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Dynamic Graph Learning (1)
qReal-world graphs change over time!
§ Represented as a temporal sequence of graph snapshots
◦ Social networks, citation networks, web graphs, etc.

§ Learning node representations on a dynamic graph is 
crucial in temporal link prediction & node classification
◦ Extended to traffic forecasting & temporal knowledge completion
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Dynamic Graph Learning (2)
qDynamic Graph Neural Networks
§ Combined with GCNs and RNNs (e.g., GCRN, EvolveGCN)
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Overview of EvolveGCN
[Pareja et al., AAAI20]



Research Question
qHow can we augment a dynamic graph to 

improve dynamic graph learning?
§ Each graph snapshot is extremely sparse (i.e., few edges)
◦ Not good for graph convolution

§ Data augmentation is essential for ML models
◦ How to augment such a dynamic graph?
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How to effectively augment 
the dynamic graph that changes over time?



Problem Definition
qDynamic graph learning aims to learn

𝐇! = ℱ" 𝑨! , 𝐅! , 𝐇!#$
◦ ℱ! is a dynamic GNN model with parameter Θ

◦ 𝑨" is an adjacency matrix of a dynamic graph 𝒢 at time 𝑡

◦ 𝐅𝑡 and 𝐇𝑡 are node features and hidden embeddings, resp.

qDynamic graph augmentation
§ Input: a sequence {𝑨!, ⋯ , 𝑨"} of adjacency matrices in 𝒢
§ Output: a new sequence {𝓧!, ⋯ ,𝓧"} of augmented 

adjacency matrices
◦ We want those new adjacency matrices to improve the 

performance of any dynamic GNN
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Previous Approaches
qMost existing augmentations mainly transform 

spatial structure of a single static graph
§ Drop-based methods
◦ e.g., randomly drop a few of edges at each epoch

§ Diffusion-based methods
◦ e.g., add new edges weighted by graph diffusion such as RWR

qHowever, they are unsuitable for dynamic graphs
§ Naively applying a static method to each graph snapshot 

could not capture temporal dynamics!
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Motivation (1)
qDynamic graph augmentation needs to
§ Consider temporal dynamics as well as spatial structure

§ Inspired from temporal and spatial localities in graphs

qTemporal locality
§ Objects (e.g., triangle) tend to be more affected by 

more recent edges than older ones in dynamic graphs
◦ e.g., triangles with edges close in time than with edges far in time
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[Shin et al., ICDM17]



Motivation (2)
qSpatial locality
§ Objects (e.g., node) tend to be more affected by nearby 

nodes than distant ones

§ Graph diffusion enhances spatial locality
◦ Random Walk with Restart (RWR) uses a random surfer who does 

random walk or restart from seed node 𝑠
- Node-to-node proximity scores are spatially localized to the seed node
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More blue, 
More relevant

[Gasteiger et al., NeurIPS19]



Research Challenges
qPrevious work ignores temporal locality
§ However, newly augmented edges need to be more 

affected by more recent edges

qGraph diffusion enhances spatial locality
§ However, it leads to a fully dense score matrix that can 

degrade computational efficiency
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Challenges:
- C1. How can we augment the temporal locality as well as 

the spatial locality (⇒ spatio-temporal locality)?

- C2. How can we avoid to generate dense matrices while 
preserving enhanced data?
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Proposed Method
qTiaRa (Time-aware Random Walk Diffusion)
§ Aims to enhance spatio-temporal locality!

qOur approaches
§ 1) Make an RWR’s surfer time-aware
§ 2) Diffuse the time-aware surfer on the dynamic graph

§ 3) Sparsify the diffused results for efficiency
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Time-aware RWR (TRWR)
qVirtually connect nodes toward the future
§ Then, the surfer also can travel along the time axis
◦ Not backward since future (test) data should be prevented

§ Leads to diffusion scores spatio-temporally localized
◦ Insert new edges based on the diffusion scores!
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𝐱" = 1 − 𝛼 (𝓐#𝐱" + 𝛼𝐢"

𝐱$," = 1 − 𝛼 − 𝛽 (𝓐$
#𝐱$," + 𝛼𝐢" + 𝛽𝐱$&',"

Random walk Restart Time travel

Random walk RestartDiffusion 
scores w.r.t. 𝑠

Diffusion 
scores w.r.t. 𝑠

at time 𝑡

Classical RWR

Time-aware RWR

[Tong et al., ICDM06]



Diffusion Matrix of TRWR
qDiffusion matrix 𝓧! is represented as:

𝓧! = 1 − 𝛾 𝓛!-.-𝑰/ + 𝛾(𝓛!-.-𝓧!#$)

§ Notations
◦ 𝓧" = {𝒙",$} contains diffusion scores of TRWR w.r.t. all nodes 𝑠

◦ 𝛾 = 𝛽/(𝛼 + 𝛽) is a ratio of temporal locality 

◦ 𝓛"%&% is a diffusion matrix of RWR at only time 𝑡

§ In other words, 𝓧- is a linear combination of 𝓢- and 𝓣-
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Details

Spatial augmenter
𝓢𝒕

Temporal augmenter
𝓣𝒕



Diffusion Matrix of TRWR
qTheorem for dynamic graph augmentation

§ Can capture temporal locality as well as spatial locality
◦ 𝓛"%&% indicates a matrix in which a spatial locality is enhanced

◦ 𝓧" is more affected by more recent data than older ones where a 
temporal locality is enhanced
- Old information is decaying over time by 𝛾 (a.k.a. temporal decay ratio)

◦ See the detailed proof in the paper!

16

𝓛!"#"×𝓛!$%"#"×⋯×𝓛%"#"

0 < 𝛾 < 1

Details



Calculation of TRWR
qExploit Power iteration method as RWR does!

§ Core term is 𝓛-010, a typical RWR score matrix which can 
be calculated using Power iteration method
◦ Efficient if the adjacency matrix at time 𝑡 is sparse 

§ However, both augmenters cause 𝓧- to become dense, 
negatively impacting the computation for the next 𝓧-2!
◦ Thus, we introduce further approximation for efficiency
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Sparsification
qSet elements of 𝓧! less than 𝝐 to zero
§ 𝜖 is called filtering threshold where 0 < 𝜖 < 1

§ This sparsification follows the below intuition:
◦ As scores are localized, very tiny entries are unlikely to affect a 

graph convolution [Gasteiger et al., NeurIPS19]

§ This significantly reduces # of non-zeros of a diffusion 
matrix while preserving accuracy, thereby maintaining 
the efficiency of Power Iteration! 
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Analysis on Sparsification
qAnalytical results of filtered 1𝓧!

§ Theoretically, # of non-zeros of /𝓧- is 𝑂(𝑛/𝜖)
◦ Where 𝑛 is # of nodes, and it’s much smaller than 𝑂 𝑛' (i.e., 𝜖&' ≪ 𝑛)

§ Empirically, approximation errors don’t explode over time
◦ Less affected by previous errors; rather, it is ∝ # of edges
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𝜖: filtering threshold
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Experimental Setup
qBaseline augmentation methods
§ DropEdge, GDC, and Merge (simply accumulating graph snapshots)

qDynamic GNN models
§ GCN, GCRN and EvolveGCN (EGCN)

§ Compare each GNN with and without augmentation

qDatasets
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# nodes # edges
# time 
steps # labels



Temporal Link Prediction
qAims to predict if an edge appears in the future
§ Augment the adjacency matrix at each time

§ Feed data from time 1 to 𝑡 − 1 into a GNN when training
§ Predict test edges at time 𝑡 when evaluating
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TiaRa consistently improves the performance of dynamic 
GNNs, and outperforms other augmentation methods
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Node Classification
qAims to classify a label of a node 
§ A graph and features change over time

§ Feed only training nodes of all time steps into a GNN 
§ Classify test nodes after training
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TiaRa also works on the node classification task!
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Effect of Hyperparameters (1)
qEffect of temporal decay ratio 𝛾
§ Mostly, AUC decreases drastically when 𝛾 → 1

§ Using the information of all time steps is a poor choice
§ Important to properly mix spatial & temporal information

24



Effect of Hyperparameters (2)
qEffect of filtering threshold 𝜖
§ Large 𝜖 improves efficiency while keeping accuracy
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Sparsification makes TiaRa efficient and paractically usable!
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Conclusion
qTiaRa (Time-aware Random Walk Diffusion)
§ 1) Make an RWR’s surfer time-aware
§ 2) Diffuse the time-aware surfer on the dynamic graph

§ 3) Sparsify the diffused results for efficiency

qAids dynamic GNNs in providing better accuracy 
§ Temporal locality as well as spatial locality are caputred
§ Sparsification makes it efficient & paractically usable

§ TiaRa improves the performance of dynamic GNNs on 
various tasks in dynamic graphs
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Thank You
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Jinhong Jung

Homepage: https://jinhongjung.github.io
Code: https://github.com/dev-jwel/TiaRa

https://jinhongjung.github.io/
https://github.com/dev-jwel/TiaRa
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Computation of TiaRa
qComputing the augmented adjacency matrix 𝓧!

§ Use Power iteration
◦ Avoid matrix inversion

◦ Repeatedly multiply 
the adjacency matrix

◦ Guarantee convergence
to the final answer
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[Appendix]



Computational Complexity
qTime complexity of TiaRa
§ 𝑂(𝑛-𝑛/𝜖 + 𝑛-6𝐾) time at each time step
◦ 𝑛": # of activated nodes (forming edges at time 𝑡)

◦ 𝑛: # of total nodes

◦ 𝜖: filtering threshold (typically, 10(' or 10()) 

◦ 𝐾: # of power iterations

§ Takes 𝑂 𝑛 time in real-world dynamic graphs
◦ 𝑛" ≪ 𝑛, and 𝜖(* and 𝐾 are constant

§ Takes 𝑂 𝑛6 time in dense graphs (𝑛- = 𝑛)

qSpace complexity of TiaRa
§ Takes 𝑂(𝑛/𝜖) space for augmentation at each time step 
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RWR Diffusion Matix 𝓛!"#"
qThe term is derived from the equation of TRWR

𝐱-,8 = 1 − 𝛼 − 𝛽 𝓐-
9𝐱-,8 + 𝛼𝐢8 + 𝛽𝐱-:!,8

⇒ (𝑰; − 1 − 𝛼 − 𝛽 𝓐-
9 )𝐱-,8 = 𝛼𝐢8 + 𝛽𝐱-:!,8

§ Suppose 𝐋- = 𝑰; − 1 − 𝛼 − 𝛽 𝓐-
9

§ Then, 𝓛-010 = 𝛼 + 𝛽 𝐋-:!

◦ RWR scores of all pairs of nodes with restart probability 𝛼 + 𝛽
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Input: an adjacency matrix Output: RWR scores w.r.t. seed

seed 
node

[Tong et al., 
ICDM06]
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