
Part II: Graph
Convolutional Networks

Jinhong Jung
Seoul National University
jinhongjung@snu.ac.kr

Motivation (1)
• Traditional deep learning models have focused on

grid data (e.g., image, video, text, and audio)

2

Grid structure
(Multi-dimensional array)

ML tasks on image data

ML tasks on audio data

Motivation (2)
• CNN works well on such grid-typed data

◦ End-to-end learning: jointly learn hidden features and
a supervised task (e.g., classification)

3

Feature extraction ClassificationEnd-to-end learning

Motivation (3)
• Traditional models such as CNN do not work on

non-grid graph structured data
◦ Traditional convolution assumes grid structure
◦ There are tremendous graph structured data

4

Friendship Hyperlink Gene

Knowledge Point cloud 3D mesh

Non-grid graphs

Molecule

Question
• How can we perform various ML tasks on graph

structured data?
◦ Like CNN, how can we jointly learn latent features and

a supervised task in a graph?
◦ ⇒ Graph convolutional networks (GCN) can do this!

5Feature extraction Supervised task
Graph

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Representation Level
• Three representation levels in graph learning

◦ Latent feature vector for a node, an edge, or a graph

6

Node level Edge level Graph level

Graph
Convolution

Edge
Pooling

Graph
Pooling

Node Classification Relational Reasoning Graph Classification

Applications of GCN
• Numerous applications in various research fields!

7
https://github.com/thunlp/GNNPapers

https://github.com/thunlp/GNNPapers

Problem Definition
• Input

◦ Undirected graph 𝐺 = (𝒱, ℰ) where 𝐀 is adj. matrix
◦ Initial node feature matrix 𝐗 ∈ ℝ-×/
§ 𝑛: number of nodes & 𝑑: feature dimension
§ e.g., bag-of-words feature vector extracted from the title/abstract

of papers in citation networks

• Output
◦ Final node feature matrix 𝐙 ∈ ℝ-×/ through multiple

layers

• Target task: semi-supervised node classification
◦ Predict the label of a node among multiple classes
§ e.g., paper category (stat.ML, cs.LG, ...)

◦ Small number of training nodes is given
8

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Challenges for Graph Conv.
• C1. No fixed node ordering

◦ ⇒ Result in different convolution for the same graph

• C2. Arbitrary number of node neighbors
◦ ⇒ Complex topological structure compared to grid

9

1
2 4

3
5

0 1 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
0 0 0 1 0

2
5 3

1
2

0 0 0 0 1
0 0 1 0 1
0 1 0 0 1
0 0 0 0 0
1 1 1 0 0

Different node ordering produces
different adjacency matrix

Convolution in
a grid structure

How to do convolution
in a graph?

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Taxonomy and Coverage

10

Graph Convolutional Networks

Node-level Edge-level Graph-level

Basic GCN Advanced GCN

GCN
(ICLR 2017)

GraphSAGE
(NIPS 2017)

GAT
(ICLR 2018)

JK
(ICML 2018)

APPNP
(ICLR 2019)

GDC
(NeurIPS 2019)

Covered!

Node-level GCN models

[Wu et. al. 2020]

Notations
• Graphs

◦ 𝐺 = (𝒱, ℰ); 𝒱 & ℰ: sets of nodes and edges, resp.
◦ 𝒩6: set of neighboring nodes of node 𝑖

• Matrices and vectors
◦ 𝐀 ∈ ℝ-×-: adjacency matrix of graph 𝐺
§ 8𝐀 ∈ ℝ-×-: normalized adjacency matrix (e.g., 8𝐀 = 𝐃:;/=𝐀𝐃:;/=)
§ 𝐃 ∈ ℝ-×-: diagonal degree matrix

◦ 𝐗 ∈ ℝ-×/: input node feature matrix
◦ 𝐇 ∈ ℝ-×/: trained node embedding matrix
§ 𝐡6: node embedding of node 𝑖 (i.e., 𝑖-th row vector of 𝐇)

◦ 𝐖 ∈ ℝ/×/: trainable weight matrix

• Scalars
◦ 𝑛 & 𝑚: # of nodes and edges, resp.; 𝑑: feature dimension
◦ 𝐶: number of classes (or labels)

11

Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017]

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]

12

Jinhong

GCN [ICLR’17]
• Main idea: Let’s generalize convolution to graph

◦ Transform input information with trainable weights
◦ Propagate the information of neighboring nodes
◦ Aggregate the information at each node

13

Standard convolution

0 1 2

3 4 5

6 7 8

Graph convolution

0

2

1

4

5

3

h6: input activation (scalar) at pixel 𝑖
Lh6: transformed activation at pixel 𝑖

𝐡6: input feature (vector) at node 𝑖
M𝐡6: transformed feature at node 𝑖

hN
LhN⇒ h;

Lh;

⇒ h=
Lh=

⇒

𝐡N
M𝐡N

⇒

𝐡=
M𝐡=

⇒ 𝐡O
M𝐡O⇒

𝐡P ⇒ M𝐡PM𝐡; ⇐ 𝐡;

𝐡R ⇒ M𝐡R

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Update Rule for GCN
• Graph convolution

◦ Transform input information with trainable weights
◦ Propagate the information of neighboring nodes
◦ Aggregate the information at each node

𝐡6
ST; = 𝜎 𝐡6

(S)𝐖N
(S) + W

X∈𝒩Y

1
𝑐6X
𝐡X
(S)𝐖;

(S)

14

Neighborhood aggregation

Feature transformation ⇒ shared over all nodes

Non-linear activator
(e.g., ReLU)

↑

0

2

1

4

5

3
𝐡N

𝐡= 𝐡O

𝐡P
𝐡;

𝐡R

𝐡6
(S) ∈ ℝ;×/: node feature at layer 𝑙
𝐖∗

(S) ∈ ℝ/×/: trainable weight matrix
𝒩6 : set of neighboring nodes of node 𝑖
𝑐6X: normalization constant

⇒ invariance to
node permutation

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Vectorized From for GCN (1)
• Update rule for all nodes

𝐇(ST;) = 𝜎 𝐇(S)𝐖N
(S) + 8𝐀𝐇(S)𝐖;

(S)

◦ 𝐇(S) = 𝐡;
S ; … ; 𝐡-

S ∈ ℝ-×/: node feature matrix

◦ 8𝐀 ∈ ℝ-×-: (sparse) normalized adj. matrix (i.e., 8𝐀6X = 𝑐6X:;)

• Choice of normalization constant
◦ 8𝐀 such that largest eigenvalue 𝜆abc = 1
§ Why? Guarantees 𝐇(S) is not exploded after consecutive graph

convolutions

◦ In [ICRL’17], 𝑐6X = |𝒩6| |𝒩X| ⇒ 8𝐀 = 𝐃:
e
f𝐀𝐃:

e
f

§ Why? Derived from 1st-order approx. of graph spectral filters
15

Graph
normalization

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Jinhong

Vectorized From for GCN (2)
• Compact update rule for all nodes

◦ Add a self-loop edge explicitly at each node

• 𝐇(ST;) = 𝜎 𝐇(S)𝐖N
(S) + 8𝐀𝐇(S)𝐖;

(S)

◦ With 8𝐀 = 𝐃:
e
f𝐀𝐃:

e
f

◦ 𝐃 is a diagonal degree matrix
of the original graph

• 𝐇(ST;) = 𝜎 g𝐀𝐇(S)𝐖(S)

◦ With g𝐀 = g𝐃:
e
f(𝐀 + 𝐈)g𝐃:

e
f

◦ g𝐃 is a diagonal degree matrix
of the self-loop added graph

16

2

1

4

5

3𝐡=

𝐡P
𝐡;

𝐡R

2

1

4

5

3𝐡=

𝐡P
𝐡;

𝐡R

𝐡O

𝐡O

⇒

1-hop propagation

GCN Architecture (𝐿 layers)
• Input: raw node feature matrix 𝐗 ∈ ℝ-×/

normalized adjacency matrix g𝐀 ∈ ℝ-×-

• Output: final node embeddings 𝐙 ∈ ℝ-×j

17

𝐗 → 𝐇(N)

𝜎 g𝐀𝐇(;)𝐖(=) → 𝐇(=)𝜎 g𝐀𝐇(N)𝐖(;) → 𝐇(;)

𝐇(l) → 𝐙

Loss

Node Classification with GCN
• Node classification is multi-class classification

◦ Predict a node’s label among multiple classes
◦ 𝒱m: set of training nodes having labels
◦ 𝑌6o: 1 if node 𝑖 has label 𝑐, or 0 otherwise.
◦ 𝐶: number of classes

• Given the final node embedding 𝐙 ∈ ℝ-×j of GCN,
compute row-wise softmax, i.e, 𝐅 = softmax(𝐙)

• Minimize multi-class cross entropy loss

ℒ = − W
6∈𝒱z

W
o{;

j

𝑌6o log 𝐅6o

18

Experimental Result
• Semi-supervised node classification

◦ 2-layer GCN, i.e., 𝐅 = softmax(GCN= GCN; 𝐗 ∈ ℝ-×j

19

Learned Representations
• Visualization of hidden node embeddings

◦ Where a color indicates a class

20

Trained Representations

Discussion on GCN
• Pros

◦ P1. Make ML tasks on graphs easy
§ Enable us to do end-to-end learning on graphs

◦ P2. Invariance to node permutation
§ Due to weight sharing over all nodes

◦ P3. Efficient computation
§ Time ∝ 𝑂(𝑚) where 𝑚 is # of edges
§ Model param. ∝ 𝑂(𝑑=)

• Cons
◦ C1. Shallow propagation (2~3 layers)
§ Small # of neighboring nodes is used
§ Residual can be helpful

◦ C2. Only indirect support for
edge features (limited domain)

◦ C3. Naïve neighborhood aggregation

𝐇(ST;) = 𝜎 g𝐀𝐇(S)𝐖(S) + 𝐇(S)

21

Residual
connection

↓

feature dimension

Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017]

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]

22

GraphSAGE [NIPS’17]
• Assumption of GCN’s neighborhood aggregation

◦ Just simple weighted average of neighbors’ features.
It this the best? Can we do better?

GCN�s aggregation: 𝐡6
ST; = 𝜎 W

X∈𝒩Y∪6

1
𝑐6X
𝐡X
(S)𝐖(S)

• Main idea: Let’s generalize the aggregation!

23
INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Let’s abstract it as
a differentiable function!

↓

Σ

weight

GraphSAGE

24

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

• GCN’s (basic) neighborhood aggregation

𝐡6
ST; = 𝜎 W

X∈𝒩Y∪6

1
𝑐6X
𝐡X
(S)𝐖(S)

• GraphSAGE’s neighborhood aggregation

𝐡𝒩Y

(ST;) = AGGREGATES 𝐡X
(S)|∀𝑗 ∈ 𝒩6

𝐡6
ST; = 𝜎 CONCAT 𝐡6

(S), 𝐡𝒩Y

(ST;) 𝐖(S)

AGGREGATES ⋅
↓

GraphSAGE’s Algorithm

25

• Input & output formats are the same as GCN

𝐡6
(N) ← 𝐱6 ∀𝑖 ∈ 𝒱

For 𝑙 = 0⋯𝐿 − 1 do
For 𝑖 ∈ 𝒱 do

𝐡𝒩Y

(ST;) = AGGREGATES 𝐡X
(S)|∀𝑗 ∈ 𝒩6

𝐡6
ST; = 𝜎 CONCAT 𝐡6

(S), 𝐡𝒩Y

(ST;) 𝐖(S)

𝐡6
(ST;) ← 𝐡6

ST; /||𝐡6
ST; ||= ∀𝑖 ∈ 𝒱

𝐳6 ← 𝐡6
(m) ∀𝑖 ∈ 𝒱 Explicit normalization is added since

graph normalization could be
omitted in the aggregation!

⇑

GraphSAGE Variants
• How to define AGGREGATES ⋅ ?

◦ Mean aggregator
§ Nearly equivalent to GCN’s aggregation

MEAN 𝐡X
(S)|∀𝑗 ∈ 𝒩6 =

1
|𝒩6|

W
X∈𝒩Y

𝐡X
(S)

◦ LSTM aggregator
§ Apply LSTM to random permutation 𝜋 of neighbors

LSTM 𝐡X
(S) ∀𝑗 ∈ 𝜋(𝒩6

◦ Pool aggregator
§ Apply elementwise max-pooling over neighbors’ features

max 𝜎 𝐡X
S 𝐖���� ∀𝑗 ∈ 𝜋(𝒩6

26

Inductive Capability
• Transductive: training algorithm sees the features

of all nodes, including test nodes (but, not labels)
• Inductive: it doesn’t have access to test nodes

◦ Test nodes are dynamically inserted into training graphs
◦ Test graphs are disjoint and completely unseen

• Same aggregation parameters are shared for all nodes
◦ Can generalize to unseen nodes (or graphs)!

27
train with snapshot new node arrives generate embedding

for new node

zu
Use
shared
aggregator

←

Experimental Result
• Node classification performance of GraphSAGE

◦ Performed in inductive setting (i.e., test nodes are unseen
at training step)

◦ Unsupervised GraphSAGE: uses an unsupervised loss as in
DeepWalk (similar embeddings for connected nodes)

◦ Supervised GraphSAGE: uses the supervised loss for node
classification

28

Discussion on GraphSAGE
• Pros

◦ P1. Generalized neighborhood aggregators
§ Mean, LSTM, and max-pool

◦ P2. Complex aggregator is better than simple one
§ LSTM/max-pool > GCN/Mean

◦ P3. Effective for inductive node classification

• Cons
◦ C1. Shallow propagation (2 layers)
◦ C2. Do not know which aggregator is proper
§ Require a lot of experiments to search for it

◦ C3. Fixed importance of edges for neighborhood feature
aggregation

29

Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017]

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]

30

GAT [ICLR’17]
• Assumption of previous models

◦ Weights of edges are fixed by graph normalization
◦ Can we learn edge weights more suitable for a task?

GCN�s aggregation: 𝐡6
ST; = 𝜎 W

X∈𝒩Y

1
𝑐6X
𝐡X
(S)𝐖(S)

• Main idea: let’s learn edge weights via attention
◦ Graph attention networks (GAT)

31

Fixed weight

2

1

4

5

3𝐡=

𝐡P
𝐡;

𝐡R

𝐡O

Attention

2

1

4

5

3𝐡=

𝐡P
𝐡;

𝐡R

𝐡O𝛼=R 𝛼OR

𝛼;R

𝛼PR

Graph Attention
• Suppose we compute attention on edge (𝑖, 𝑗)

◦ Node 𝑖 has hidden (activation) feature 𝐡6

• Step 1. transform features with weight matrix 𝐖
M𝐡6 = 𝐡6𝐖

• Step 2. compute attention coefficient
◦ 𝒂 ∈ ℝ=/ is a shared trainable weight vector

𝑒6X = 𝒂£ CONCAT(M𝐡6, M𝐡X)

• Step 3. compute attention probability

𝛼6X = softmaxX 𝑒6X =
exp(𝑒6X)

∑¦∈𝒩Y
exp 𝑒6¦

32

Multi-head Attention
• Aim to obtain multiple attention scores per edge

𝐡6� = CONCAT
;§¦§¨

𝜎 W
X∈𝒩Y

𝛼6X¦ 𝐡X𝐖¦

◦ 𝑘-th head attention 𝛼6X¦ is computed with 𝐖¦ by graph
attention

33GAT with 3-head attention

Experimental Result
• Node classification performance of GAT

◦ Transductive setting (2-layer GAT with 8 heads)

34

Experimental Result
• Node classification performance of GAT

◦ Inductive setting (3-layer GAT with (4,6) heads)

35

Discussion on GAT
• Pros

◦ P1. Increased learning power via multi-head attention
◦ P2. Effective for both transductive and inductive settings

• Cons
◦ C1. Shallow propagation (2~3 layers)
◦ C2. Larger model complexity
◦ C3. Slower than GCN or GraphSAGE
§ Due to multi-head attention

36

Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017]

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]

37

Limitation of Basic GCNs
• Basic GCNs shows the best performance when their

depth is shallow
◦ GCN [ICLR’17]: 𝟐 layers
◦ GraphSAGE [NIPS’17]: 𝟐 layers
◦ GAT [ICLR’18]: 𝟐~𝟑 layers
◦ With two GCN layers, only

2-hop neighbors are considered

• Deep layers degrade
the GCNs’ performance
◦ Learning power of GCN is limited
◦ Why?

38

Tr
ai

ni
ng

 lo
ss

Epoch

[Le et al., ICCV’19]

Over-smoothing Problem (1)
• Node representations are over-smoothed as the

layer depth increases
◦ ⇒ Become undistinguishable as the depth increases

• Main cause: averaging aggregation
◦ It loses its focus on the local neighborhood

39

⋯

Initial Frist step propagation Infinite propagation

Over-smoothing Problem (2)
• Visualization on node representation of GCN

◦ Zachary’s karate club network (2 labels)
◦ Point = node embedding t-SNE projected onto 2D space

40

⇒ Become similar
to each other
[Li et al., AAAI’18]

Analysis on GCN (1)
• Analyzed the behavior of neighborhood aggregation

◦ Why does deep GCN produce over-smoothen embeddings?

• Influence distribution of a node
◦ ∀𝑦 ∈ 𝒱, influence score of node 𝑦 on node 𝑥
§ How much a change in 𝐡®

(N) affects 𝐡¯
(¦) in the last layer

• Random walk distribution of a node
◦ ∀𝑦 ∈ 𝒱, probability that a surfer visits node 𝑦 through 𝑘

steps starting at node 𝑥

41

Analysis on GCN (2)
• Influence distribution of node 𝑥 in 𝑘-layer GCN
⇔𝑘-step random walk distribution of the node
◦ Example where a square node is target node 𝑥
◦ GCN’s feature modeling can be described by the random

walk in graphs!

42

highlow

Why Over-smoothing?
• Real-world graphs are scale-free!

◦ There are a few hub nodes in real-world graphs
§ Disconnected nodes are reachable by a small number of steps (via hubs)
§ Random walks converge rapidly to an almost-uniform distribution

◦ Small 𝑘 is enough for smoothing RW distribution!
◦ 𝑘-layer GCN is closely related to 𝑘-step random walk
§ Node representations will be representative of the global graph (degree)

43Power-law degree distribution 6 step random walks Over-smoothness

start!

hubs

Real World Random

JK [ICML’18]
• Propose JK (Jumping Knowledge) networks

◦ Observation. Small 𝑘 will capture local structure while large
𝑘 will capture global structure

◦ Main idea: Let’s adaptively mix the result of each
neighborhood aggregation!

44
Local Global

Experimental Result
• Node classification performance of JK

◦ Transductive setting

◦ Inductive setting

45

Discussion on JK
• Pros

◦ P1. Theoretical analysis on GCN’s over-smoothing
§ Connected with random walk in graphs

◦ P2. Capture various structural information
§ From local to global, via aggregation at the last layer

• Cons
◦ C1. Do not know which aggregator is proper
§ Require a lot of experiments to search for it

◦ C2. Number of layers is still limited
§ Up to 6 layers, i.e., 6-hop neighbors are considered
§ Hard to know which # of layers is suitable (needs experiments)

46

Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017]

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]

47

APPNP [ICLR’19]
• GCN’s propagation ∝ simple random walk in graphs

◦ Produce probability distribution representing global
properties such as node degree
§ e.g., PageRank (similar to simple RW) obtains global importance over

all nodes

◦ Personalized PageRank is a random walk model for
computing node scores personalized to given seed nodes

• Main idea: Let’s propagate information like
Personalized PageRank
◦ To preserve local information during propagation

48

Personalized PageRank (1)
• Personalized node-to-node scores

◦ Random walk: randomly moves to a neighboring node
◦ Restart: goes back to the seed node and restart

49

1

4

3

2

5
6

7

9
10

8
11

12
0.13

0.10

0.13

0.13

0.05

0.05

0.08

0.04

0.02

0.04

0.03

Seed node

High scores around the
seed node

Low scores far from the
seed node

Personalized PageRank (2)
• Interpretation of PPR equation

𝐡(¦T;) = 1 − 𝑐 8𝐀𝐡(¦) + 𝑐𝐪

50

Scores at 𝑘 + 1-th step Neighborhood aggregation Preference injection

𝒒 is a preference vector

𝑣

𝑤

𝑢

ℎ·
¦

ℎ¸
¦

ℎ¹
¦T; 𝑞¹ ← Preference injection

on node 𝑣

↓ Neighborhood aggregation

ℎ¹
¦

Reason why locality is preserved

𝑐 is a preference prob.

Scalar ↓

APPNP [ICLR’19]
• Personalized Propagation like PPR

𝐇(¦T;) = 1 − 𝑐 8𝐀𝐇(¦) + 𝑐𝐐

51

Feature matrix at 𝑘 + 1-th step Neighborhood aggregation Preference injection

𝑸 = 𝑓¾ 𝑿 = 𝑿𝑾
Input feature matrix

𝑣

𝑤

𝑢

𝒉·
¦

𝒉¸
¦

𝒉¹
¦T; 𝒒¹

↓ Neighborhood aggregation

𝒉¹
¦

Vector ↓

← Preference injection
on node 𝑣

Overall Procedure of APPNP
• Step 1. Transform features with learnable weights

◦ Input feature matrix 𝑿 ∈ ℝ-×/

◦ Learnable weight matrix 𝑾 ∈ ℝ/×/

𝐇(N) ← 𝐐 ← 𝐗𝐖

• Step 2. Repeat personalized propagation 𝐿 times

𝐇(¦T;) = 1 − 𝑐 8𝐀𝐇(¦) + 𝑐𝐐

• Return 𝐇(m) as the final node representation

52

Network Architecture of APPNP
• APPNP consists of a feature transform layer and

multiple propagation layers

53

Feature Transformation

Personalized Propagation

𝐇(N) ← 𝑸

Personalized Propagation

𝐇(;)

Personalized Propagation

⋯
⋯

𝐇(m)

𝐗

𝐿 + 1 layers

Comparison
• Between GCN and APPNP

54

• Transform & propagation are coupled
• Needs 𝐿 weight matrices
• Shallow transform
• Shallow propagation (𝐿 = 2 ∼ 3)

• Transform & propagation are split
• Needs one weight matrix
• Shallow transform
• Deep personalized propagation

(𝐿 ≥ 10)

↔
↔
↔
↔

• Simple GCN
◦ Step 1. Transform features
§ 8𝐇(¦) = 𝐇(¦)𝐖(¦)

◦ Step 2. Neighborhood
aggregation
§ 𝐇(¦T;) = 𝜎 8𝐀8𝐇(¦)

• APPNP [ICLR’19]
◦ Step 1. Transform features
§ 𝐇(N) = 𝐐 = 𝐗𝐖(¦)

◦ Step 2. Personalized
propagation
§ 𝐇(¦T;) = 1 − 𝑐 8𝐀𝐇(¦) + 𝑐𝐐

Repeat 𝐿 times

Repeat
𝐿 times

Analysis of APPNP
• Exact version: PPNP

◦ Infinite personalized propagation converges to

lim
¦→Å

𝐇(¦) = lim
¦→Å

W
6{N

¦:;

1 − 𝑐 6 8𝐀6 = 𝑐 𝐈 − 1 − 𝑐 8𝐀
:;
𝐐

◦ PPNP works on only small graphs due to scalability
◦ Interpreted as weighted aggregation with PPR scores and

initial prediction 𝐐

𝐇(¦) = 𝐐 + 1 − c 8𝐀𝐐 +⋯+ 1 − c ¦8𝐀¦𝐐

55

PPR score matrix

Details

Local Global

Exponentially decaying

Experimental Results (1)
• Node classification performance of APPNP

◦ Transductive setting
◦ PPNP: the exact method computing matrix

inversion ⇒ o.o.m. for large graphs

56

Out-of-memory

Experimental Results (2)
• Effect of propagation steps 𝑘

◦ As 𝑘 increases, APPNP’s performance becomes
improved, and converges to PPNP!

◦ GCN’s performance becomes bad!

57

PPNP
↓

PPNP
↓

𝑘 𝑘

Experimental Results (3)
• Effect of preference probability 𝑐

◦ Within [0.05, 0.2], the proposed model shows
the best predictive performance

◦ However, it depends on datasets, and should be
manually tuned

58

𝑐 𝑐 𝑐 𝑐𝑐

0.1 0.05 0.1 0.2

Discussion on APPNP
• Pros

◦ P1. Carefully consider features from more nodes via PPR
§ Theoretically, it can consider all of nodes in the graph

◦ P2. Split feature transformation and propagation
§ Increase the flexibility of feature propagation

◦ P3. APPNP is efficient and very lightweight model

• Cons
◦ C1. Additional hyperparameters to be tuned
§ e.g., # of propagation steps & preference probability 𝑐

◦ C2. PPNP suffers from scalability issue
◦ C3. Shallow transform with a trainable weight matrix
§ Its performance will be limited in complicated ML tasks such as graph

clustering

59

Roadmap
• Basic Graph Convolutional Networks

◦ GCN [ICLR 2017]

◦ GraphSAGE [NIPS 2017]

◦ GAT [ICLR 2018]

• Advanced Graph Convolutional Networks
◦ JK [ICML 2018]

◦ APPNP [ICLR 2019]

◦ GDC [NuerIPS 2019]

60

GDC [NeurIPS’19]
• Assumptions behind previous approaches

◦ Only pass features between direct neighboring nodes in
each step
§ Why should we limit the propagation to one-hop neighbors?

◦ Researchers have assumed that the given graph is ideal
§ What if the graph contains missing or noisy edges?

• Main idea: Let’s augment the input graph so that any
GNN models improve through graph diffusion!

61

Graph GNN Loss

GDC [NeurIPS’19]
• GDC (Graph Diffusion Convolution)

◦ Considered as graph data augmentation

62

Graph GNN Loss

Learning part is fixed

Graph diffusion Sparsification
New augmented

graph

GNN

GDC is applicable to any GNN models!

Proposed Method
• GDC (Graph Diffusion Convolution)

◦ Input: undirected & unweighted graph 𝐺
◦ Output: new augmented weighted graph 𝐺�

◦ Step 1. compute transition matrix 𝐓
◦ Step 2. compute graph diffusion matrix 𝐒 based on 𝐓
◦ Step 3. sparsify the diffusion matrix 𝐒 ⇒ L𝐒

◦ Return L𝐒 as adjacency weighted matrix of 𝐺�

63

Graph Diffusion
• What is Graph Diffusion?

◦ Stochastic process for spreading (or propagating)
information along the edges in a graph

◦ Starting from a seed (or source) node 𝑠
◦ Obtain diffusion score vector for all nodes w.r.t. 𝑠
§ Typically localized to seed node 𝑠

◦ Representative graph diffusions
§ Personalized PageRank

◦ Spread a random surfer over graphs

§ Heat Kernel
◦ Spread heat over graphs

64

More red,
More relevant

Diffusion scores w.r.t. seed node 𝑠
𝑠

Diffusion scores ⇒ edge weights

Graph Diffusion
• Graph diffusion matrix 𝐒 ∈ ℝ-×-

◦ Contains diffusion scores of all pairs of nodes
§ S6X: diffusion score on node 𝑖 starting at node 𝑖

◦ Let’s use the diffusion matrix as the adjacency weighted
matrix of a new graph
§ Aim to use more nodes beyond 1-hop neighbors

65

Generalized Graph Diffusion
• Generalized Graph diffusion matrix 𝐒 ∈ ℝ-×-

𝐒 = W
¦{N

Å

𝜃¦𝐓¦

◦ 𝑘: diffusion step
◦ 𝜃¦: diffusion weight at step 𝑘
◦ 𝐓¦: transition (or stochastic) matrix after 𝑘 steps
§ Movement of information from where to where

• Two models: Personalized PageRank and Heat Kernel
◦ Personalized PageRank’s diffusion matrix

𝐒 = W
¦{N

Å

𝑐 1 − 𝑐 ¦ 8𝐀¦ = 𝑐 𝐈 − 1 − 𝑐 8𝐀 :;

◦ See the paper for Heat Kernel’s diffusion matrix 66

𝐓 = 8𝐀
𝜃¦ = 𝑐 1 − 𝑐 ¦

Sparsification
• Diffusion matrix 𝐒 is fully dense

◦ Why? Infinite sum of power of the transition matrix
◦ Require 𝑂(𝑛=) space ⇒ GNNs using naïve 𝐒 will be

inefficient

• Solution. To sparsify the diffusion matrix 𝐒
◦ i.e., let’s reduce the number of non-zero entries in 𝐒
◦ Option 1. select top-𝑘 relevant nodes for each node
§ In order of diffusion scores w.r.t. each node

◦ Option 2. remove entries below a threshold 𝜖
◦ Choice between the strategies is another hyperparameter

67

Experimental Result
• Node classification performance of GDC

68

None: the original graph, Heat/PPR (proposed): GDC with Heat/PPR

GDC with Heat or PPR improves
the performance of all GNN models in the task

Discussion on GDC
• Pros

◦ P1. Augmentation technique for graph data
◦ P2. Use features from more nodes when modeling latent

node embedding
◦ P3. Applicable to any GNN models
§ Improve the performance of all tested GCN models

• Cons
◦ C1. Need to carefully tune hyperparameters
§ Which diffusion we should use? (PPR or Heat Kernel)
§ Which sparsification we should use? (Top-k selection or threshold)

◦ C2. Not scalable for computing diffusion matrices
§ Approximation is possible, but its effect is not revealed

69

Conclusion
• Graph convolution makes ML tasks on graphs

easy (as feature extractor on graphs)
• Various techniques for graph convolution

◦ Basic models (shallow): GCN, GraphSAGE, and GAT
◦ Advanced models (deep): JK, APPNP, and GDC

• Future research directions
◦ Unstudied graph structures: heterogeneous graphs,

signed graphs, and hypergrpahs
◦ Dynamic graphs: nodes, edges, and features can change

over time
◦ Interpretability: how to interpret and reason the results

of graph neural networks
◦ Lightweight models: how to accelerate GCN models

without loss of accuracy
70

Q & A
• Email: jinhongjung@snu.ac.kr
• Web: jinhongjung.github.io
• Must-read papers on GNN

◦ Contributed by Jie Zhou, Ganqu Cui, Zhengyan Zhang and
Yushi Bai, https://github.com/thunlp/GNNPapers

• Related tutorials on GNN
◦ “Representation Learning on Networks” by William L.

Hamilton et al., WWW2018
◦ “Graph Neural Networks: Models and Applications” by Yao

Ma et al., AAAI2020

• Geometric deep learning library for PyTorch
◦ Contributed by Matthias Fey and Jan E. Lenssen
◦ https://github.com/rusty1s/pytorch_geometric

71

mailto:jinhongjung@snu.ac.kr
mailto:jinhongjung@snu.ac.kr
https://github.com/thunlp/GNNPapers
https://github.com/rusty1s/pytorch_geometric

References
[1] Kipf, Thomas N., and Max Welling. “Semi-supervised classification with

graph convolutional networks”, ICLR 2017

[2] Hamilton, Will, Zhitao Ying, and Jure Leskovec. "Inductive representation
learning on large graphs”, NIPS 2017

[3] Veličković, Petar, et al. "Graph attention networks”, ICLR 2018

[4] Xu, Keyulu, et al. "Representation Learning on Graphs with Jumping
Knowledge Networks”, ICML 2018

[5] Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Günnemann.
“Predict then Propagate: Graph Neural Networks meet Personalized
PageRank”, ICLR 2019

[6] Klicpera, Johannes, Stefan Weißenberger, and Stephan Günnemann.
"Diffusion improves graph learning”, NuerIPS 2019

[7] Li, Guohao, et al. "Deepgcns: Can gcns go as deep as cnns?", ICCV 2019

[8] Li, Qimai, Zhichao Han, and Xiao-Ming Wu. "Deeper insights into graph
convolutional networks for semi-supervised learning”, AAAI 2018

72

