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Motivation (1)

* Traditional deep learning models have focused on
grid data (e.g., image, video, text, and audio)
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Motivation (2)

* CNN works well on such grid-typed data

o End-to-end learning: jointly learn hidden features and
a supervised task (e.g., classification)

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 ReLU activation
Convolution Convolution A /—M
(5 “ 5) kernel Max-Pooling (5 X 5) kernel Max-Pooling (with
valid padding 2x2) valid padding (2x2) ‘

/& \\.dropout)
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INPUT nl channels nl channels n2 channels n2 channels ‘ E \‘ 9
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Motivation (3)

* Traditional models such as CNN do not work on
non-grid graph structured data
o Traditional convolution assumes grid structure

o There are tremendous graph structured data

O e

Non-grid graphs Friendship
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FFFFFFFF

Molecule Knowledge Point cloud 3D mesh 4
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Question

* How can we perform various ML tasks on graph
structured data?

o Like CNN, how can we jointly learn latent features and
a supervised task in a graph?

o = Graph convollutional networks (GCN) can do this!

graph conyglution _
drop graph convolution
gy < —
\F:‘*L“ / NS

7—->—

oftmax
class

[/
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]
7 GNN P = VI

upervised task) 5
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Representation Level

* Three representation levels in graph learning
o Latent feature vector for a node, an edge, or a graph

~

Node level Edge level Graph level

Graph Edge Graph
Convolution Pooling Pooling

Node Classification Relational Reasoning Graph Classification
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Applications of GCN

* Numerous applications in various research fields!

3.1 Physics

3.3 Knowledge Graph

3.5 Computer Vision

3.7 Generation

3.9 Adversarial Attack

3.11 Graph Classification
3.13 Traffic Network

3.15 Program Representation

3.17 Graph Matching

3.2 Chemistry and Biology

3.4 Recommender Systems

3.6 Natural Language Processing

3.8 Combinatorial Optimization

3.10 Graph Clustering

3.12 Reinforcement Learning

3.14 Few-shot and Zero-shot Learning
3.16 Social Network

3.18 Computer Network

https://qgithub.com/thunlp/GNNPapers
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Problem Definition

* Input o X "
o Undirected graph G = (V, £) where A is adj. matrlx J
o Initial node feature matrix(X e R™*¢ —)

—
= n: number of nodes & d: feature dimension 0 —

" e.g., bag-of-words feature vector extracted from the titl /abs:tract
of papers in citation networks

* Output v
> Final node feature matrix Z € R"*¢ hrough multiple
layers

 Target task: semi-supervised node classification

o Predict the label of a node among multiple classes
" e.g., paper category (stat.ML, cs.LG, ...)

o Small number of training nodes is given
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Challenges for Graph Conv.

* C1. No fixed node ordering
o = Result in different convolution for the same graph

* C2. Arbitrary number of node neighbors QT\ C /\Z

o = Complex topological structure compared to grid

0 0] —

)4 (1) 8 GO0l 00000
o)olo elelele)ele
(5) 0 1 ole)e) olelelelele
(3) 1 o D0O000000
) > 000000000
O00000000
(2) 0 0 0 0 17 Q00000000
) (3) 00 1 0 1 000000000
© 01 0 0 1 O00000000

0 (1) (1) (1) 8 8 Convolution in How to do convolution

a grid structure in a graph?

Different node ordering produces
different adjacency matrix
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Taxonomy and Coverage

‘ Graph Convolutional Networks ‘

Covered! [
¥ ! ¥

‘ Node-level ‘ ‘ Edge-level ‘ ‘ Graph-level
|

l l [Wu et. al. 2020]
‘ Basic GCN ‘ ‘Advanced GCN‘ ) T
! ! ¢
GCN JK ) —
(ICLR 2017) (ICML 2018) /
GraphSAGE APPNP _— \
(NIPS 2017) (ICLR 2019) ’ \
GAT GDC y
(ICLR 2018) (NeurlPS 2019) Node-level GCN models

10
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Notations

* Graphs
o G = (V,E);V & E: sets of nodes and edges, resp.

o N;: set of neighboring nodes of node i

* Matrices and vectors
o A € R™™: adjacency matrix of graph G
= A € R™™: normalized adjacency matrix (e.g., A = D~1/2AD~1/2)
= D € R™": diagonal degree matrix
o X € R™%: input node feature matrix
o H € R™4: trained node embedding matrix
= h;: node embedding of node i (i.e., i-th row vector of H)

o W € R**?: trainable weight matrix

* Scalars
> n & m: # of nodes and edges, resp.; d: feature dimension

o C: number of classes (or labels)
11
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Roadmap

* Basic Graph Convolutional Networks

» GCN [ICLR 2017] M

o GraphSAGE [NIPS 2017]
o GAT [ICLR 2018]

* Advanced Graph Convolutional Networks
o JK [ICML 2018]
o APPNP [ICLR 2019]
o GDC [NuerlPS 2019]

12
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GCN [ICLR’17]

* Main idea: Let’s generalize convolution to graph
o Transform input information with trainable weights

o Propagate the information of neighboring nodes
o Aggregate the information at each node

] | /£
[Standard convoluti&) o Graph convolution

Vv

W

AN

: input activation (scalar) at pixel i h;: input feature (vector) at node i

h;
h;: transformed activation at pixel i h;: transformed feature at node i
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Update Rule for GCN |] (-} [

g+
* Graph convolution k”‘) h
° Transform input information with trainable welgh\

o Propagate the information of neighboring nodes é C /\/
0 Aggregate the information at each node |

[-@ure transformation

/(l+1) G (l)

Non- Imeara tivator \ BEA

shiared over all nodes

= invariance to
node permutation

)CN()

hl@ € R™¥¥: node featur& at layer [

W e RO¥: trainable welght matrix
N; : set of ngighboring nodes of node i
c;j: normalization constant

14
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Vectorized From for GCN (1)

* Update rule for all nodes

) 37
E’) HED)= o (HOW) £ @wwﬁ))
': \\ __“ \/

o HO = [h(l); ...;h,(p] € R™%%: node feature matrix

o A € RMXN. (sparse) normalized adj. matrix (i.e., Kij

Cij

* Choice of normalization constant
o A such that largest eigenvalue A, = 1

= Why? Guarantees H® is not exploded after consecutive graph

convolutions
1 Graph

° In [ICRL'17], ¢;; = /IV;|{/IN;| > A=D ~SADZ normalization

= Why? Derived from 1°t-order approx. of graph spectral filters

15
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Vectorized From for GCN (2)

* Compact update rule for all nodes
o Add a self-loop edge explicitly at each node

. H(H'l) = (H(l)w(l) 4+ AH(l)w(l))

c WithA=D 2AD 2

o D is a diagonal degree matrix
of the original graph

1-hop propagation
« HU+1) = G(KH(”W(Z))
~ 1 -1
o WithA=D 2(A+1)D 2
> D is a diagonal degree matrix
of the self-loop added graph

16



GCN Architecture (L layers)

ge DATA MINING LABORATORY@

* Input: raw node feature matrix X € R™*¢

normalized adjacency matrix A € R™*"

* OQutput: final node embeddings Z € R™"*¢

\ 4

Hidden layer

J

Hidden layer

U(KH(O)W(U) > HD U(KH(l)w(Z)) S H®

Loss

17
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Node Classification with GCN

* Node classification is multi-class classification
o Predict a node’s label among multiple classes

o P, : set of training nodes having labels
> Y;.: 1if node i has label ¢, or 0 otherwise.
o C: number of classes

* Given the final node embedding Z € R™*¢ of GCN,
compute row-wise softmayx, i.e, F = softmax(Z)

* Minimize multi-class cross entropy loss

C
L= _Z ZyiclogFic

IEV c=1

18
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5%

Sl

Experimental Result

* Semi-supervised node classification
o 2-layer GCN, i.e., F = SoftmaX(GCNZ(GCNl(X)) e R™<¢

Dataset Type Nodes Edges Classes Features Label rate
Citeseer  Citation network 3,327 4,732 6 3,703 0.036
Cora Citation network 2,708 5,429 7 1,433 0.052
Pubmed Citation network 19,717 44,338 3 500 0.003
NELL Knowledge graph 65,755 266,144 210 5,414 0.001
Method Citeseer Cora Pubmed NELL
ManiReg 60.1 59.5 70.7 21.8
SemiEmb 59.6 59.0 71.1 26.7
LP 45.3 68.0 63.0 26.9
DeepWalk 43.2 67.2 65.3 58.1
Planetoid* 64.7 (26s)  75.7 (13s) 77.2(25s) 61.9 (185s)
| GCN 70.3 (7s) 81.5 (4s) 79.0 (38s) 66.0 (48s) |

19
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Learned Representations

* Visualization of hidden node embeddings
o Where a color indicates a class

Trained Representations
(t-SNE embedding of hidden layer activations)

20
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Discussion on GCN

* Pros

o P1. Make ML tasks on graphs easy
= Enable us to do end-to-end learning on graphs

o P2. Invariance to node permutation Residual
= Due to weight sharing over all nodes conneciion
o P3. Efficient computation HUD = g(AHOWO) + HO
* Time x O(m) where m is # of edges _ Pubmed
= Model param. o 0(d?) "

feature dimension 0.86}

* Cons o al
o C1. Shallow propagation (2~3 layers)
= Small # of neighboring nodes is used
= Residual can be helpful

0.82}

Accuracy

o
o)
<)

e ----+ Train

o C2. Only indirect support for O78 e Train (Residual) ‘.
edge features (limited domain) 076 T 1 recidua :
> C3. Naive neighborhood aggregation S a5 6 5 6 8 1o

Number of layers 21
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Roadmap

* Basic Graph Convolutional Networks

»o GCN [ICLR 2017] M

GraphSAGE [NIPS 2017]
o GAT [ICLR 2018]

* Advanced Graph Convolutional Networks
o JK [ICML 2018]
o APPNP [ICLR 2019]
o GDC [NuerlPS 2019]

22
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GraphSAGE [NIPS’17]

* Assumption of GCN’s neighborhood aggregation

o Just simple weighted average of neighbors’ features.
It this the best? Can we do better? weight

1
GCN's aggregation: hglﬂ) = 0'( z _h@w(l))

co: J
jenui Y

* Main idea: Let’s generalize the aggregation!

............... a
Let’s abstract it as A‘:ﬁlﬁf. ..............

TARGETl NOPE a differentiable function! .- ® ®

Lo I
e |

< Z S .4‘.% .........
‘ v V ..... .
oy
INPUT GRAPH ‘

23
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GraphSAGE

* GCN’s (basic) neighborhood aggregation

hi'* =4 L hOwo
l Cl] ]

JEN ;UL

* GraphSAGE’s neighborhood aggregation

AGGREGATE, () .

hg\lfjl) = AGGREGATE, ({h](l)|‘v’j = ]\/”l}) ® < e

h{"*" = o (concar (h{", h§ V) WD)

24
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GraphSAGE’s Algorithm

* Input & output formats are the same as GCN

th) —X;VieV
For(=0---L —1do
Fori € V do
h{("" = AGGREGATE, ({h{"|vj € I;})
h{**? = 5 (CONCAT (h{”, h§ ") w®)

(I+1) (I+1) (I+1) :
hy ™ « hi"™/||Ihi ||, vie v
R
Explicit normalization is added since

graph normalization could be
omitted in the aggregation!

Z; < hEL) VieV

25
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GraphSAGE Variants

* How to define AGGREGATE,(:)?

° Mean aggregator
= Nearly equivalent to GCN’s aggregation

MEAN ({h{"|vj € 3;}) = I ]3” z h("
few,

o LSTM aggregator
= Apply LSTM to random permutation  of neighbors

LST™ ({h{"|vj € m()})

o Pool aggregator
= Apply elementwise max-pooling over neighbors’ features

o ( {0 (hjgz)wpool) V) € n(Ni)})

26
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B®

Inductive Capability

* Transductive: training algorithm sees the features
of all nodes, including test nodes (but, not labels)

* Inductive: it doesn’t have access to test nodes
o Test nodes are dynamically inserted into training graphs
o Test graphs are disjoint and completely unseen

* Same aggregation parameters are shared for all nodes
o Can generalize to unseen nodes (or graphs)!

Ziy
............... ‘
DYAN AN \/g; " oharec
<\\ <\\ <\ aggregator
— —
’> |~ | -
train with snapshot new node arrives generate embedding

for new node 27



Experimental Result

@e DATA MINING LABORATORY {8

at training step)

o Unsupervised GraphSAGE: uses an unsupervised loss as in
DeepWalk (similar embeddings for connected nodes)

o Supervised GraphSAGE: uses the supervised loss for node

classification

* Node classification performance of GraphSAGE
o Performed in inductive setting (i.e., test nodes are unseen

Citation Reddit
Name Unsup. F1 ~ Sup. F1 ~ Unsup. F1 ~ Sup. F1 ~ Unsup. FI
Random 0.206 0.206 0.043 0.042
Raw features 0.575 0.575 0.585 0.585
DeepWalk 0.565 0.565 0.324 0.324
DeepWalk + features 0.701 0.701 0.691 0.691
GraphSAGE-GCN 0.742 0.772 0.908 0.930
GraphSAGE-mean 0.778 0.820 0.897 0.950
GraphSAGE-LSTM 0.788 0.832 0.907 0.954
GraphSAGE-pool 0.798 0.839 0.892 0.948

% gain over feat. 39%

46%

55%

63%
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Discussion on GraphSAGE

* Pros

o P1. Generalized neighborhood aggregators
= Mean, LSTM, and max-pool

o P2. Complex aggregator is better than simple one
= LSTM/max-pool > GCN/Mean

o P3. Effective for inductive node classification

* Cons
o C1. Shallow propagation (2 layers)

o C2. Do not know which aggregator is proper
= Require a lot of experiments to search for it

o C3. Fixed importance of edges for neighborhood feature
aggregation

29
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Roadmap

* Basic Graph Convolutional Networks

o GCN [ICLR 2017] M

o GraphSAGE [NIPS 2017]

» GAT [ICLR 2018]

* Advanced Graph Convolutional Networks
o JK [ICML 2018]
o APPNP [ICLR 2019]
o GDC [NuerlPS 2019]

30
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GAT [ICLR’17)

* Assumption of previous models
o Weights of edges are fixed by graph normalization

o Can we learn edge weights more suitable for a task?
Fixed weight

1
GCN's aggregation: hgl“) =0 < z —h@W(l)>
JEN;
* Main idea: let’s learn edge weights via attention
o Graph attention networks (GAT)

31
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Graph Attention

* Suppose we compute attention on edge (i, )
o Node i has hidden (activation) feature h;

* Step 1. transform features with weight matrix W
ili — th

 Step 2. compute attention coefficient

o a € R?% is a shared trainable weight vector
e;j = a'|CONCAT(h;, h))]

* Step 3. compute attention probability
exp(e;;)
2ken; €Xp(eik)

ajj = softmaxj(eij) =

32
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Multi-head Attention

* Aim to obtain multiple attention scores per edge

h; = CONCAT o ( z a{‘jhjwk)
JEN;

o k-th head attention a{‘j is computed with W, by graph
attention

GAT with 3-head attention

33
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Experimental Result

* Node classification performance of GAT
o Transductive setting (2-layer GAT with 8 heads)

Method Cora Citeseer Pubmed
MLP 55.1% 46.5% 71.4%
ManiReg (Belkin et al., 2006) 59.5% 60.1% 70.7%
SemiEmb (Weston et al., 2012) 59.0% 59.6% 71.7%

LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%

ICA (Lu & Getoor, 2003) 75.1% 69.1% 73.9%
Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Chebyshev (Defferrard et al., 2016) 81.2% 69.8% 74.4%

GCN (Kipf & Welling, 2017) 81.5% 70.3% 79.0%
MoNet (Monti et al., 2016) 81.7£0.5% — 78.8 £ 0.3%
GCN-64* 814+05% 709 +05% 79.0+ 0.3%

! GAT (ours) 83.0+07% 725+07% 79.0+ 0.3%|

34
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Experimental Result

* Node classification performance of GAT
o Inductive setting (3-layer GAT with (4,6) heads)

Method PPI
Random 0.396
MLP 0.422

GraphSAGE-GCN (Hamilton et al., 2017) 0.500
GraphSAGE-mean ([Hamilton etal., 2017)  0.598
GraphSAGE-LSTM (Hamilton et al., 2017) 0.612
GraphSAGE-pool (Hamilton et al. 2017 0.600

GraphSAGE* 0.768
Const-GAT (ours) 0.934 + 0.006
| GAT (ours) 0.973 4+ 0.002 |

35
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Discussion on GAT

* Pros
o P1. Increased learning power via multi-head attention

o P2. Effective for both transductive and inductive settings

* Cons
o C1. Shallow propagation (2~3 layers)
o C2. Larger model complexity
o C3. Slower than GCN or GraphSAGE

= Due to multi-head attention

36
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Roadmap

* Basic Graph Convolutional Networks

o GCN [ICLR 2017] M

o GraphSAGE [NIPS 2017]
o GAT [ICLR 2018]

* Advanced Graph Convolutional Networks |

» JK [ICML 2018]

o APPNP [ICLR 2019]
o GDC [NuerlIPS 2019]

37
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Limitation of Basic GCNs

* Basic GCNs shows the best performance when their
depth is shallow
o GCN [ICLR’17]: 2 layers

[Le et al., ICCV’19]

© GraphSAGE [NIPS’17]: 2 |ayer5 1.4+ === 7 layers w/o residual
5 ’ B 124 = ===« 14 layers w/o residual
GAT [ICLR’18]: 2~3 layers E . 28 layers w/o residual
> With two GCN layers, only S |g, v 36layerswioresidual
0o 081 :":.‘._.'
2-hop neighbors are considered £ .| %",
E 0.4 -".',’ e ““:: ot e,
* Deep layers degrade 1
-u:'p‘n...-_.‘,.,-‘f”""..'.'
the GCNs’ performance ool T
Epoch

o Learning power of GCN is limited
o Why?

38
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Over-smoothing Problem (1)

* Node representations are over-smoothed as the
layer depth increases
o = Become undistinguishable as the depth increases

* Main cause: averaging aggregation
° |t loses its focus on the local neighborhood

» » - »

Initial Frist step propagation Infinite propagation

39
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Over-smoothing Problem (2)

* Visualization on node representation of GCN
o Zachary’s karate club network (2 labels)

o Point = node embedding t-SNE projected onto 2D space

° 0. ° ® ..: : ° o °
0 ® 0.1: r * 9 ° o
(a) 1-layer (b) 2-layer (c) 3-layer
: ¢ . 0.00 o‘,&.o
. _ . = Become similar
to each other
H ’
(d) 4-layer (e) 5-layer [Li et al., AAAI'18] 10
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Analysis on GCN (1)

* Analyzed the behavior of neighborhood aggregation
o Why does deep GCN produce over-smoothen embeddings?

* Influence distribution of a node
> Vy € V, influence score of node y on node x

= How much a change in h§,0) affects hgck) in the last layer

e Random walk distribution of a node

o Yy € PV, probability that a surfer visits node y through k
steps starting at node x

41
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Analysis on GCN (2)

* Influence distribution of node x in k-layer GCN
& k-step random walk distribution of the node
o Example where a square node is target node x

o GCN’s feature modeling can be described by the random
walk in graphs!

"\(4‘?'5“.4r,;
o YIS A
el ee
e o

2688 O/
QT J 4 }
2800

(a) 2 layer GCN (b) 2 step r.w. (c) 4 layer GCN (d) 4 step r.w.

42
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Why Over-smoothing?

* Real-world graphs are scale-free!

{

W%

£

o There are a few hub nodes in real-world graphs
= Disconnected nodes are reachable by a small number of steps (via hubs)
= Random walks converge rapidly to an almost-uniform distribution

o Small k is enough for smoothing RW distribution!

o k-layer GCN is closely related to k-step random walk

= Node representations will be representative of the global graph (degree)
4
h + + | [AS-Oregon _ + | )
10 - s 5
£ + :
3 10° | - :
101 L ] « s V ¥ f a&x
10° N s
10° 10 10° 10 il A
Degree

(e) 6 layer GCN
Power-law degree distribution 6 step random walks Over-smoothness
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JK [ICML’18]

* Propose JK (Jumping Knowledge) networks

o Observation. Small k will capture local structure while large
k will capture global structure

o Main idea: Let’s adaptively mix the result of each

neighborhood aggregation! et
f

Layer aggregation
Concat/Max-pooling/LSTM-attn

th® e R%

1h® e Rt

N 1 h® e ran

(a) 2 layer GCN (c) 4 layer GCN (e) 6 layer GCN . 11 € res

Local

Global 1

Input feature of node v: X,, € R%
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Experimental Result

* Node classification performance of JK
o Transductive setting

Model Citeseer Model Cora
GCN (2) 77.3 (1.3) GCN (2) 88.2 (0.7)
GAT (2 76.2 (0.8 GAT (3 87.7 (0.3

JK-MaxPool (1) 77.7(0.5) | JK-Maxpool (6) 89.6 (0.5)
JK-Concat (1) 78.3 (0.8) JK-Concat (6) 89.1 (1.1)
JK-LSTM (2) 74.7 (0.9) JK-LSTM (1) 85.8 (1.0)

o Inductive setting

Model PPI
MLP 0.422
GAT 0.968 (0.002)

JK-Concat (2) 0.959 (0.003)
JK-LSTM (3) 0.969 (0.006)

JK-Dense-Concat (2)* 0.956 (0.004)
JK-Dense-LSTM (2)*  0.976 (0.007)
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Discussion on JK

* Pros
o P1. Theoretical analysis on GCN’s over-smoothing
= Connected with random walk in graphs
o P2. Capture various structural information
= From local to global, via aggregation at the last layer

* Cons

o C1. Do not know which aggregator is proper
= Require a lot of experiments to search for it
o C2. Number of layers is still limited
= Up to 6 layers, i.e., 6-hop neighbors are considered
= Hard to know which # of layers is suitable (needs experiments)
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Roadmap

* Basic Graph Convolutional Networks

o GCN [ICLR 2017] M

o GraphSAGE [NIPS 2017]
o GAT [ICLR 2018]

* Advanced Graph Convolutional Networks
o JK [ICML 2018]

» APPNP [ICLR 2019]
o GDC [NuerlIPS 2019]
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APPNP [ICLR’19]

* GCN’s propagation « simple random walk in graphs

o Produce probability distribution representing global
properties such as node degree

= e.g., PageRank (similar to simple RW) obtains global importance over
all nodes

o Personalized PageRank is a random walk model for
computing node scores personalized to given seed nodes

* Main idea: Let’s propagate information like
Personalized PageRank
o To preserve local information during propagation
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Personalized PageRank (1)

* Personalized node-to-node scores
o Random walk: randomly moves to a neighboring node

5%

o Restart: goes back to the seed node and restart

High scores around the
seed node 0.10

0.13

Low scores far from the
seed node

49



ﬁe DAaTa MINING LABORATORY L

Personalized PageRank (2) M

* Interpretation of PPR equation

q is a preference vector

c is a preference prob.
h(+1) = (1 - C)Kh(kz + cq
S ' =

Scores at k + 1-th step Neighborhood aggregation Preference injection

Scalar !

h(k) . .
w 1 Neighborhood aggregation

%

k k+1
v h1(7 ) » h1(7 1) « v « Preference injection

on node v
@ A

’ Reason why locality is preserved
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APPNP [ICLR’19]

* Personalized Propagation like PPR  Q = f,(X) = XW

Input feature matrix

H*+D = (1 — ¢)AH® + ¢Q
— | | S

Feature matrix at k + 1-th step Neighborhood aggregation Preference injection

Vector |
) . .
w 1 Neighborhood aggregation

%

hl(?k) » hl(]k+1) « CIv_ « Preference injection

on node v

hy
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Overall Procedure of APPNP

* Step 1. Transform features with learnable weights
o Input feature matrix X € R™*¢
o Learnable weight matrix W € R%*4

HO « Q « XW

* Step 2. Repeat personalized propagation L times

H**D = (1 — ¢c)AH® 4+ ¢Q

« Return H(Y) as the final node representation
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Network Architecture of APPNP

* APPNP consists of a feature transform layer and
multiple propagation layers
T H®)

Personalized Propagation

Personalized Propagation
x HO

Personalized Propagation
1 H® « Q

Feature Transformation

Ix ;s

= | + 1 layers
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5%

Comparison
* Between GCN and APPNP

* Simple GCN  APPNP [ICLR’19]
E Step 1. Transform features o Step 1. Transform features
« H&®) = gOwK) = HO = Q = xw®
Ei?;aei" o Step 2. Neighborhood o Step 2. Personalized
aggregation propagation
_ = H&*D = 5(AH®) = HE+D = (1 — ¢)AH® + ¢Q

Repeat L times

* Transform & propagation are coupled
 Needs L weight matrices

e Shallow transform

e Shallow propagation (L = 2 ~ 3)

* Transform & propagation are split
* Needs one weight matrix
e Shallow transform

* Deep personalized propagation
(L = 10)

17177
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----------------------------------

Analysis of APPNP  Details |

* Exact version: PPNP
° Infinite personalized propagation converges to

k-1
lim H® = lim (2 (1- c)iﬁi> =c(I-(1- C)K)_lQ
=0 \ J

k—o0 k—o0
|

PPR score matrix

o PPNP works on only small graphs due to scalability

o Interpreted as weighted aggregation with PPR scores and
initial prediction Q
Exponentially decaying

H® = Q+ (1 - 0)AQ+ -+ (1 — o)¥AkQ
S —

Local Global
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Experimental Results (1)

* Node classification performance of APPNP

> Transductive setting

> PPNP: the exact method computing matrix
inversion = o0.0.m. for large graphs

Model CITESEER CorA-ML PUBMED MS ACADEMIC
V. GCN 73.51 + 0.48 82.30 + 0.34 77.65 1+ 0.40 91.65 £+ 0.09
GCN 75.40 £+ 0.30 83.41 £+ 0.39 78.68 4+ 0.38 92.10 £ 0.08
N-GCN 74.25 £+ 0.40 82.25 £+ 0.30 77.43 +0.42 92.86 +0.11
GAT 75.39 4+ 0.27 84.37 1+ 0.24 77.76 = 0.44 91.22 + 0.07
JK 73.03 £ 0.47 82.69 £+ 0.35 77.88 + 0.38 91.71 £ 0.10
Bt. FP 73.55 = 0.57 80.84 £+ 0.97 72.94 + 1.00 91.61 +0.24

‘ PPNP* \
APPNP

75.73 = 0.30

75.83 + 0.27 85.29 £+ 0.25

85.09 £ 0.25

Out-of-memory

79.73 £ 0.31

93.27 4+ 0.08
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Experimental Results (2)
* Effect of propagation steps k

Citeseer pppp Cora-ML ppnp

oS Propagation
< 76 o ¢
< * ¢ ¢ ¢ * ¢? $ GCN
§‘ 75 ¢ 84 o @y $ APPNP
pa o
S 74 82
QE o 0

0O 10 20 o0 0O 10 20 o0

k k

> As k increases, APPNP’s performance becomes
improved, and converges to PPNP!

> GCN’s performance becomes bad!
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Experimental Results (3)

* Effect of preference probability c

Citeseer

~J
N}

\]
N
-
o
o
ol
)
o
T e
I 1
<

70
1072 1072 10!
C

-

Cora-ML PubMed MS Academic
:;l....oTOO. 80”¢¢’ ¢T¢’ 0 ..":o
80 10.05 e 0.1! 00 . 0.2
78 : . 76 | e ve ® o :

1072 1072 107t 1073 1072 10L1 1072 1072 107!
C C C

o Within [0.05, 0.2], the proposed model shows
the best predictive performance

o However, it depends on datasets, and should be
manually tuned
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Discussion on APPNP

* Pros

o P1. Carefully consider features from more nodes via PPR
= Theoretically, it can consider all of nodes in the graph

o P2. Split feature transformation and propagation
" |ncrease the flexibility of feature propagation

o P3. APPNP is efficient and very lightweight model

* Cons
o C1. Additional hyperparameters to be tuned
= e.g., # of propagation steps & preference probability ¢
o C2. PPNP suffers from scalability issue

o C3. Shallow transform with a trainable weight matrix

= |ts performance will be limited in complicated ML tasks such as graph
clustering
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Roadmap

* Basic Graph Convolutional Networks

o GCN [ICLR 2017] M

o GraphSAGE [NIPS 2017]
o GAT [ICLR 2018]

* Advanced Graph Convolutional Networks

o JK [ICML 2018]

o APPNP [ICLR 2019]
GDC [NuerlPs 2019]
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GDC [NeurlPS’19]

* Assumptions behind previous approaches

o Only pass features between direct neighboring nodes in
each step

= Why should we limit the propagation to one-hop neighbors?

o Researchers have assumed that the given graph is ideal

= What if the graph contains missing or noisy edges?

* Main idea: Let’s augment the input graph so that any
GNN models improve through graph diffusion!
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GDC [NeurlPS’19]

* GDC (Graph Diffusion Convolution)

o Considered as graph data augmentation

Graph » GNN » Loss

Learning part is fixed

o
o °
(o0 °®
(@, O
g 3 — — o
v R X [ X o
(& s
T ), P ()
Lo [ ] ’ ®
Ny Pee GNN
R / .. i
(7v‘J 3 . . ...
et — — o,
0y ( B
I &t =4
L ( X O\(, o @ o
{ 30
.O

New augmented
Graph diffusion Sparsification graph

GDC is applicable to any GNN models!
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Proposed Method

* GDC (Graph Diffusion Convolution)
o Input: undirected & unweighted graph G

o Qutput: new augmented weighted graph G’
o Step 1. compute transition matrix T
o Step 2. compute graph diffusion matrix S based on T

o Step 3. sparsify the diffusion matrix S = S

o Return S as adjacency weighted matrix of G’
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Graph Diffusion

* What is Graph Diffusion?

o Stochastic process for spreading (or propagating)
information along the edges in a graph

o Starting from a seed (or source) node s
o Obtain diffusion score vector for all nodes w.r.t. s

= Typically localized to seed node s 5 O
: : : O
o Representative graph diffusions O ot¥e!
. o o O30
= Personalized PageRank O O ®
QLA l O O
o Spread a random surfer over graphs @ O O
P g0 00
* Heat Kernel o/ & o
QLT =0
o Spread heat over graphs O OSC ® 008
O o More red,
o More relevant
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Swri

Graph Diffusion

 Graph diffusion matrix S € R™**"
o Contains diffusion scores of all pairs of nodes

= §;j: diffusion score on node i starting at node {

o Let’s use the diffusion matrix as the adjacency weighted
matrix of a new graph

= Aim to use more nodes beyond 1-hop neighbors

Diffusion scores w.r.t. seed node s Diffusion scores = edge weights
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Generalized Graph Diffusion

 Generalized Graph diffusion matrix S € R"*"
S — Hka

o @ diffusion weight at step k

o k: diffusion step

o TX: transition (or stochastic) matrix after k steps
= Movement of information from where to where

* Two models: Personalized PageRank and Heat Kernel

o Personalized PageRank’s diffusion matrix T=A
00 0, = c(1—c)k
S = 2 c(1—c)fA* =c(1-(1- C)K)_l
k=0

o See the paper for Heat Kernel’s diffusion matrix -
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Sparsification

* Diffusion matrix S is fully dense
o Why? Infinite sum of power of the transition matrix

o Require O(n?) space = GNNs using naive S will be
inefficient

* Solution. To sparsify the diffusion matrix S
o j.e., let’s reduce the number of non-zero entriesin S

o Option 1. select top-k relevant nodes for each node

" |n order of diffusion scores w.r.t. each node
o Option 2. remove entries below a threshold €
o Choice between the strategies is another hyperparameter
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* Node classification performance of GDC

None: the original graph, Heat/PPR (proposed):

GDC with Heat/PPR

CoORA 75 CITESEER PUBMED
80
72
Il 4 . ;
® None 66
® Heat 63 7
e PPR €0
GCN GAT JK GIN ARMA GCN GAT JK GIN ARMA GCN GAT JK GIN ARMA
COAUTHOR CS AMz COMP AMZ PHOTO
90
80
75
60
60
oom
GCN GAT JK GIN ARMA 40 GCN GAT JK GIN ARMA GCN GAT JK GIN ARMA

GDC with Heat or PPR improves
the performance of all GNN models in the task
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Discussion on GDC

* Pros
o P1. Augmentation technique for graph data

o P2. Use features from more nodes when modeling latent
node embedding

o P3. Applicable to any GNN models

" Improve the performance of all tested GCN models

* Cons

o C1. Need to carefully tune hyperparameters
= Which diffusion we should use? (PPR or Heat Kernel)
= Which sparsification we should use? (Top-k selection or threshold)

o C2. Not scalable for computing diffusion matrices
= Approximation is possible, but its effect is not revealed
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Conclusion

* Graph convolution makes ML tasks on graphs
easy (as feature extractor on graphs)

* Various techniques for graph convolution
> Basic models (shallow): GCN, GraphSAGE, and GAT
> Advanced models (deep): JK, APPNP, and GDC

* Future research directions

o Unstudied graph structures: heterogeneous graphs,
signed graphs, and hypergrpahs

o Dynamic graphs: nodes, edges, and features can change
over time

o Interpretability: how to interpret and reason the results
of graph neural networks

o Lightweight models: how to accelerate GCN models
without loss of accuracy
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* Email: jinhongjung@snu.ac.kr

e Web: jinhongjung.github.io

* Must-read papers on GNN

o Contributed by Jie Zhou, Ganqu Cui, Zhengyan Zhang and
Yushi Bai, https://github.com/thunlp/GNNPapers

* Related tutorials on GNN

o “Representation Learning on Networks” by William L.
Hamilton et al., WWW2018

o “Graph Neural Networks: Models and Applications” by Yao
Ma et al., AAAI2020

* Geometric deep learning library for PyTorch
o Contributed by Matthias Fey and Jan E. Lenssen
o https://github.com/rustyls/pytorch geometric
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