦ Random walk: randomly moves to a neighboring node
◦ Restart: goes back to the seed node and restart
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Personalized PageRank (2)
• Interpretation of PPR equation

𝐡(¦T;) = 1 − 𝑐 8𝐀𝐡(¦) + 𝑐𝐪
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APPNP [ICLR’19]
• Personalized Propagation like PPR

𝐇(¦T;) = 1 − 𝑐 8𝐀𝐇(¦) + 𝑐𝐐
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Overall Procedure of APPNP
• Step 1. Transform features with learnable weights

◦ Input feature matrix 𝑿 ∈ ℝ-×/

◦ Learnable weight matrix 𝑾 ∈ ℝ/×/

𝐇(N) ← 𝐐 ← 𝐗𝐖

• Step 2. Repeat personalized propagation 𝐿 times

𝐇(¦T;) = 1 − 𝑐 8𝐀𝐇(¦) + 𝑐𝐐

• Return 𝐇(m) as the final node representation
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Network Architecture of APPNP
• APPNP consists of a feature transform layer and 

multiple propagation layers
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Comparison
• Between GCN and APPNP
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• Transform & propagation are coupled
• Needs 𝐿 weight matrices
• Shallow transform
• Shallow propagation (𝐿 = 2 ∼ 3)

• Transform & propagation are split
• Needs one weight matrix
• Shallow transform
• Deep personalized propagation

(𝐿 ≥ 10)

↔
↔
↔
↔

• Simple GCN
◦ Step 1. Transform features
§ 8𝐇(¦) = 𝐇(¦)𝐖(¦)

◦ Step 2. Neighborhood 
aggregation
§ 𝐇(¦T;) = 𝜎 8𝐀8𝐇(¦)

• APPNP [ICLR’19]
◦ Step 1. Transform features
§ 𝐇(N) = 𝐐 = 𝐗𝐖(¦)

◦ Step 2. Personalized 
propagation
§ 𝐇(¦T;) = 1 − 𝑐 8𝐀𝐇(¦) + 𝑐𝐐

Repeat 𝐿 times

Repeat
𝐿 times



Analysis of APPNP
• Exact version: PPNP

◦ Infinite personalized propagation converges to

lim
¦→Å

𝐇(¦) = lim
¦→Å

W
6{N

¦:;

1 − 𝑐 6 8𝐀6 = 𝑐 𝐈 − 1 − 𝑐 8𝐀
:;
𝐐

◦ PPNP works on only small graphs due to scalability
◦ Interpreted as weighted aggregation with PPR scores and 

initial prediction 𝐐

𝐇(¦) = 𝐐 + 1 − c 8𝐀𝐐 +⋯+ 1 − c ¦8𝐀¦𝐐
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Experimental Results (1)
• Node classification performance of APPNP

◦ Transductive setting
◦ PPNP: the exact method computing matrix 

inversion ⇒ o.o.m. for large graphs
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Experimental Results (2)
• Effect of propagation steps 𝑘

◦ As 𝑘 increases, APPNP’s performance becomes 
improved, and converges to PPNP!

◦ GCN’s performance becomes bad!
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Experimental Results (3)
• Effect of preference probability 𝑐

◦ Within [0.05, 0.2], the proposed model shows 
the best predictive performance 

◦ However, it depends on datasets, and should be 
manually tuned 
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Discussion on APPNP
• Pros

◦ P1. Carefully consider features from more nodes via PPR
§ Theoretically, it can consider all of nodes in the graph

◦ P2. Split feature transformation and propagation
§ Increase the flexibility of feature propagation

◦ P3. APPNP is efficient and very lightweight model

• Cons
◦ C1. Additional hyperparameters to be tuned
§ e.g., # of propagation steps & preference probability 𝑐

◦ C2. PPNP suffers from scalability issue
◦ C3. Shallow transform with a trainable weight matrix
§ Its performance will be limited in complicated ML tasks such as graph 

clustering
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Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017] 

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]
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GDC [NeurIPS’19]
• Assumptions behind previous approaches

◦ Only pass features between direct neighboring nodes in 
each step
§ Why should we limit the propagation to one-hop neighbors?

◦ Researchers have assumed that the given graph is ideal
§ What if the graph contains missing or noisy edges?

• Main idea: Let’s augment the input graph so that any 
GNN models improve through graph diffusion! 
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GDC [NeurIPS’19]
• GDC (Graph Diffusion Convolution)

◦ Considered as graph data augmentation

62

Graph GNN Loss

Learning part is fixed

Graph diffusion Sparsification
New augmented 

graph

GNN

GDC is applicable to any GNN models!



Proposed Method
• GDC (Graph Diffusion Convolution)

◦ Input: undirected & unweighted graph 𝐺
◦ Output: new augmented weighted graph 𝐺�

◦ Step 1. compute transition matrix 𝐓
◦ Step 2. compute graph diffusion matrix 𝐒 based on 𝐓
◦ Step 3. sparsify the diffusion matrix 𝐒 ⇒ L𝐒

◦ Return L𝐒 as adjacency weighted matrix of 𝐺�
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Graph Diffusion
• What is Graph Diffusion?

◦ Stochastic process for spreading (or propagating) 
information along the edges in a graph 

◦ Starting from a seed (or source) node 𝑠
◦ Obtain diffusion score vector for all nodes w.r.t. 𝑠
§ Typically localized to seed node 𝑠

◦ Representative graph diffusions
§ Personalized PageRank

◦ Spread a random surfer over graphs

§ Heat Kernel
◦ Spread heat over graphs
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Diffusion scores w.r.t. seed node 𝑠
𝑠

Diffusion scores ⇒ edge weights

Graph Diffusion
• Graph diffusion matrix 𝐒 ∈ ℝ-×-

◦ Contains diffusion scores of all pairs of nodes
§ S6X: diffusion score on node 𝑖 starting at node 𝑖

◦ Let’s use the diffusion matrix as the adjacency weighted 
matrix of a new graph
§ Aim to use more nodes beyond 1-hop neighbors
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Generalized Graph Diffusion
• Generalized Graph diffusion matrix 𝐒 ∈ ℝ-×-

𝐒 = W
¦{N

Å

𝜃¦𝐓¦

◦ 𝑘: diffusion step 
◦ 𝜃¦: diffusion weight at step 𝑘
◦ 𝐓¦: transition (or stochastic) matrix after 𝑘 steps
§ Movement of information from where to where

• Two models: Personalized PageRank and Heat Kernel
◦ Personalized PageRank’s diffusion matrix

𝐒 = W
¦{N

Å

𝑐 1 − 𝑐 ¦ 8𝐀¦ = 𝑐 𝐈 − 1 − 𝑐 8𝐀 :;

◦ See the paper for Heat Kernel’s diffusion matrix 66

𝐓 = 8𝐀
𝜃¦ = 𝑐 1 − 𝑐 ¦



Sparsification
• Diffusion matrix 𝐒 is fully dense

◦ Why? Infinite sum of power of the transition matrix
◦ Require 𝑂(𝑛=) space ⇒ GNNs using naïve 𝐒 will be 

inefficient

• Solution. To sparsify the diffusion matrix 𝐒
◦ i.e., let’s reduce the number of non-zero entries in 𝐒
◦ Option 1. select top-𝑘 relevant nodes for each node
§ In order of diffusion scores w.r.t. each node

◦ Option 2. remove entries below a threshold 𝜖
◦ Choice between the strategies is another hyperparameter

67



Experimental Result
• Node classification performance of GDC
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None: the original graph, Heat/PPR (proposed): GDC with Heat/PPR
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the performance of all GNN models in the task



Discussion on GDC
• Pros

◦ P1. Augmentation technique for graph data
◦ P2. Use features from more nodes when modeling latent 

node embedding
◦ P3. Applicable to any GNN models 
§ Improve the performance of all tested GCN models

• Cons
◦ C1. Need to carefully tune hyperparameters
§ Which diffusion we should use? (PPR or Heat Kernel)
§ Which sparsification we should use? (Top-k selection or threshold)

◦ C2. Not scalable for computing diffusion matrices
§ Approximation is possible, but its effect is not revealed
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Conclusion
• Graph convolution makes ML tasks on graphs 

easy (as feature extractor on graphs)
• Various techniques for graph convolution

◦ Basic models (shallow): GCN, GraphSAGE, and GAT
◦ Advanced models (deep): JK, APPNP, and GDC

• Future research directions
◦ Unstudied graph structures: heterogeneous graphs, 

signed graphs, and hypergrpahs
◦ Dynamic graphs: nodes, edges, and features can change 

over time
◦ Interpretability: how to interpret and reason the results 

of graph neural networks 
◦ Lightweight models: how to accelerate GCN models 

without loss of accuracy 
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Q & A
• Email: jinhongjung@snu.ac.kr
• Web: jinhongjung.github.io
• Must-read papers on GNN

◦ Contributed by Jie Zhou, Ganqu Cui, Zhengyan Zhang and 
Yushi Bai, https://github.com/thunlp/GNNPapers

• Related tutorials on GNN
◦ “Representation Learning on Networks” by William L. 

Hamilton et al., WWW2018
◦ “Graph Neural Networks: Models and Applications” by Yao 

Ma et al., AAAI2020

• Geometric deep learning library for PyTorch
◦ Contributed by Matthias Fey and Jan E. Lenssen
◦ https://github.com/rusty1s/pytorch_geometric
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