

Time-aware Random Walk Diffusion to Improve Dynamic Graph Learning

Jinhong Jung

Soongsil University

KJDB 2023

Jong-whi Lee, and *Jinhong Jung*. "Time-aware random walk diffusion to improve dynamic graph learning." *AAAI 2023*

Outline

Motivation

Proposed Method

Experiments

Dynamic Graph Learning (1)

Real-world graphs change over time!

- Represented as a temporal sequence of graph snapshots
 - Social networks, citation networks, web graphs, etc.
- Learning node representations on a dynamic graph is crucial in temporal link prediction & node classification
 - Extended to traffic forecasting & temporal knowledge completion

Temporal link prediction on a dynamic graph (discrete-time)

Dynamic Graph Learning (2)

Dynamic Graph Neural Networks

Combined with GCNs and RNNs (e.g., GCRN, EvolveGCN)

Research Question

□ How can we augment a dynamic graph to improve dynamic graph learning?

- Each graph snapshot is extremely sparse (i.e., few edges)
 - $\,\circ\,$ Not good for graph convolution
- Data augmentation is essential for ML models
 - How to augment such a dynamic graph?

How to effectively augment the dynamic graph that changes over time?

Problem Definition

Dynamic graph learning aims to learn

$$\mathbf{H}_t = \mathcal{F}_{\Theta}(\mathbf{A}_t, \mathbf{F}_t, \mathbf{H}_{t-1})$$

 $\circ \ \mathcal{F}_\Theta$ is a dynamic GNN model with parameter Θ

- $\circ A_t$ is an adjacency matrix of a dynamic graph G at time t
- \circ **F**_t and **H**_t are node features and hidden embeddings, resp.

Dynamic graph augmentation 🎯

- Input: a sequence $\{A_1, \dots, A_T\}$ of adjacency matrices in \mathcal{G}
- Output: a new sequence {X₁, ··· , X_T} of augmented adjacency matrices
 - We want those new adjacency matrices to improve the performance of any dynamic GNN

Previous Approaches

- □ Most existing augmentations mainly transform spatial structure of a single static graph
 - Drop-based methods
 - e.g., randomly drop a few of edges at each epoch
 - Diffusion-based methods
 - $^\circ\,$ e.g., add new edges weighted by graph diffusion such as RWR

□ However, they are unsuitable for dynamic graphs

 Naively applying a static method to each graph snapshot could not capture temporal dynamics!

Outline

□ Introduction

Output Institution

Proposed Method

Experiments

Motivation (1)

Dynamic graph augmentation needs to

- Consider temporal dynamics as well as spatial structure
- Inspired from temporal and spatial localities in graphs

Temporal locality

- Objects (e.g., triangle) tend to be more affected by more recent edges than older ones in dynamic graphs
 - $\,\circ\,$ e.g., triangles with edges close in time than with edges far in time

Motivation (2)

Spatial locality

- Objects (e.g., node) tend to be more affected by nearby nodes than distant ones
- Graph diffusion enhances spatial locality
 - Random Walk with Restart (RWR) uses a random surfer who does random walk or restart from seed node s
 - Node-to-node proximity scores are **spatially localized** to the seed node

Research Challenges

□ Previous work ignores temporal locality

- However, newly augmented edges need to be more affected by more recent edges
- Graph diffusion enhances spatial locality
 - However, it leads to a fully dense score matrix that can degrade computational efficiency

Challenges:

- C1. How can we augment the temporal locality as well as the spatial locality (⇒ spatio-temporal locality)?
- C2. How can we avoid to generate dense matrices while preserving enhanced data?

Outline

□ Introduction

Motivation

Proposed Method

Experiments

Proposed Method

- □ TiaRa (Time-aware Random Walk Diffusion)
 - Aims to enhance spatio-temporal locality!

Our approaches

- 1) Make an RWR's surfer time-aware
- 2) Diffuse the time-aware surfer on the dynamic graph
- 3) Sparsify the diffused results for efficiency

Time-aware RWR (TRWR)

□ Virtually connect nodes toward the future

- Then, the surfer also can travel along the time axis
 - Not backward since future (test) data should be prevented
- Leads to diffusion scores spatio-temporally localized
 - Insert new edges based on the diffusion scores!

Diffusion Matrix of TRWR Details

 \Box Diffusion matrix X_t is represented as:

$$\boldsymbol{\mathcal{X}}_{t} = (1 - \gamma) (\boldsymbol{\mathcal{L}}_{t}^{\mathrm{rwr}} \boldsymbol{I}_{n}) + \gamma (\boldsymbol{\mathcal{L}}_{t}^{\mathrm{rwr}} \boldsymbol{\mathcal{X}}_{t-1})$$

Spatial augmenter Temporal augmenter $\boldsymbol{\mathcal{S}}_{t}$

Notations

- $X_t = \{x_{t,s}\}$ contains diffusion scores of TRWR w.r.t. all nodes s
- $\gamma = \beta/(\alpha + \beta)$ is a ratio of temporal locality
- $\mathcal{L}_t^{\text{rwr}}$ is a diffusion matrix of RWR at only time t
- In other words, $\boldsymbol{\mathcal{X}}_t$ is a linear combination of $\boldsymbol{\mathcal{S}}_t$ and $\boldsymbol{\mathcal{T}}_t$

Diffusion Matrix of TRWR Details

□ Theorem for dynamic graph augmentation

Can capture temporal locality as well as spatial locality

- $\circ \mathcal{L}_t^{\mathrm{rwr}}$ indicates a matrix in which a spatial locality is enhanced
- X_t is more affected by more recent data than older ones where a temporal locality is enhanced
 - Old information is decaying over time by γ (a.k.a. *temporal decay ratio*)
- See the detailed proof in the paper!

Calculation of TRWR

Exploit Power iteration method as RWR does!

$$\boldsymbol{\mathcal{X}}_{t} = (1 - \gamma) (\boldsymbol{\mathcal{L}}_{t}^{\mathrm{rwr}} \boldsymbol{\mathcal{I}}_{n}) + \gamma (\boldsymbol{\mathcal{L}}_{t}^{\mathrm{rwr}} \boldsymbol{\mathcal{X}}_{t-1})$$

Spatial augmenter Temporal augmenter $\boldsymbol{\mathcal{S}}_{t}$

 Core term is *L*^{rwr}_t, a typical RWR score matrix which can be calculated using Power iteration method

 \circ Efficient if the adjacency matrix at time t is sparse

- However, both augmenters cause X_t to become dense, negatively impacting the computation for the next X_{t+1}
 - Thus, we introduce further approximation for efficiency

Sparsification

\Box Set elements of \mathcal{X}_t less than ϵ to zero

- ϵ is called filtering threshold where $0 < \epsilon < 1$
- This sparsification follows the below intuition:
 - As scores are localized, very tiny entries are unlikely to affect a graph convolution [Gasteiger et al., NeurIPS19]
- This significantly reduces # of non-zeros of a diffusion matrix while preserving accuracy, thereby maintaining the efficiency of Power Iteration!

Analysis on Sparsification

 ϵ : filtering threshold

\Box Analytical results of filtered \widetilde{X}_t

- Theoretically, # of non-zeros of \widetilde{X}_t is $\mathcal{O}(n/\epsilon)$
 - \circ Where n is # of nodes, and it's much smaller than $O(n^2)$ (i.e., $\epsilon^{-1} \ll n$)
- Empirically, approximation errors don't explode over time
 - $\,\circ\,$ Less affected by previous errors; rather, it is \propto # of edges

Outline

□ Introduction

Motivation

Proposed Method

Experimental Setup

Baseline augmentation methods

DropEdge, GDC, and Merge (simply accumulating graph snapshots)

Dynamic GNN models

- GCN, GCRN and EvolveGCN (EGCN)
- Compare each GNN with and without augmentation

Datasets

		# time			
	# nodes	# edges	steps	# labe	els
Datasets	n	m	T	L	
BitcoinAlpha	3,783	31,748	138	2	
WikiElec	7,125	212,854	100	2	
RedditBody	35,776	484,460	88	2	
Brain	5,000	1,955,488	12	10	
DBLP-3	4,257	23,540	10	3	
DBLP-5	6,606	42,815	10	5	
Reddit	8,291	264,050	10	4	

Temporal Link Prediction

□ Aims to predict if an edge appears in the future

- Augment the adjacency matrix at each time
- Feed data from time 1 to t 1 into a GNN when training
- Predict test edges at time t when evaluating

improvement degradation

	AUC	BitcoinAlpha		WikiElec		RedditBody				
Augmention baseline		GCN	GCRN	EGCN	GCN	GCRN	EGCN	GCN	GCRN	EGCN
	None	57.3±1.6	80.3±6.0	58.8±1.1	59.9±0.9	72.1±2.4	66.9±3.7	77.6±0.4	88.9±0.3	77.6±0.2
	DROPEDGE GDC Merge	56.3±1.0 57.5±1.6 66.8±2.6	73.9±2.2 77.3±6.5 93.1±0.4	57.4±0.9 57.4±1.2 61.0±9.2	<pre>\$50.1±1.0 \$62.8±0.8 \$60.6±1.7</pre>	56.0±9.3 67.9±1.0 68.4±3.2	47.9±6.4 63.1±0.7 60.7±1.3	73.0±0.4 74.6±0.0 69.7±0.7	77.0±1.7 86.4±0.3 89.8±0.5	71.9±0.7 73.8±0.3 80.3±0.5
	TIARA	▲ 76.0±1.3	▲94.6±0.8	▲ 77.2±1.4	▲69.0±1.2	▲ 73.4±2.2	▲69.1±0.3	▲80.8±0.6	▲90.2±0.4	▲82.0±0.1

TiaRa consistently improves the performance of dynamic GNNs, and outperforms other augmentation methods

Node Classification

Aims to classify a label of a node

- A graph and features change over time
- Feed only training nodes of all time steps into a GNN
- Classify test nodes after training

Brain Reddit **DBLP-3** DBLP-5 Macro F1 GCN GCRN EGCN GCN GCRN GCN GCRN EGCN EGCN EGCN GCN GCRN Augmention 44.7±0.8 66.8±1.0 43.4±0.7 18.2±2.9 40.4±1.6 18.6±2.3 53.4±2.6 83.1±0.6 51.3±2.7 69.6±0.9 75.4±0.7 68.5±0.6 NONE baseline DROPEDGE 35.2±1.7 67.8±0.6 39.7±1.8 19.4±0.8 40.3±1.4 18.0±2.7 55.8±1.9 84.3±0.6 52.4±1.7 70.5±0.5 75.6±0.7 68.0±0.7 GDC ▲63.2±1.2 ▲88.0±1.5 ▲67.3±1.3 ▼17.5±2.3 ▲41.0±1.6 ▼18.5±2.8 ▲53.4±2.1 ▲84.7±0.5 ▲52.8±2.2 ▲70.0±0.7 ▲75.5±1.2 ▲69.1±1.0 34.4±3.4 63.2±1.6 53.0±0.9 19.3±3.0 39.6±0.8 20.4±3.0 54.9±3.1 83.0±1.4 53.3±1.2 70.8±0.4 74.5±0.8 69.7±1.6 MERGE 68.7±1.2 ^91.3±1.0 ^72.0±0.6 ^18.4±3.0 ^41.5±1.5 *21.9±1.6 ^57.5±2.2 *84.9±1.6 ^56.4±1.8 *71.1±0.6 *77.9±0.4 *70.1±1.0 TIARA

TiaRa also works on the node classification task!

improvement degradation

Effect of Hyperparameters (1)

\Box Effect of temporal decay ratio γ

- Mostly, AUC decreases drastically when $\gamma \rightarrow 1$
- Using the information of all time steps is a poor choice
- Important to properly mix spatial & temporal information

Effect of Hyperparameters (2)

\Box Effect of filtering threshold ϵ

 $\hfill \hfill \hfill$

Sparsification makes TiaRa efficient and paractically usable!

Outline

□ Introduction

Motivation

Proposed Method

Experiments

Conclusion

□ TiaRa (Time-aware Random Walk Diffusion)

- 1) Make an RWR's surfer time-aware
- 2) Diffuse the time-aware surfer on the dynamic graph
- 3) Sparsify the diffused results for efficiency

□ Aids dynamic GNNs in providing better accuracy

- Temporal locality as well as spatial locality are caputred
- Sparsification makes it efficient & paractically usable
- TiaRa improves the performance of dynamic GNNs on various tasks in dynamic graphs

Thank You

Jinhong Jung

Homepage: <u>https://jinhongjung.github.io</u> Code: <u>https://github.com/dev-jwel/TiaRa</u>

Appendix

Computation of TiaRa

\Box Computing the augmented adjacency matrix \boldsymbol{X}_t

- Use Power iteration
 - Avoid matrix inversion
 - Repeatedly multiply the adjacency matrix
 - Guarantee convergence
 to the final answer

Algorithm 1: TIARA at time t**Require:** adjacency matrix A_t , previous time-aware diffusion matrix \mathcal{X}_{t-1} , restart probability α , time travel probability β , number K of iterations, filtering threshold ϵ **Ensure:** time-aware diffusion matrix $\tilde{\boldsymbol{\mathcal{X}}}_t^{\top}$ 1: $\tilde{\mathcal{A}}_t \leftarrow \mathbf{D}_t^{-1} \mathbf{A}_t$ where $\mathbf{D}_t = \text{diag}(\mathbf{A}_t \mathbf{1})$ 2: $\mathcal{L}_t^{\text{rwr}} \leftarrow \text{Power-Iteration}(\tilde{\mathcal{A}}_t, \alpha, \beta, K)$ 3: $S_t \leftarrow \mathcal{L}_t^{\mathrm{rwr}}$ ▷ Spatial augmenter 4: $\mathcal{T}_t \leftarrow \mathcal{S}_t \mathcal{X}_{t-1}$ ▷ Temporal augmenter 5: $\mathcal{X}_t \leftarrow (1 - \gamma) \mathcal{S}_t + \gamma \mathcal{T}_t$ where $\gamma = \beta / (\alpha + \beta)$ 6: $\mathcal{X}_t \leftarrow$ filter entries of \mathcal{X}_t if their weights are $< \epsilon$ 7: normalize \tilde{X}_t column-wise 8: return \mathcal{X}_t 9: function POWER-ITERATION($\tilde{A}_t, \alpha, \beta, K$) set $c \leftarrow 1 - \alpha - \beta$ and $\mathbf{M}_t^{(0)} \leftarrow \mathcal{I}_n$ 10: for $k \leftarrow 1$ to K do $\mathbf{M}_t^{(k)} \leftarrow \mathbf{\mathcal{I}}_n + c \tilde{\mathbf{\mathcal{A}}}_t^\top \mathbf{M}_t^{(k-1)}$ 11: 12: $\mathcal{L}_t^{\text{rwr}} \leftarrow (1-c) \mathbf{M}_t^{(K)}$ where $\mathbf{M}_t^{(K)} \cong \mathbf{L}_t^{-1}$ 13: normalize $\mathcal{L}_t^{\text{rwr}}$ column-wise and return $\mathcal{L}_t^{\text{rwr}}$ 14: 15: end function

[Appendix]

Computational Complexity

□ Time complexity of TiaRa

- $O(n_t n/\epsilon + n_t^2 K)$ time at each time step
 - $\circ n_t$: # of activated nodes (forming edges at time t)
 - n: # of total nodes
 - $\,\circ\,$ $\epsilon:$ filtering threshold (typically, 10^{-2} or $10^{-3})$
 - *K*: # of power iterations
- Takes O(n) time in real-world dynamic graphs
 n_t << n, and e⁻¹ and K are constant
- Takes $O(n^2)$ time in dense graphs ($n_t = n$)

□ Space complexity of TiaRa

- Takes $O(n/\epsilon)$ space for augmentation at each time step

	Datasets	n	$\lfloor \bar{n}_t \rfloor$
	BitcoinAlpha	3,783	105
)	WikiElec	7,125	354
	RedditBody	35,776	2,465
	Brain	5,000	5,000
	DBLP-3	4,257	782
	DBLP-5	6,606	1,212
	Reddit	8,291	2,071

[Appendix]

RWR Diffusion Matix \mathcal{L}_t^{rwr}

□ The term is derived from the equation of TRWR

$$\mathbf{x}_{t,s} = (1 - \alpha - \beta) \boldsymbol{\mathcal{A}}_t^{\mathsf{T}} \mathbf{x}_{t,s} + \alpha \mathbf{i}_s + \beta \mathbf{x}_{t-1,s}$$

$$\Rightarrow (\mathbf{I}_n - (1 - \alpha - \beta) \mathbf{\mathcal{A}}_t^{\mathsf{T}}) \mathbf{x}_{t,s} = \alpha \mathbf{i}_s + \beta \mathbf{x}_{t-1,s}$$

- Suppose $\mathbf{L}_t = \mathbf{I}_n (1 \alpha \beta) \mathbf{A}_t^{\mathsf{T}}$
- Then, $\mathcal{L}_t^{\mathrm{rwr}} = (\alpha + \beta) \mathbf{L}_t^{-1}$
 - $\,\circ\,$ RWR scores of all pairs of nodes with restart probability $\alpha+\beta$

Input: an adjacency matrix Output: RWR scores w.r.t. seed

[Appendix]